- Bahk YW. Combined radiographic and scintigraphic diagnosis of bone and joint diseases. Berlin: Springer-Verlag; 1994:35-43.
- Tumeh S, Aliabadi P, Weissman B, McNeil B. Disease activity in osteomyelitis: role of radiography. *Radiology* 1987;165:781-784.
- 7. Aliabadi P, Nikpoor N. Imaging osteomyelitis. Arthritis Rheum 1994;37:617-622.
- 8. Shauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR 1992;158:9-18.
- Krznaric E, Roo MD, Verbruggen A, Stuyck J, Mortelmans L. Chronic osteomyelitis: diagnosis with technetium-99m-d,l-hexamethyl propyleneamine oxime labeled leukocytes. J Nucl Med 1996;23:792-797.
- Oyen WJG, Claessens RAMJ, Meer JWM, Corstens FHM. Detection of subacute infectious foci with indium-111-labeled autologous leukocytes and indium-111labeled human nonspecific immunoglobulin G: a prospective comparative study. J Nucl Med 1991;32:1854-1860.
- Yokoyama A, Hata N, Saji H, et al. Chemically designed <sup>99m</sup>Tc radiopharmaceuticals for the tumor diagnosis: <sup>99m</sup>Tc-DMSA [Abstract]. J Nucl Med 1981;22:69P.
- Guerra UP, Pizzocaro C, Terzi A, et al. New tracers for the imaging of the medullary thyroid carcinoma. *Nucl Med Commun* 1989;10:285-295.
   Ohta H, Shane FI, Endo K, et al. Images of liposarcoma using technetium-99m
- Ohta H, Shane FI, Endo K, et al. Images of liposarcoma using technetium-99m bleomycin and technetium(V)-99m-DMSA. Clin Nucl Med 1986;11:842-844.

- Ohta H, Jsuji T, Endo K, et al. SPECT images using <sup>99m</sup>Tc(V) in lung metastasis of osteosarcoma. Ann Nucl Med 1989;3:37-40.
- Ohnishi T, Noguchi S, Murakami N, et al. Pentavalent technetium-(V)-99m-DMSA uptake in a patient having multiple myeloma without amyloidosis. J Nucl Med 1991;32:1785-1787.
- Ohta H, Endo K, Fujita T, et al. Clinical evaluation of tumor imaging using <sup>99m</sup>Tc-(V)-dimercaptosuccinic acid, a new tumor-seeking agent. Nucl Med Commun 1988;9:105-116.
- 17. Ohta H, Yamamato K, Endo K, et al. A new imaging agent for medullary carcinoma of the thyroid. J Nucl Med 1984;25:323-325.
- Clarke SEM, Lazarus CR, Wraight P, Sampson C, Maisey MN. Pentavalent [<sup>99m</sup>Tc] DMSA, [<sup>131</sup>I]MIBG and [<sup>99m</sup>Tc]MDP: an evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. *J Nucl Med* 1988;29:33–38.
- Nakamoto Y, Sakahara H, Kobayashi H, et al. Technetium-99m(V)-dimercaptosuccinic acid: normal accumulation in the breasts. *Eur J Nucl Med* 1997;24:1146–1148.
- Lee BF, Chen CJ, Yang CC, Yu HS. Psoas muscle abscess causing fever of unknown origin: the value of <sup>99m</sup>Tc(V)-DMSA imaging. *Clin Nucl Med* 1997;22:15-16.

# Chromium-51-EDTA Clearance in Adults with a Single-Plasma Sample

#### Johan Mårtensson, Steffen Groth, Michael Rehling and Margareta Gref Department of Clinical Physiology, Norrlands University Hospital, Umeå, Sweden; and Department of Clinical Physiology

and Nuclear Medicine, Skejby University Hospital, Aarhus, Denmark

In 1996, a committee on renal clearance recommended a mean sojourn time-based methodology for single-sample determination of plasma clearance of 99mTc-diethylenetriamine pentaacetic acid (DTPA) to be used on adults if the patient's glomerular filtration rate (GFR) is suspected to be >30 ml/min. The main purpose of this study was to derive a mean sojourn time-based formula for calculation of <sup>51</sup>Cr-ethylenediamine tetraacetic acid (EDTA) clearance in adults. Methods: Two groups of patients with <sup>51</sup>Cr-EDTA clearance (CI) between 16 and 172 ml/min were studied. In Group I (n = 46), reference CI was determined as a multiplasma sample, singleinjection method (Cl<sub>SM</sub>). Sixteen blood samples were drawn from 0 until 5 hr after a single intravenous injection of <sup>51</sup>Cr-EDTA. In Group II (n = 1046), reference CI was determined by the Brøchner-Mortensen four-sample clearance method (Cl<sub>BM</sub>). The plasma timeactivity curves of Group I were used to derive two mean sojourn time-based formulas (Formulas 1 and 2) for calculation of a singlesample clearance. Formula 1 was derived from the entire timeactivity curve, whereas the derivation of Formula 2 used only the final slope of the time-activity curve. The accuracy of the two formulas and the Christensen and Groth 99mTc-DTPA formula was tested on Group II. Results: Chromium-51-EDTA CI calculated by Formula 1 was almost identical to the CI calculated by the reference CI method (r = 0.982; SD<sub>diff</sub> = 5.82 ml/min). Both  $^{51}$ Cr-EDTA CI calculated by Formula 2 and by the 99mTc-DTPA formula showed close correlation with the reference method (r = 0.976, r = 0.985, respectively) but systematically overestimated GFR for the whole range of clearance values by 3.5 and 3.2 ml/min (p < 0.001), respectively. Conclusion: It is possible to get an accurate determination of <sup>51</sup>Cr-EDTA CI from a single-plasma sample in adults by the mean sojourn time methodology. The determination is marginally more accurate (p < 0.001) if using a formula derived from the entire plasma time-activity curve than from only the final slope. The single-sample formula derived for determination of <sup>99m</sup>Tc-DTPA CI tends slightly to overestimate GFR if used to calculate <sup>51</sup>Cr-EDTA CI. Key Words: single sample; chromium-51-ethylenediaminetetraacetic acid clearance, glomerular filtration rate; renal function

