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3.6%, respectively, as efficient in binding to the transcobalamin
proteins when compared to cyanocobalamin. At 24 hr after admin
istration, the cobalamin analogs had 5-17 times and 20-29 times,
respectively,the amount of uptake within the resected tissue sam
pies and transplanted sarcomas when compared to@ 11ln-DTPA.
Conclusion: The radIOlabeiedDTPAcobalamin analogs are biobg
ically active. Preliminary animal studies suggest that the analogs
couldbeeffectiveinvivotranscobalaminIIreceptorimagingagents.
Key Words receptor imaging; tumor-seeking agent; vitamin B12
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â€˜VitaminB12 (cyanocobalamin) has two coenzymatic func
tions in humans. Methylcobalamin serves as the cytoplasmic
coenzyme for 5N-methyltetrahydrofolate:homocysteine methyl
transferase (methionine synthetase, EC 2.1 .1.13), which cata

Rapidly dMding cells up-regulate the number of transcobalamin II
receptors during DNA replication. We have developed diethylene
triaminepentaacetate(DWA) cobalamin analogs for the purpose of
imaging transcobalamin Il receptors in malignantand nonmalignant
tissue. Methods Methyl-, adenosyl- and cyanocobalamin-b-(4-
aminobutyl)-amide-DTPAanalogswere synthesized.Invitro binding
of the analogs to the transcobalamin proteins was assessedby the
unsaturated vitamin B12 binding capacity assay and compared to
DiVA and cyanocobalamin. The biodistribution of the 1111n-DTPA
cobalamin analogs was measured at 24 hr after injection into
sarcoma-bearing mice and non-tumor-bearing mice and pigs.
Results Methyl-, adenosyl-and cyanocobalamin-b-(4-aminobutyt)-
amide-DTPA analogs and DTPA were 94.0%, 90.4%, 66.4%, and
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lyzes the formation of methionine from homocysteine. Adeno
sylcobalamin is the mitochondrial coenzyme for methyl
malonyl-CoA mutase (EC 5.4.99.2), which interconverts
methylmalonyl CoA and succinyl CoA. Transcobalamin II and
intrinsic factor (IF) are the carrier proteins responsible for
cobalamin transport within the intravascular/extracellular space
and gastrointestinal tract, respectively. Cellular uptake of the
cobalamins is regulated by cell membrane transcobalamin II
receptors.

Rapidly proliferating cells have increased uptake of thymi
dine and methionine (1â€”8).Up-regulation in the number of
transcobalamin II receptors has been demonstrated in several
malignant cell lines during accelerated thymidine incorporation
and DNA synthesis (9â€”15).Since methylcobalamin is directly
involved with methionine synthesis, and therefore indirectly
involved in the production of thymidylate and DNA; and
because adenosylcobalamin is involved with mitochondrial
metabolism, it is not surprising that radiolabeled vitamin B12
([57Co]cyanocobalamin) has increased uptake in rapidly divid
ing tissue (16â€”20).

Unfortunately, the long half-life of 57Co (270.9 days) and the
low specific activity of [57Co}cyanocobalamin (16.5â€”37kBq/
l.Lg) makes this vitamin Bl2 radiopharmaceutical unsuitable for

clinical tumor imaging. However, vitamin Bl2 has several
characteristics that potentially make it an attractive in vivo
tumor-imaging agent. Vitamin Bl2 is water-soluble, has no
kno@wi toxicity and, in excess, is excreted by glomerular
filtration. These characteristics prompted us to re-examine the
use of radiolabeled vitamin B12 as a tumor-imaging agent.

In this communication we will describe (1) methods for
covalently attaching diethylene-triaminepentaacetate (DTPA)
to methyl-, adenosyl- and cyanocobalamin; (2) the interaction
of the DTPA cobalamin analogs (DCAs) with the transcobal
amin proteins (TPs) and IF; and (3) preliminary swine and
murine biodistribution data.