### J Nucl Med 1998; 39:2131-2137

For the last decade, determination of the glomerular filtration rate (GFR) by single-plasma-sample technology has been increasingly accepted for clinical evaluation of GFR in adults. The first results indicating that it might be possible to determine GFR from the activity in one blood sample were provided by Fischer and Veall (1), who used a principle of "apparent volume of distribution" previously introduced by Tauxe et al. (2) for calculating effective renal plasma flow as <sup>131</sup>I-orthoiodohippuran clearance. In 1981, Groth and Aasted (3) presented a nomogram for calculating <sup>51</sup>Cr-ethylenediaminetetraacetic acid (EDTA) clearance that preceded the development of a theoretical method for calculating <sup>51</sup>Cr-EDTA clearance from a single-plasma sample in children on the basis of the mean sojourn time of  ${}^{51}$ Cr-EDTA in its distribution volume (4). Today, numerous methodologies for calculation of singlesample GFR are available, and several of these have been compared by independent studies (5-10).

In 1996, a committee on renal clearance (11) recommended the mean sojourn time-based methodology applied for singlesample determination of plasma clearance of  $^{99m}$ Tc-diethylenetriamine pentaacetic acid (DTPA) by Christensen and Groth (12) to be used on adults if the patient's GFR was suspected to be more than 30 ml/min. It also acknowledged that  $^{51}$ Cr-EDTA is an acceptable alternative agent to  $^{99m}$ Tc-DTPA. Indeed, determining GFR by using  $^{51}$ Cr-EDTA, instead of  $^{99m}$ Tc-DTPA, remains the approach chosen by many laboratories in the world. The Christensen and Groth formula, however, has never been standardized for  $^{51}$ Cr-EDTA. Therefore, it is desirable that the mean sojourn time-based methodology also be developed to measure  $^{51}$ Cr-EDTA clearance in adults.

The purpose of this study was to use the single-plasma

Received Dec. 30, 1997; revision accepted May 20, 1998.

For correspondence or reprints contact: Steffen Groth, MD, Department of Clinical Physiology, Norrlands University Hospital, S-901 85 Umeå, Sweden.

sample approach, as used to derive a formula for determining  $^{99m}$ Tc-DTPA single-sample clearance by the Christensen and Groth formula, to derive a formula for calculating  $^{51}$ Cr-EDTA clearance in adults. In addition, we wanted to compare whether such a formula had the same accuracy regardless of whether it was derived from clearance as calculated from the entire plasma time-activity curve or by only a one-pool approach from the final slope of the plasma time-activity curve, as defined from a few plasma samples (13). Finally, we wanted to investigate whether the single-sample formula derived for  $^{99m}$ Tc-DTPA clearance can be safely used for calculating  $^{51}$ Cr-EDTA clearance.

#### MATERIALS AND METHODS

#### Patients

Patients were separated into two groups. Group I contained 46 patients with clearance values >15 ml/min referred for determination of <sup>51</sup>Cr-EDTA clearance. The patients were examined at the Department of Clinical Physiology and Nuclear Medicine, Skejby University Hospital, Aarhus, Denmark. None of the patients had edema, ascites or renovascular hypertension.

Group II contained 1046 consecutive patients referred for routine determination of <sup>51</sup>Cr-EDTA clearance by Brøchner-Mortensen's method at the Department of Clinical Physiology, Norrlands University Hospital, Umeå, Sweden. These patients were not prospectively examined for edema, ascites or renovascular hypertension.

The results of Group I were used to derive a single-plasmasample method by the approach previously described for <sup>99m</sup>Tc-DTPA from the entire plasma time-activity curve (Formula 1) and the final slope (Brøchner-Mortensen) only (Formula 2). The accuracy of the resulting formulas along with the previously published formula for determination of <sup>99m</sup>Tc-DTPA clearance (12) were tested on Group II.

#### Procedure

Group I. The patients were confined to bed throughout the examination, which lasted 5 hr. A Viggo Venflon (Viggo BOC Ohmeda Ltd., Helsingborg, Sweden) for tracer injection and blood sampling was inserted into a cubital vein. A bolus injection of 4 MBq <sup>51</sup>Cr-EDTA in 5 ml 0.9% NaCl solution was given through the Venflon. The Venflon was then flushed with a minimum of 10 ml 0.9% saline. Blood samples of 5 ml were drawn 1 min before the injection and 2, 5, 10, 20, 30, 40, 60, 75, 90, 120, 150, 180, 210, 240, 270 and 300 min after the injection.

*Group II.* The patients were allowed to move around from the time of injection of <sup>51</sup>Cr-EDTA until blood sampling started. A single injection of 3.7 MBq <sup>51</sup>Cr-EDTA was given intravenously. The venflon was flushed with a minimum of 10 ml 0.9% saline. Blood samples were drawn 180, 210, 240 and 270 min after injection.

The radioisotope activity was counted in plasma samples of 2 ml together with precisely determined plasma blanks and a standard dilution of the injectate in a scintillation detector for up to 20 min or to a statistical counting error of <1%.

#### **Calculations**

Group I. Clearance was determined from the entire plasma time-activity curve, as defined by all the plasma samples. The results thus calculated are referred to as the standard method results,  $Cl_{SM}$  (14).

Clearance was also determined by the one-pool model of Brøchner-Mortensen (13),  $Cl_{BM}$ , using the final slope of the plasma elimination curve of <sup>51</sup>Cr-EDTA, as defined by the activity in the 180-, 210-, 240-, 270- and 300-min plasma samples.

The extracellular volume (ECV), defined as the <sup>51</sup>Cr-EDTA distribution volume, was determined from the entire plasma timeactivity curve according to Sapirstein et al. (14), ECV<sub>SM</sub>, and from the one-pool approach of Brøchner-Mortensen, ECV<sub>BM</sub> (15).

The body surface area (BSA) was calculated according to Haycock et al. (16) and was used to establish an empirical relationship between ECV (ECV<sub>SM</sub> and ECV<sub>BM</sub>) and BSA [ECV = f(BSA)].

To derive the single-sample formula by means of the mean sojourn time principle, the mean sojourn time,  $\bar{t}$ , for <sup>51</sup>Cr-EDTA's sojourn in ECV was calculated using the standard method values as  $\bar{t}_{SM}$ , where  $\bar{t}_{SM} = ECV_{SM}/Cl_{SM}$  and using the values calculated according to Brøchner-Mortensen,  $\bar{t}_{BM}$ , as  $\bar{t}_{BM} = ECV_{BM}/Cl_{BM}$  (4).

The fractions  $s_{SM}(t)/(1/\bar{t}_{SM})$  and  $s_{BM}(t)/(1/\bar{t}_{BM})$  were calculated for t = 180, 210, 240, 270 and 300 min where:

$$s_{SM}(t) = \frac{-\ln\left[C(t)\frac{ECV_{SM}}{Q_0}\right]}{t}$$

$$s_{BM}(t) = \frac{-\ln \left[C(t) \frac{ECV_{BM}}{Q_0}\right]}{t}$$

The functions  $g_{SM}(t)$  and  $g_{BM}(t)$  were determined by performing a regression analysis of  $s_{SM}(t)/(1/\bar{t}_{SM})$  and  $s_{BM}(t)/(1/\bar{t}_{BM})$  on t (4).

Finally, the derived relations using the standard method were inserted in the general formula for calculating single-sample clearance by the mean sojourn time approach (the Formula 1 approach) as:

$$Cl_{S-SM} = \frac{-\ln\left[C(t)\frac{ECV_{SM}}{Q_0}\right]ECV_{SM}}{t \times g_{SM}(t)}.$$
 Eq. 1

The derived relations using the Brøchner-Mortensen method were tested in the same general formula (the Formula 2 approach) as

$$Cl_{S-BM} = \frac{-\ln\left[C(t)\frac{ECV_{BM}}{Q_0}\right]ECV_{BM}}{t \times g_{BM}(t)}.$$
 Eq. 2

Group II. The radioactivity in the four plasma samples were used to calculate  $Cl_{BM}$  (13). The accuracy of the formulas derived from Group I (Formula 1 and Formula 2) together with the formula derived from <sup>99m</sup>Tc-DTPA by Christensen and Groth (12) were tested on Group II, using  $Cl_{BM}$  as a reference method.

#### **Statistical Analysis**

and

Regression analysis was performed by means of the least squares method. The Student's t-test was applied to the intercepts and slopes of the regression lines. The s.d. of y on x,  $SD_{y/x}$ , was determined. Comparison between multisample clearances,  $Cl_{SM}$  ( $Cl_{SM} = Cl_{SM}$  or  $Cl_{BM}$ ), and single-sample clearances,  $Cl_{S}$ , was performed by determining the s.d. of the difference between  $Cl_{SM}$  and  $Cl_S$ ,  $SD_{diff}$  (17). The Wilcoxon matched-pairs test was used to identify any difference in accuracy of the clearance values calculated as  $Cl_{S-SM}$ ,  $Cl_{S-BM}$ ,  $Cl_{B-M}$  and  $Cl_{Tc}$ . In figures in which confidence limits are shown, the 0.95 level is used. Significance was reached when p < 0.05 was obtained.

#### RESULTS

The composition of Group I with respect to sex, age, BSA and clearance is shown in Table 1.

 TABLE 1

 Composition of Group I (18 Women and 28 Men) with Regard to Age, Body Surface Area and <sup>51</sup>Cr-EDTA clearance

|                                        |       |           |           |           |           |           |           | Total     |
|----------------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Age (yr)                               | Range | 20-29     | 30-39     | 40-49     | 50–59     | 60-69     | 70–79     | 20–79     |
|                                        | Mean  | 24.5      | 35.3      | 46.0      | 54.9      | 64.9      | 71.3      | 51.4      |
| Body surface area (m <sup>2</sup> )    | Range | 1.53-2.31 | 1.92-2.60 | 1.63-2.30 | 1.49-2.27 | 1.65-2.01 | 1.63-2.07 | 1.49-2.60 |
| •                                      | Mean  | 1.82      | 2.13      | 1.90      | 1.96      | 1.85      | 1.85      | 1.93      |
| Clearance (Cl <sub>SM</sub> ) (ml/min) | Range | 53-110    | 18-107    | 26-107    | 19-104    | 18-66     | 1659      | 16–110    |
|                                        | Mean  | 81        | 66        | 69        | 60        | 41        | 38        | 58        |
| No. of patients                        |       | 4         | 7         | 8         | 14        | 7         | 6         | 46        |

The correlation between  $ECV_{SM}$  and BSA (Fig. 1A) and the correlation between  $ECV_{BM}$  and BSA (Fig. 1B) were significant (r = 0.81, p < 0.001 and r = 0.83, p < 0.001). The functions ECV = f(BSA) were:

$$ECV_{SM} = 10800 \times BSA - 5578.6 (SD_{y/x} = 1915 ml)$$

and,

$$ECV_{BM} = 11476 \times BSA - 7320.9 (SD_{y/x} = 1838 ml)$$
.  
Eq. 4

The regression lines for  $\rm ECV_{SM}$  and  $\rm ECV_{BM}$  on BSA did not differ significantly from each other.