MATERIALS AND METhODS

Synthesis of DCAs
Cyanocobalamin and l-ethyl-3(3-dimethylaminopropyl) carbo

diimide were purchased from Sigma (St. Louis, MO). Adenosine,
l,4-diaminobutane dihydrochioride, DTPA, hexamethylphosphor
amide, l-hydroxybenzotriazole hydrate, iodomethane and thionyl
chloride were purchased from Aldrich (St. Louis, MO). Thin-layer
chromatography (TLC) silica gel and PET-cellulose sheets were
purchased from E.M. Science (Gibbstown, NJ). Other inorganic
salts and solvents were obtained in the highest purity available.
Ultraviolet-visible spectra were recorded on a diode array spectro
photometer. DTPA dianhydride and 5'-chloro-5'-deoxyadenosine
were synthesized as described by Eckelman et al. (21) and
Kikugawa and Ichino (22), respectively. The b-monocarboxylic
acids of methyl-, adenosyl- and cyanocobalamin were prepared as
previously described (23â€”26).

Reaction mixtures containing the methyl-, adenosyl- and cyano
cobalamin-b-monocarboxylic acids (1.0 g, 0.6 mmol) hydroxyben
zotriazole (0.81 g, 6 mmol) and 1,4-diaminobutane dihydrochloride
(4.8 g, 30 mmol) in 100 ml of water were adjusted to pH 7.8 with
sodium hydroxide. l-Ethyl-3(3'-dimethyl aminopropyl) carbodi
imide (1.26 g, 6.6 mmol) was then added, the pH was adjusted to
6.4 and the reaction was stirred at room temperature for 24 hr. TLC
on silica gel using n-butanol/acetic acid/water (5:2:3) showed the
reaction to be complete. The 4-amino-butyl amides were extracted
into 92% aqueous phenol, and the phenol phase was washed
exhaustively with water to remove the other reactants. One volume
of acetone and three volumes of ether were added to the phenol

phase. The desired cobalamins were removed from the organic
solvents by several extractions with water. The combined aqueous
layers were extracted three times with ether to remove residual
phenol, concentrated to â€”20ml in vacuo and finally crystallized
from aqueous acetone.

The cobalamin-b-(4-aminobutyl) amides (500 mg, 0.3 mmol)
were then separately dissolved in 30 ml of saturated sodium
bicarbonate and treated with a 10-fold excess (1.2 g, 3.4 mmol) of
solid DTPA dianhydride. The progress of the reaction was moni
tored by TLC on PEI plates using n-butanol-acetic acid-water
(5:2:3) as the solvent.After 30 mm of incubationat room
temperature, a second 1.2 g ofdianhydride was added. The pH was
then adjusted to 8.2 and the reaction mixture was incubated
overnight.The DCAswere then extracted into 92% aqueousphenol
and purified as described above. The preparationsresisted crystal
lization from aqueous acetone; therefore the analogs were evapo
rated to dryness and isolated as glasses.

In VitroBiologicalActivityof DCAs
To assess the in vitro binding of DCAs to the TPs and IF, the

unsaturated vitamin B12 binding capacity (UBBC) and the IF
blocking antibody (IFBA) assays were performed. Serum was
obtained from five patients being evaluated for pernicious anemia
at the Mayo Clinic. The patients' serum first underwent routine
clinical UBBC and IFBA assays as previously described (27â€”30).
To determine if DCAs would inhibit [57Co]cyanocobalaminfrom
binding to TP and IF, the excess serum from the five patients
underwent modified UBBC and IFBA assays.

Specifically, under dim light, 1 mg of the nonlabeled methylco
balamin-b-(4-aminobutyl)-amide DTPA (DTPA-MEBI2), adeno
sylcobalamin-b-(4-aminobutyl)-amide DTPA (DTPA-ADB 12) and
cyanocobalamin-b-(4-aminobutyl) amide-DTPA (DTPA-CNB 12),
as well as 1 mg each of cyanocobalamin and DTPA, were
separatelydissolved in 10ml ofnormal saline at room temperature.
To potentially saturateall TP- and IF-binding sites, l-@l aliquots of
the five solutions were separately incubated with the serum from
each patient as well as with purified IF for 20 mm at room
temperature and for another 20 mm at 4Â°C.The presaturated serum
and purified IF then underwent routine clinical UBBC and IFBA
protocols.

Radioisbeling of DCAs
Before in vivo studies, an approximation of the specificity

activity of DCAs was assessed via TLC, radiochromatography
(RC)andgammawell counting.TheTLCstrips(grade31 ETChr;
thickness, 0.50 mm; flow rate (water), 225 mm/30 mm) were
developed with acetone in dim light. The dried strips were placed
on film for 1â€”5mm before development. TLC and RC results were
visually compared. The upper 25% and lower 75% of the TLC
strips were separately counted for 5 mm in a gamma well counter
at 18 hr after acetone development.