The regression analysis of  $s_{SM}$  ](t)/(1/ $\bar{t}_{SM}$ )(Fig. 2) and  $s_{BM}$ ] (t)/(1/ $\bar{t}_{BM}$ ) at t = 180, 210, 240, 270, and 300 min had the smallest residual variance when biexponential fits were applied. The g(t) functions were determined as:

$$g_{SM}(t) = 0.324 \times e^{-0.0121 \times t} + 1.13 \times e^{-0.000289 \times t}$$
 Eq. 5

and

$$g_{BM}(t) = 1.27 \times e^{-0.000645 \times t} - 0.0966 \times e^{-0.162 \times t}$$
. Eq. 6

Inspection of the data showed that there was an overrepresentation of low clearance values among high  $s(t)/(1/\bar{t})$  values, whereas high clearance values were over-represented among low  $s(t)/(1/\bar{t})$  values.

To analyze the extent of the relation a regression analysis of  $s_{SM}(t)/(1/\bar{t}_{SM})$  on  $Cl_{SM}$  and  $s_{BM}(t)/(1/\bar{t}_{BM})$  on  $Cl_{BM}$  for t = 180, 210, 240, 270 and 300 min was performed (Table 2). The correlation between  $s_{SM}(t)/(1/\bar{t}_{SM})$  and  $Cl_{SM}$  was closer at 300 min than at 180 min after the injection. The relationship between  $s_{BM}(t)/(1/\bar{t}_{BM})$  and  $Cl_{BM}$  was almost the same for the entire time interval. Moreover,  $s(t)/(1/\bar{t})$  was more closely

related to Cl when calculated as  $s_{BM}(t)/(1/\bar{t}_{BM})$  than when calculated as  $s_{SM}(t)/(1/\bar{t}_{SM})$ .

To take advantage of the relationship between g(t) and Cl, the regression lines were combined to yield two new g(t) functions,  $g_{SM}(t)_{corr}$  and  $g_{BM}(t)_{corr}$  as

$$g_{SM}(t)_{corr} = (-4.18 \times 10^{-6} \times t + 6.43 \times 10^{-4})Cl + 1.60 \times 10^{-6} \times t^2 - 0.00103 \times t + 1.25. \text{ Eq. 7}$$

 $g_{BM}(t)_{corr} = (-1.30 \times 10^{-6} \times t - 1.19 \times 10^{-3})Cl + 3.00$  $\times 10^{-6} \times t^2 - 0.00206 \times t + 1.49. \text{ Eq. 8}$ 

The  $g_{SM}(t)_{corr}$  and  $ECV_{SM}$  were then inserted in Eq. 1 allowing  $CI_{S-SM}$  to be calculated by an iterative procedure as:

$$Cl_{S-SM(-n)} = \frac{-\ln\left[\frac{C(t) \times ECV_{SM}}{Q_0}\right] \times ECV_{SM}}{t \times g_{SM}(t)_{corr}(n-1)}, \qquad Eq. 9$$

where  $g_{SM}(t)_{corr}$  (n-1) is found by insertion of  $Cl_{n-1}$  into Equation 7, and  $Cl_{S-SM(n+n-1)}$  is found by using  $g_{SM}(t)$  from Equation 5. The analog equation for calculation of single sample clearance by the equation derived from Brøchner-Mortensen's method,  $Cl_{S-BM}$ , was:

$$Cl_{S-BM(-n)} = \frac{-\ln\left[\frac{C(t) \times ECV_{BM}}{Q_0}\right] \times ECV_{BM}}{t \times g_{BM}(t)_{corr}(n-1)}.$$
 Eq. 10

Figure 3 shows a comparison between  $Cl_{SM}$  and  $Cl_{S-SM}$ , for t = 300 min (A) and  $Cl_{SM}$  and  $Cl_{BM}$  (B). The correlation was close (r = 0.994, p < 0.001 and r = 0.997, p < 0.001) and did not differ significantly from the lines of identity. The difference between the  $Cl_{BM}$  values and the  $Cl_{SM}$  values ( $Cl_{BM}-Cl_{SM}$ ),



FIGURE 1. The correlation between (A) ECV\_{SM} and (B) ECV\_{BM} and body surface area.



**FIGURE 2.** Equation  $s_{SM}(t)/(1/\bar{t}_{SM})(\cdot)$  for t = 180, 210, 240, 270 and 300 min, g(t) (—) describes the relationship between  $s_{SM}(t)/(1/\bar{t}_{SM})$  and time.

however, was significantly smaller than the difference between the  $Cl_{S-SM}$  and  $Cl_{SM}$  values (p < 0.05).

The results of comparing  $Cl_{S-SM}$  and  $Cl_{S-BM}$  (for t = 300 min) to the material from which they were derived showed that there was no difference between their accuracy (Wilcoxon).

The composition of Group II with respect to age, body surface and clearance, determined according to Brøchner-Mortensen (13) is shown in Table 3.

The testing of the two formulas (Eqs. 9 and 10) was made on Group II along with the single-sample clearance method derived from  $^{99m}$ Tc-DTPA (Cl<sub>Tc</sub>) by Christensen and Groth.

The results of the regression analysis of  $Cl_{S-SM}$ ,  $Cl_{S-BM}$  and  $Cl_{Tc}$  on  $Cl_{BM}$  for t = 180 and 270 min are shown in Figure 4. The correlation coefficient for  $Cl_{S-SM}$  on  $Cl_{BM}$  was r = 0.982 for t = 180 min (Fig. 4A) and r = 0.979 for t = 270 min (Fig. 4B). The corresponding correlation coefficients for  $Cl_{S-BM}$  and  $Cl_{Tc}$  on  $Cl_{BM}$  were r = 0.976 and r = 0.985 for t = 180 min and r = 0.970 and r = 0.984 for t = 270 min.

In Figure 5, the difference between  $Cl_{BM}$  and  $Cl_{S-SM}$  (Fig. 5A) and the difference between  $Cl_{BM}$  and  $Cl_{Tc}$  (Fig. 5B), for t = 180 min, were compared with reference to  $Cl_{BM}$ . For  $Cl_{BM}-Cl_{S-SM}$ , there was a uniform scatter of the results around the zero-line (coefficient of variation, CV = 5.5%). There was

only a small, but significant, overestimation of GFR for the whole range of clearance values by 1.5 ml/min (p < 0.001). This was even more pronounced in the case for  $Cl_{BM}-Cl_{Tc}$  in which there was a systematic overweight of results below the zero-line (CV = 6.5%) that resulted in an overestimation of GFR by 3.2 ml/min (p < 0.001). The analog comparison between  $Cl_{BM}-Cl_{S-BM}$  and  $Cl_{BM}$  showed that Formula 2 overestimated GFR by 3.5 ml/min (p < 0.001).

#### DISCUSSION

The results of this study show that it is possible to get an accurate determination of <sup>51</sup>Cr-EDTA clearance from a single plasma sample in adults by applying the mean sojourn timebased approach previously shown to be very precise for determination of <sup>99m</sup>Tc-DTPA plasma clearance from the activity in a single plasma sample.

The precise calculation of plasma clearance of <sup>51</sup>Cr-EDTA by this approach relies on a determination of two points where a virtual monoexponential elimination curve intersects the real plasma time-activity curve. The first value is given by  $Q_0/ECV$  (at t = 0). The second reference value is found at t =  $\bar{t}$  (4).

To derive the method, it was a prerequisite that ECV, as defined as the distribution space of <sup>51</sup>Cr-EDTA, could be estimated from BSA and that a function, g(t), could be determined that corrects for the fact that it cannot be known in advance when the real and the virtual time-activity curves will intersect at  $t = \bar{t}$  (4).

The correlation between the distribution volume of <sup>51</sup>Cr-EDTA (ECV<sub>BM</sub>), as calculated from the final slope of the plasma time-activity curve and BSA (r = 0.83), was almost identical to the correlation between ECV<sub>SM</sub> and BSA (r = 0.81). Even if the determination of ECV by the simplified method of Brøchner-Mortensen is not as accurate as the determination of ECV from the entire plasma time-activity curve (15), apparently the estimation of ECV<sub>BM</sub> from BSA was not affected.

Surprisingly, the correlation between the distribution volume of <sup>51</sup>Cr-EDTA (ECV<sub>SM</sub>) and BSA (r = 0.81) was much closer than has previously been reported between the <sup>99m</sup>Tc-DTPA distribution space and BSA (r = 0.35) by Christensen and Groth in 1986 (12). This difference may be related to the slightly different physical and/or chemical properties of EDTA and DTPA. EDTA (292 daltons) is a slightly smaller molecule than DTPA (393 daltons). Smaller molecules expectedly should have a larger distribution space than larger molecules, even when the distribution volumes of the molecules in question are all contained in the extracellular space (18). We found, how-

| Т | AE | <b>3LE</b> | 2 |  |
|---|----|------------|---|--|
|   |    |            |   |  |

Regression Analysis of  $s_{SM}(t)/(1/t_{SM})$  on  $Cl_{SM}$  (upper part) and  $s_{BM}(t)/(1/t_{BM})$  on  $Cl_{BM}$  (lower part) for Different Values of Time

|                                 | s(t <sub>180</sub> ) | s(t <sub>210</sub> ) | s(t <sub>240</sub> ) | s(t <sub>270</sub> ) | s(t <sub>300</sub> ) |  |
|---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
|                                 | (1/t)                | (1/ť)                | (1/t)                | (1/t)                | (1/t)                |  |
| Intercept                       | 1.118                | 1.106                | 1.094                | 1.089                | 1.083                |  |
| Slope $\times$ 10 <sup>-4</sup> | -0.82                | -2.7                 | -3.6                 | -4.8                 | -6.1                 |  |
| r <sup>2</sup>                  | 0.004                | 0.074                | 0.147                | 0.274                | 0.365                |  |
| p <                             | _                    | -                    | 0.01                 | 0.001                | 0.001                |  |
| Intercept                       | 1.212                | 1.186                | 1.163                | 1.149                | 1.138                |  |
| Slope × 10 <sup>-4</sup>        | -14.2                | -14.9                | -14.7                | -15.2                | -16.0                |  |
| r²                              | 0.451                | 0.552                | 0.566                | 0.595                | 0.617                |  |
| <b>p</b> <                      | 0.001                | 0.001                | 0.001                | 0.001                | 0.001                |  |



FIGURE 3. (A)  $CI_{S-SM}$  and (B)  $CI_{BM}$  compared with standard multiple sample method,  $CI_{SM}$ . Interrupted lines indicate confidence interval of regression line.

ever, that for individuals with a BSA smaller than 2.07 m<sup>2</sup> (76% of the patients of Group I), their estimated EDTA distribution spaces were systematically smaller when calculated by Equations 3 or 4 than from the DTPA-based regression equation of Christensen and Groth. <sup>99m</sup>Tc-DTPA has been reported to bind to plasma proteins to a varying degree (19–22), whereas plasma protein binding of <sup>51</sup>Cr-EDTA seems to be considerably smaller (23). Variable differences in plasma protein binding may explain the difference in calculated distribution space and coefficient of correlation.

The significant correlation between  $s(t)/(1/\bar{t})$  and time made it possible to establish the g(t) function. The range of  $s(t)/(1/\bar{t})$ values between the confidence limits of the function was quite narrow indicating that great adjustments were not needed to correct for the fact that the plasma sample is only rarely drawn at  $t = \bar{t}$ .

The sloping of the g(t) function was somewhat steeper for low values of time as opposed to high values where g(t)assumed a rather constant level. This implies that the magnitude of correction necessary for the calculation of a precise Cl<sub>s</sub> value does not increase very much after a certain period of time.