Approximation of the specific activity of 9@Tc-labeled DCAs
was assessed by mixing l00-p@laliquots of DTPA-MEB12 and
DTPA-ADB12 (5 p.g/lOO p.1 of normal saline) with 50 @lof
stannous chloride solution (5 p.g/50 @tlof normal saline) in
nitrogen-purged 2-mi vials. Increasing increments (370 MBq) of
99mTcwere then titrated into the sealed vials. After the addition of

@Tc,the solutions were mixed gently and purged with nitrogen
for 5 mm. For comparison, the analogs underwent 9@Tc labeling
in room air in the absence of stannous chloride. A control solution
ofcyanocobalamin (5 ,.tg/lOO @lofnormal saline) was mixed with

@â€œTcat room temperature in room air, as well as within nitrogen
purged 2 ml vials containing 50 p3 of the stannous chloride
solution. The specific activity for indium-labeled DCAs was
assessed in a similar manner. Increasing amounts (3.7 MBCiJof
11â€˜In-chloride was titrated into 2-mi vials containing 100 @l(1 @g
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UBBC10094.090.466.43.6IFBA92.563.241
.052.90.8CNB12

= cyanocobalamin(vitaminB12).

TABLE I
Transcobalaminand IF Binding

CNBI2 DTPA-MEB12DTPA-ADB12DTPA-CNB12DPTA
(%) (%) (%) (%) (%)

saline) via i.p. injection. Another two groups ofthree mice received
-@3.7 MBq of the radiolabeled DCA or DTPA by tail vein
injection. The tumor-bearing mice were killed at 24 hr after DCA
or DTPA administration.

All mice were killed via CO2 inhalation before imaging or
dissection. The pancreas, spleen, kidneys and heart were resected
en bloc. A portion of the liver, lungs, left quadriceps muscle and
flank fat were also harvested. All tissue samples and organs were
weighed wet, minced in 2 ml of normal saline and counted for 5
mm in a gamma well counter.

All images for the murine in vivo studies were obtained on a
maxicamera using a LEAP collimator with a 20% window about
the l40-keV energy peak of@â€•Tcand a medium-energy collimator
with a 20% window about the l74-keV and 247-keV energy peaks
of â€˜â€˜â€˜In.A 256 x 256 matrix with a dedicated Pinnacle computer
system was used to collect and analyze the data.

Swine BiOdiStrlbUtiOn
Two 35-lb female white domestic pigs were injected via an ear

vein with â€˜â€˜â€˜In-DTPA-ADB12(277.5 MBq of â€˜â€˜â€˜In/300 @gof
DCA/lO ml of normal saline). For comparison, one 35-lb pig was
injected i.v. with â€˜â€˜â€˜In-DTPA(277.5 MBq of â€˜â€˜â€˜In/300 @gof
DTPA/10 ml of normal saline).

Biodistribution data was collected in a similar manner, except
that only a small portion ofeach organ and tissue was sampled. The
pigs were killed before imaging or dissection by i.v. administration
of Sleepaway. Images were obtained on a whole-body camera
using medium-energy collimators with a 20% window abo'ut the
174-keV and 247-keV energy peaks of' â€˜â€˜Inand a scan speed of 5
cm/mm.

RESULTS

Synthetic Yi&d
The methyl-, adenosyl- and cyanocobalamin-b-(4-aminobu

tyl)-amides were produced in yields of 920 mg (88%), 366 mg
(77%) and 955 mg (92%), respectively. The yields of the
methyl-, adenosyl- and cyanocobalamin amide-DTPA analogs
were 600 mg (96%), 400 mg (80%) and 460 mg (77%),
respectively.

Characterization of DCAs
The ultraviolet-visible spectra of the three DCAs are typical

of their parent cobalamins. The DCAs are readily separated
from their respective precursors by TLC on polyethylene imino
(PEI) plates. The negatively charged complexes bind strongly at
the origin in contrast to the precursors.