The scatter of the values around the g(t) function was not random but related to clearance for the investigated interval of time, 180 < t < 300 min. It was possible to build this dependency into an improved g(t) function,  $g(t)_{corr}$  and, thereby, get a further reduction of the variance thus providing a better overall basis for a precise determination of clearance by an iterative process.

The slopes of the functions resulting from the regression analysis of  $s(t_{180-300})/(1/\bar{t})$  on clearance were slightly greater if the  $s(t)/(1/\bar{t})$  values were derived from the final slope than if the entire plasma time-activity curve was used (Table 2). This suggests that the  $g(t)_{corr}$  function might correct more effectively in Formula 2 than in Formula 1. This difference was greatest early in the time-interval 180–300 min, where the dependence of  $s(t)/(1/\bar{t})$  on  $Cl_{SM}$  was significantly smaller (or even insignificant) than for later times. However, for time values greater than 270 min the difference was minimal.

The clearance values, Cl<sub>S-SM</sub> and Cl<sub>S-BM</sub>, calculated according to Formulas 1 and 2 (for t = 300 min), proved to be almost identical to  $Cl_{SM}$  when tested on Group I (r = 0.994 and r = 0.993). Therefore, it appeared as if there was no reduction in accuracy when deriving the one-sample method from the final slope of the time-activity curve, which was the case for Formula 2. The accuracy of Formula 2, of course, is not only related to the precision of Cl<sub>BM</sub>, which was very precise, but also to the fact that the correlation between  $ECV_{BM}$  and BSA (r = 0.83) was almost identical to the correlation between  $\mathrm{ECV}_{\mathrm{SM}}$  and BSA (r = 0.81). Another explanation for the precision may be that the correcting properties of the g(t)<sub>corr</sub> function compensate for minor differences between  $\mathrm{Cl}_{\mathrm{BM}}$  and  $\mathrm{Cl}_{\mathrm{SM}}.$  In fact, the correlation between  $Cl_{S-SM}$  and  $C\overline{l}_{SM}$  (r = 0.994) was only insignificantly smaller than between  $Cl_{BM}$  and  $Cl_{SM}$  (r = 0.997), and nearly all the results lay very close to the line of identity. The SD<sub>diff</sub> of Cl<sub>S-SM</sub> on Cl<sub>SM</sub> (SD<sub>diff</sub> = 3.24 ml/min) was slightly, but insignificantly, larger (p < 0.06) than the  $SD_{diff}$  of  $Cl_{BM}$  on  $Cl_{SM}$  ( $SD_{diff} = 2.56$  ml/min).

Due to the excellent accuracy of  $Cl_{BM}$  with reference to  $Cl_{SM}$  we considered it justified to use  $Cl_{BM}$  as a reference method when comparing different single-sample clearance methods on Group II, in spite of the fact that  $Cl_{BM}$  does itself arise from a slightly simplified method.

The results of comparing  $Cl_{S-SM}$  and  $Cl_{BM}$  of the 1046 patients of the test material of Group II confirmed the precision of Formula 1. There was only a minor deviation of the regression line (y = 1.00x + 1.30 for t = 180 min) with respect to the line of identity (y = x). When testing Formula 2, the deviation of the regression line from the line of identity was

| Composition of Group II with Regard to | Age, Body Surface Area and <sup>51</sup> Cr-EDTA Clearance |
|----------------------------------------|------------------------------------------------------------|

| Age (yr)Range<br>Mean $16-29$<br>$22.0$ $30-39$<br>$35.6$ $40-49$<br>$45.5$ $50-59$<br>$54.9$ $60-69$<br>$65.3$ $70-85$<br>$74.3$ $16-85$<br>$52.4$ Body surface area (m²)Range<br>Mean $1.37-2.32$<br>$1.37-2.32$ $1.37-2.59$<br>$1.37-2.59$ $1.34-2.52$<br>$1.34-2.52$ $1.32-2.49$<br>$1.32-2.49$ $1.34-2.30$<br>$1.32-2.50$ Clearance (Cl <sub>SN</sub> ) (ml/min)Range<br>Mean $33-164$<br>$102$ $19-146$<br>$83$ $18-171$<br>$21-172$ $21-119$<br>$21-119$ $20-132$<br>$20-132$ No. of patients $115$<br>$136$ $136$<br>$233$ $189$<br>$199$ $177$<br>$1046$ |                                        |       |           |           |           |           |           |           | Total     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Age (yr)                               | Range | 16-29     | 30-39     | 40-49     | 50-59     | 60-69     | 70-85     | 1685      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | Mean  | 22.0      | 35.6      | 45.5      | 54.9      | 65.3      | 74.3      | 52.4      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Body surface area (m <sup>2</sup> )    | Range | 1.37-2.32 | 1.37-2.59 | 1.37-2.59 | 1.34-2.52 | 1.32-2.49 | 1.34-2.30 | 1.32-2.59 |
| Clearance (Cl <sub>SM</sub> ) (ml/min)         Range         33–164         19–146         18–171         21–172         21–119         20–132         18–17.           Mean         102         83         84         75         62         51         74           No of patients         115         136         186         233         199         177         1046                                                                                                                                                                                          | •                                      | Mean  | 1.81      | 1.83      | 1.93      | 1.89      | 1.87      | 1.80      | 1.86      |
| Mean         102         83         84         75         62         51         74           No of patients         115         136         186         233         199         177         1046                                                                                                                                                                                                                                                                                                                                                                  | Clearance (Cl <sub>SM</sub> ) (ml/min) | Range | 33–164    | 19–146    | 18-171    | 21-172    | 21–119    | 20-132    | 18–172    |
| No of patients 115 136 186 233 199 177 1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Mean  | 102       | 83        | 84        | 75        | 62        | 51        | 74        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. of patients                        |       | 115       | 136       | 186       | 233       | 199       | 177       | 1046      |



**FIGURE 4.** Regression analysis for  $CI_{S-SM}$  on  $CI_{BM}$  (upper panel),  $CI_{S-BM}$  on  $CI_{BM}$  (middle panel) and  $CI_{Tc}$  on  $CI_{BM}$  (lower panel) for (A) t = 180 min and (B) t = 270 min, respectively. Regression lines, confidence intervals (interrupted lines) and lines of identity are shown.

somewhat greater (p < 0.01). This indicates that when deriving a formula from a method that has already been simplified, some of the precision which has been offered for the sake of precision by simplification of the first method, though minimal, may be transferred and increased to reduce the precision of the yet further simplified method. In the case of Brøchner-Mortensen's method, though simplified, it is still so precise that it took 1046 patients to reveal that deriving a one-sample formula from this method is marginally less accurate than when deriving it from the whole-plasma curve. There was a systematic, but small, overestimation of <sup>51</sup>Cr-EDTA clearance for the whole range of clearance values if the single-sample formula derived for <sup>99m</sup>Tc-DTPA was used. Although the clinical implication of this difference may be limited, it clearly illustrates the potential danger of employing the regression coefficients derived for one radiopharmaceutical on another.

Surprisingly, the correlation between Cl<sub>s</sub> and Cl<sub>BM</sub> was closer when the plasma sample was drawn after 180 min than if it was drawn after 270 min, regardless of choice of formula. The differences were small and mostly pertained to clearance values >80 ml/min. For lower clearance values (<80 ml/min), the individual results of the curves were closer to the regression line if the plasma sample was drawn after 270 min than after 180 min. This phenomenon probably relates to the correcting properties of the g(t) function. The g(t) function corrects for untimely drawing of the blood sample with respect to the mean sojourn time. The mean sojourn time for <sup>51</sup>Cr-EDTA in ECV in patients with clearance values >80 ml/min is generally not very different from a value of 180 min, whereas the mean sojourn time for patients with clearance values <80 ml/min is often closer to 270 min or even longer. The smaller the need to be corrected by the g(t) function, the more precise the clearance value.

When testing the single-plasma sample formulas on the 1046 patients of Group II (for t = 180 min), 14 results were obviously outliers regardless of the single-plasma sample formula being chosen. In 13 of them, the patients' records showed that the patients had edema or severe electrolyte derangement at the time of their examination. All these patients also had moderate to advanced insufficiency of the kidneys. Patients with edema and electrolyte imbalance do not fulfill the prerequisites of using plasma clearance of <sup>51</sup>Cr-EDTA as an index of GFR, since they do not consistently have a close correlation between plasma clearance and renal clearance of <sup>51</sup>Cr-EDTA (24). When determining GFR as the plasma clearance of error before injecting the bolus into the patient.

The 13 outliers were removed, and Formula 1 was again tested against  $Cl_{BM}$  on the remaining 1018 patients of the final test group (for t = 180 min). This procedure significantly improved the  $SD_{diff}$ , going from 5.82 to 5.02 ml/min (p < 0.001).

#### CONCLUSION

It was possible to get an accurate determination of <sup>51</sup>Cr-EDTA clearance from a single-plasma sample in adults by applying the mean sojourn time-based approach previously



**FIGURE 5.** Difference between  $CI_{BM}$ and  $CI_{S-SM}$  compared with (A)  $CI_{BM}$  and difference between  $CI_{BM}$  and  $CI_{Tc}$  compared with (B)  $CI_{BM}$ .

2136 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 39 • No. 12 • December 1998

shown to be very precise for determination of <sup>99m</sup>Tc-DTPA single-sample clearance. The determination was marginally more accurate if the single-sample formula was derived from the entire plasma time-activity curve than from Brøchner-Mortensen's simplified method. The single-sample formula derived for determination of <sup>99m</sup>Tc-DTPA clearance (Christensen and Groth) showed slightly, but systematically, higher values when applied on patients investigated with <sup>51</sup>Cr-EDTA, than the reference multiple-sample method. Carefulness should, therefore, be observed when deriving a single-plasma sample method from a method that is already simplified. Using the regression coefficients derived for one radiopharmaceutical on another should probably be avoided.

#### ACKNOWLEDGMENTS

We thank civil engineers Urban Wiklund and Arne Kronström (Department of Clinical Physiology, Umeå University, Sweden) for their technical assistance.

#### REFERENCES

- 1. Fisher, M, Veall N. Glomerular filtration rate estimation based on a single blood sample. Br Med J 1975;2:542.
- Tauxe WN, Maher FT, Taylor WF. Effective renal plasma flow: estimation from theoretical volumes of distribution of intravenously injected <sup>131</sup>I-orthoiodohippurate. *Mayo Clin Proc* 1971;46;524-531.
- Groth S, Aasted M. Chromium-51-EDTA clearance determined by one plasma sample. Clin Physiol 1981;1:417-425.
- 4. Groth S. Calculation of <sup>51</sup>Cr-EDTA clearance in children from the activity in one plasma sample by transformation of the biexponential plasma time-activity curve into a monoexponential with identical area below the time-activity curve. *Clin Physiol* 1984;4:61-74.
- Rehling M, Rabøl A. Measurement of glomerular filtration rate in adults: accuracy of five single-sample plasma clearance methods. *Clin Physiol* 1989;9:171–182.
- Picciotto G, Cacace G, Cesana P, Mosso R, Ropolo R, De Filippi GP. Estimation of chromium-51 ethylenediamine tetraacetic acid plasma clearance: a comparative assessment of simplified techniques. *Eur J Nucl Med* 1992;19:30–35.
- 7. Galli G, Rufini V, Meduri G, Piraccini R, D'Andrea G. Determination of glomerular

filtration rate with <sup>99m</sup>Tc-DTPA in clinical practice. J Nucl Biol Med 1994;38:556-565.