Interaction with the TPs and IF
Nonlabeled DCAs competitively blocked [57Co]cyanocobal

amin from binding to TP and IF. Therefore, the cpm of the
modified UBBC and IFBA assays were significantly lower than
that of the clinical runs. The percent binding (PB) of DCAs to
TP or IF was calculated as follows: PB 100 â€”(DCAUBBCor

FiGURE1.TLCwithcorrespondingAC.
@4)Free @â€˜â€œTc.(B) Cyanocobalamin +

@â€˜1@c+ SnCl+ N2.(C)DTPA-CNB12+
@9@c+ SnCl+ N2.(D)DTPA-MEB12+

111ln.(E)DTPA-ADB12+ 111ln.(F)@â€•Tc
DTPA-MEB12from urineafteri.v. Injec
tion. (G) @c-DWA-ADB12from unne
aft& i.p. injection.(H)DTPA-MEB12+

@c+ roomair.(I)370MBq @rcI@g
DTPA-ADB12+ SnCI+ N2.

of DCA/l00 @lof saline) of DTPA-MEB 12 or DTPA-ADB 12. All
11â€˜Inmixtures were incubated for 10 mm at room temperature in

room air. Cyanocobalamin underwent identical â€˜â€˜â€˜Inlabeling and
analysis.

To ensure complete binding of the radionuclides for the in vivo
studies, excess chelator in a ratio of 40â€”200p.g of DCA or DTPA
to 37.0 MBq of 99mTcor â€˜â€˜â€˜Inwas used during labeling. TLC and
RC analyses were performed to confirm 100% labeling before in
vivo administration.

MurineBiodistributionStudies
Groups ofthree l2-wk-old female Balb-c mice were injected i.p.

with 18.5 MBq of either DTPA-ADB 12 or DTPA (1 11 MBq of
I I â€˜In/300 p.g ofDCA or DTPA/1 ml ofnormal saline) and killed at

24 hr. Several mice were injected i.v. with @-200p1 of DTPA
MEB 12 (185 MBq of @Tc/1mg of DCA/l ml of normal saline)
and killed at varying time intervals after injection. All mice were
placed in sterile containers after i.p. or i.v. administration, and the
first passed urine was collected and analyzed via TLC and RC.

DTPA-MEB12and DTPA (111MBq of â€œIn/300@tgofDCA or
DTPA/100 @lof normal saline) were used to assess biodistribution
after oral administration. Two drops of either â€˜â€˜â€˜In-DTPAor
I 1â€˜In-DTPA-MEB12 were placed in the oral cavities oftwo groups

of three mice. A â€œmodifiedSchilling testâ€•was performed on two
mice. Specifically, each mouse received s.c. and i.p. administration
a 1-mg loading dose ofnonlabeled DTPA-MEB 12. After 24 hr, the
mice were fed 2â€”3drops of â€˜â€˜â€˜In-DTPA-MEB12.All mice receiv
ing radiolabeled compounds orally had their urine and feces
collected for 8 hr and analyzed by gamma well counting. All mice
were killed at 24 hr after ingestion of tracer.

Tumor Imaging
A sarcoma cell line, ATCC CCL8 (8), was grown in a monolayer

in 10% Eagle's cell culture medium at 37Â°Cand 8% CO2. The cells
were harvested by trypsinization, washed and collected in phos
phate-buffered saline. The washed tumor cells (1 X 106cells) were
then sterilely injected subcutaneously into the left flank of female
Balb-c mice. A 5- to 7-mm tumor developed in the left flank of the
mice 5 days after innoculation.

Five days after tumor innoculation, two groups of three mice
received either 200 @.d(18.5 MBq) of â€˜â€˜â€˜In-DTPA-ADB12 or
DTPA (111MBq ofâ€•â€˜In/300j.@gofDCA or DTPA/1ml of normal
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MurineBiodistributlon
No ill effects or deaths were observed after i.p., i.v., s.c. or

P0 administrationof DCAs. The first passed urine after i.v. or
i.p. injection was always radioactive. Because of the larger
volume administered, the first passed urine was red in color,
whereas it was usually pink after i.v. administration. TLC and
RC analyses of the collected urinedemonstrated100%binding
of 9@Tc and â€˜â€˜â€˜Into DCAs. (Fig. 1). Images at 5 mm and 4 hr
after tail vein injection showed prominent early uptake within
the kidneys, which became obscured by the liver, spleen and
gastrointestinal activity on the delayed images (Fig. 2). At 24
hr, the greatest amount of uptake was in the kidneys, followed
by the liver and spleen. The pancreas usually was next followed
by the lungs, fat, heart and muscle (Fig. 3).

The greatest amount of â€˜â€˜â€˜In-DTPAuptake was in the
kidneys. The distribution of DTPA was similar to DCAs.
However, â€˜â€˜â€˜In-DTPAhad 5â€”12times less activity per tissue
sample when compared to the methyl- and adenosylcobalamin
analogs.