- 8. Li Y, Lee HB, Blaufox, MD. Comparison of single sample methods for calculating GFR [Abstract]. J Nucl Med 1994;35(suppl):5P.
- Rocco MV, Buckalew VM, Moore LC, Shihabi ZK. Measurement of glomerular filtration rate using nonradioactive Iohexol: comparison of two one-compartment models. Am J Nephrol 1996;16:138-143.
- Li Y, Lee HB, Blaufox MD. Single-sample methods to measure GFR with technetium-99m-DTPA. J Nucl Med 1997;38:1290-1295.
- Blaufox MD, Aurell M, Bubeck B, et al. Report of the radionuclides in nephrourology committee on renal clearance. J Nucl Med 1996;37:1883-1890.
   Christensen AB, Groth S. Determination of <sup>99m</sup>Tc-DTPA clearance by a single plasma
- Christensen AB, Groth S. Determination of <sup>99m</sup>Tc-DTPA clearance by a single plasma sample method. *Clin Physiol* 1986;6:579-588.
- Brøchner-Mortensen J. A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 1972;30:271-274.
- Sapirstein LA, Vidt DG, Mandel MJ, Hanusek G. Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Physiol 1955;181: 330-336.
- Brøchner-Mortensen J. A simple single injection method for determination of the extracellular fluid volume. Scand J Clin Lab Invest 1980;40:567-573.
- Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978;93:62-66.
- Snedecor GW. Sampling from a normally distributed population. In: Snedecor GW, ed. Statistical methods, 5th ed. Ames, IA: The Iowa State University Press; 1956:49-52.
- Perl W, Lassen NA, Effros RM. Matrix proof of flow, volume and mean transit time theorems for regional and compartmental systems. Bull Math Biol 1975;37:573-578.
- Rootwelt K, Falch D, Sjökvist R. Determination of glomerular filtration rate (GFR) by analysis of capillary blood after single shot injection of <sup>99m</sup>Tc-DTPA: a comparison with simultaneous <sup>125</sup>I-iothalamate GFR estimation showing equal GFR but difference in distribution volume. *Eur J Nucl Med* 1980;5:97–102.
- Carlsen JE, Møller ML, Lund JO, Trap-Jensen J. Comparison of four commercial technetium-99m(Sn)DTPA preparations used for the measurement of glomerular filtration rate: concise communication. J Nucl Med 1980;21:126-129.
- Russell CD, Bischoff PG, Rowell KL. Quality control of technetium-99m-DTPA for measurement of glomerular filtration: concise communication. J Nucl Med 1983;24: 722-727.
- Garnett ES, Parsons V, Veall N. Measurement of glomerular filtration rate in man using <sup>51</sup>Cr/edetic-acid complex. *Lancet* 1967;i:818-819.
- Bailey RR, Rogers TGH, Tait JJ. Measurement of glomerular filtration rate using a single injection of <sup>51</sup>Cr-edetic acid. Aust Ann Med 1970;3:255-258.
- Brøchner-Mortensen J, Rödbro P. Comparison between total and renal plasma clearance of [<sup>51</sup>Cr]EDTA. Scand J Clin Lab Invest 1976;36:247-249.

## Gallium-67 Scintigraphy to Predict Response to Therapy in Active Lupus Nephritis

Wan-Yu Lin, Joung-Liang Lan and Shyh-Jen Wang

Departments of Nuclear Medicine and Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan

Gallium-67-citrate has been used to detect inflammation for decades, and <sup>67</sup>Ga uptake usually indicates an active, potentially curable lesion. In this study, we determined the value of <sup>67</sup>Ga renal scintigraphy for predicting response to therapy in patients with lupus nephritis. Methods: Forty-seven patients with lupus nephritis and abnormal serum creatinine or elevated 24-hr urine protein were enrolled. Delayed 48-hr 67Ga imaging was performed to evaluate <sup>67</sup>Ga uptake by the kidneys. Serum creatinine and 24-hr urine protein values were obtained at the beginning of this study and after 1 yr of treatment. Serum creatinine was considered abnormal at levels greater than or equal to 1.4 mg/dl and 24-hr urine protein at levels greater than or equal to 1.0 g/day. When the value of serum creatinine or 24-hr urine protein obtained 1 yr after treatment was in the normal range or was 50% of the initial abnormal value, the patient was considered to have good response to treatment. Results: Gallium-67 renal scan showed good correlation with the

response to therapy in patients with lupus nephritis. In the negative <sup>67</sup>Ga scan group, no significant changes in laboratory data were noted between onset of this study and after 1 yr of therapy. In the positive <sup>67</sup>Ga scan group, there were significant decreases in serum creatinine and 24-hr urine protein levels 1 yr after treatment, especially in 24-hr urine protein, with p values of 0.019 and 0.0007 respectively, by Student's t-test for dependent samples. Moreover, 11.5% of patients with a negative <sup>67</sup>Ga scan had a good response to treatment, whereas 71.4% of patients with a positive <sup>67</sup>Ga scan had a good response to treatment. **Conclusion:** We suggest that <sup>67</sup>Ga renal scan is a valuable predictor of response to therapy in patients with lupus nephritis.

Key Words: gallium-67 scan; lupus nephritis; serum creatinine; 24-hr urine protein; response to treatment

#### J Nucl Med 1998; 39:2137-2141

The prognosis for patients with lupus nephritis has improved significantly in recent years, partly because of aggressive treatment with immunosuppressive drugs (1-3). However,

Received Nov. 6, 1997; revision accepted Apr. 19, 1998.

For correspondence or reprints contact: Wan-Yu Lin, MD, Department of Nuclear Medicine, Taichung Veterans General Hospital, No. 160, Sec. 3, Taichung Harbor Rd., Taichung 407, Taiwan.