Indium-l 1l-DTPA-MEB12 was absorbed from the gastroin
testinal tract after oral administration. The mice that underwent
the modified Schilling test had detectable radioactivity within
their urine by 1 hr. Images of these â€œflushedâ€•mice at 24 hr
demonstrated significantly less activity throughout the body when
compared to the â€˜@nonflushedâ€•mice (Fig. 4). No measurable
activity was detected in the urine by gamma well counting in the
mice that were not flushed with s.c. and i.p. doses ofthe nonlabeled
DTPA-MEB12. At 2 hr after ecti' â€˜InDTPA was detected
in urine. However, the activity was -@-l%that of the â€˜â€˜â€˜In
DTPA-MEB12. Fecal radioactivity became detectable at 2 hr in
all groups ingesting radiolabeled DTPA-MEB12 and DTPA.

FIGUREZ BiOdiStribUtiOnofDTPA
MEB12at5 mmQeft)and4 hr(right)
after tal vein injection.On the left,
arrows indicateearlyrenaluptake.

IFBA cpflVclinicalUBBC or IFBA cpm X 100). The average percent

binding of the five solutions (n = 10 for each solutionâ€”i.e.,
two modified UBBC and IFBA assays per patient) is shown in
Table 1.

Approximation of Specific Activity
The methyl- and adenosylcobalamin-b-(4-aminobutyl)

amide-DTPA analogs consistently bound 1.8 GBq of 9@Tc/5
I.Lgof DCA; and 40.5 MBq of â€˜â€˜â€˜In/ip.g of DCA with 99.9%
efficiency (n 7). Radioactivity on the lower 75% of the TLC
strips would overwhelm the gamma well counter immediately
after development. Therefore counting of the divided TLC
strips was performed at 18 hr after acetone development. As
expected, there was minimal labeling of DCAs with 9@Tc
when stannous chloride and hypoxic conditions were not used.
The two radionuclides did not bind to cyanocobalamin (Fig. 1).
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FIGUREa Eachbar representsa singlemouse.Thetop two (A,B)and bottom two (C,D)bar graphsdepict biodistilbutionafter i.v.and i.p. administration,
respecthiely.Cross-hatchedbars = DTPA-ADB12.So1@black bars = DTPA
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1' FIGURE5@Ventralvisws @thmice
orientednose up. Tumor bearing
mouseontheright.Arrowindicates
uptakewithinthe transplantedsar
coma after t@lvein injection.Image
acquisition time was 10 mm.

DISCUSSION
The synthesis of the three DCAs involves just two reactions

starting from the cobalamin-b-monocarboxylic acids. In the
first reaction, an aminobutyl group was coupled to the mono
carboxylic acids. The resulting methyl-, adenosyl- and cyano
cobalamin-b-(4-aminobutyl) amides were isolated as homoge
nous crystalline preparations. In the second reaction, DTPA was
attached to the cobalamin-amides to generate the desired
methyl-, adenosyl- and cyanocobalamin-b-(4-aminobutyl)-
amide-DTPA complexes.

Since both methylcobalamin and adenosylcobalamin are
light-sensitive, all manipulations involving these two corrinoids
were performed in the dark or in dim light. In addition, the
carbonâ€”cobaltbond of adenosylcobalamin undergoes hetero
lytic change in the presence of cyanide ion. Thus, cyanide salts
were not included in the UBBC and IFBA assays.

For cobalamin to be a useful imaging agent, any modification
of it should not significantly inhibit its interaction with the
carrier proteins transcobalamin II and IF. A simple alteration of
the UBBC and IFBA clinical assays allows for an in vitro
approximation of these interactions. Table 1 demonstrates that
the cobalaminâ€”DTPAcomplexes are biologically active. How
ever, the attachment of DTPA to the cobalamins does affect
their binding to the carrier proteins, especially to IF.

FiGURE4@Ventral@newswfthmice
oriented nose up. The flushed
mouse is on the left and has a
contaminatednghtfootpad(arrow).
The mice were simultaneouslyim
agedfor 12hr.

Tumor Imaging
At 24 hr, DCA uptake within the transplanted sarcomas was

2â€”4 times greater than that within the liver, spleen and
pancreas, and 5â€”12times greater than that in the heart, lungs, fat
and muscle (Figs. 3 and 5). Gross pathology of the dissected
masses demonstrated fat-encapsulated tumors. Microscopically,
no areas of necrosis were identified. By hematoxylin and eosin
staining, the tumors were solid masses of blue cells consistent
with sarcomatous tissue.

Although â€˜â€˜â€˜In-DTPAdemonstrated uptake within the trans
planted tumors, its concentration was 20â€”29times less than that
of â€˜â€˜â€˜In-DTPA-ADB12.

Swine Biodistribution
No apparent side effects were noted after i.v. administration

of the cobalamin analogs. The porcine biodistribution of DCAs
was almost identical to that seen in the mice. Once again, DTPA
had a similar biodistribution to the cobalamin analogs, but had
5â€”17times less activity (except for the kidneys) per organ
and/or tissue sample. DCA activity within the extremities may
be in the bone marrow or epiphyseal growth plates. This finding
was not directly investigated. The small bowel and colon had
significant uptake, both visually and by gamma well counting
(Fig. 6).
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The decreased affinity of IFs for the DCAs compared to the
TPs is consistent with prior studies. Rosenbium et al. (31â€”33)
found that modifications of the six substituent and the benz
imidazole group of vitamin B12 had little effect on the
biodistribution of the analogs after i.v. administration (transco
balamin II binding). However, the analogs were halfas likely to
be absorbed after oral administration when compared to
[@Â°Co]cyanocobalamin(IF binding).

Since Mayo Medical Laboratory does not separate the UBBC
assay into transcobalamin II and transcobalamin I/Ill fractions,
the interaction of the analogs with transcobalamin II could not
be directly studied. Therefore, a modified Schilling test was
performed to indirectly demonstrate that nonlabeled DCAs
could saturate in vivo transcobalamin II receptor sites. The
overall biodistribution of DCAs is almost identical to previous
studies performed with 59Co- and 57Co-radiolabeled vitamin
B12, as well as with whole-body vitamin Bl2 microbiological
assays (34â€”38). Figures 3 and 6 demonstrate that there are
significant differences in the degree of organ and tumor uptake
between DCAs and DTPA. These findings strongly suggest that
DCA binds to transcobalamin II receptors in vivo. Since a large
amount of nonlabeled DCAs was administered per biodistribu
tion study (39â€”199 @.tgof nonlabeled DCA to 1 @.tgof
radiolabeled DCA), the maximal cpm/mg of tissue or percent
injected dose cannot be accurately determined.

In spite of the suboptimal labeling of DCAs, there was a
significant amount of analog uptake within the tumors at 24 hr.
The mice were killed at 24 hr for two reasons. First, prior
studies have demonstrated that the maximal uptake of radiola
beled vitamin Bl2 occurs within tumors at 24 hr after i.v. or i.p.
administration (36â€”38).Second, imaging at 5 days after inoc
ulation and at 24 hr after tracer injection decreases the likeli
hood that the tracer is localizing within the tumors due to
necrosis or hypervascularity.

The 12-wk-old female Balb-c mice did not demonstrate any
ill effects from the cobalaminâ€”DTPAcomplexes, despite re
ceiving the usual loading dose (1 mg) of vitamin B12 for
humans. This observation suggests that the DCAs are nontoxic.
However, more extensive toxicology studies are needed.

Finally, the biodistribution of DTPA in our investigation is
consistent with two prior studies. McAfee et al. (39) found that
4% of an i.v. administered dose of â€˜â€˜â€˜In-DTPAremained
unexcreted in dogs at 24 hr. The kidneys had the greatest
amount of activity followed by the liver, small and large
bowels, muscle, stomach and spleen. This observation was
thought to be due to nonspecific binding of DTPA to proteins
throughout the body. Stevens et al. (40) demonstrated in
humans that a small amount of [â€˜4C]DTPAwas absorbed from
the gastrointestinal tract after oral administration.

CONCLUSION
The reported results demonstrate that the attachment of

DTPA to the vitamin B12 coenzymes, methyl- and adenosyl
cobalamin, does not greatly affect their interaction with the TPs.
However, it does affect their interaction with IF. Under subop
timal labeling conditions, the specific activity ofthe @â€˜@â€˜Tc-and
1111n-DCAs is approximately 10,000 and 1 100 times greater,

respectively, than that of the clinically available vitamin B 12
analog, [57Co]cyanocobalamin. This should allow for in vivo
imaging of transcobalamin II and possibly IF receptors.
Transcobalamin II receptor-based tumor imaging may be fea
sible with these new cobalamin analogs.
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The Nuclear Regulatory Commission and agreement state
agencies require that radiopharmaceutical injectables be cali
brated to within Â±10% of the prescribed dosage (6, 7). The
Capintec radionuclide dose calibrators (Pittsburgh, PA) that
have been designed for gamma-emitting radionuclides have
become recognized as providing a handy tool for measuring @Â°Y
radiopharmaceuticals using the readily-produced bremsstrah
lung radiation. Consequently, it is common for most clinics and
other laboratory users to hold the calibration specifications of
90Y suppliers as a reference and relate their own measurements
accordingly. Apart from the popular calibrator dial setting of
775 with multiplication factor of 100 (or 775 X 100 dial
setting), many laboratories have found that calibrator dial
setting of48 multiplied by 10 will give the suppliers' calibrated
activities and hence calibrate their final @Â°Ydrug products.
However, some laboratories still use other settings. This
prompted Coursey et al. (7) of the National Institute of
Standards and Technology (NIST) to advise that @Â°Yusers
standardize their @Â°Ysources by liquid scintillation counting
(LSC), then use the standard source to establish appropriate
dial-factor settings for @Â°Ydose calibration on their radionu
clide dose calibrators.

To investigate variation in calibration of shipments of @Â°Y
from many suppliers, we used LSC to standardize a @Â°Ytest
sample and establish the agreement of dose calibrator measure
ments at dial settings 48 X 10 and 775 multiplied by an
appropriate factor. The multiplication factor at which measure
ments at dial 775 were in agreement was found to be 70 not 100.
The effects of quantity of @Â°Yradioactivity, volume of samples
and type of containers were investigated on measurements at
these dial settings.

MATERIALS AND METHODS
The @Â°Ysource was purchased from four manufacturers as a

carrier-free @Â°YCl3solution in 0.05 M HCI. The source vial from all
suppliers was glass ( 1 ml in capacity). One of the sources was
standardized by LSC using a Tri-Carb 1500 liquid scintillation
analyzer,while all the sources were assayed on a Capintec CRC-12
radionuclide dose calibrator. The plastic Eppendorf tube (1.5 ml),
syringes (1 ml and 50 ml) and glass vial (30 ml) used in the
calibrator response experiments were purchased from Biorad (Her
cules, CA), Becton Dickinson (Rutherford, NJ) and Gensia (Irvine,
CA), respectively.

Yttrium-90 is used in radioimmunotherapybecause of its favorable
physical half-life and energetic pure beta emissions. However, it iS
often necessary to standardize Â°Â°Vsources to establish a dose
calibrator dial setting for accurate calibrationof dink@aldoses of @Â°V
preparations.Methods A solutionof @Â°VCl3containing2.81 kBq/ml
(by supplier's calibration) was prepared by serial dilution in 0.05 M
HCI.Ten100-pJaliquotsof thissolutionwerecountedina Packard
liquid scinlillation analyzer@the mean radioactMty in becqueralswas
determinedand usedto evaluatedialsettings48 x 10,775 x 70
and 775 x 100 on a radionuclide dose calibrator for @Â°Vmeasure
ments. The dose calibrator response was also studied on
sources at varying solution volumes in plastic and glass containers.
Results Calibratorreadingsof @Â°Vsources in glassand plasticvials
and plastic syringes were accurate at aither dial sethng 48 x 10
(commonly used by many @Â°Ylaboratories) or 775 x 70. Measure
merits of 1.15 and 3.03 GBq (31and 82 mCi, respecthialy)calibrated
9oYsources in aither vial were -3.0 and +4.3%, respectively, at
dial-setting 775 x 70 and â€”4.0and +9.0% at 48 x 10. Yttrium-90
sources in @icsyringes gave higher readingsthan those in glass
vials,therefore,requiringa containercorrectionfactorfor accurate
dose assay.Measurementsof @Â°YCl3shipments from four supp1@rs
over a 3-yr period demonstrated concurring calibration measure
ments at both 775 x 70 and 48 x 10 settings for shipments from all
suppliers. The dose calibrator response to @Â°Vradiation was linear
wfthin a 1-333 kBq range in a constant sampiS volume of 580 p1.
Conclusion: This work demonstratesthe VaIIdthJof using the 48 x
10dial-factorcombinationon the standardradionuclidedosecall
brator for calibration of @Â°Vradiopharmaceuticais.
Key Words yttrium-90; dose calibrator assay; liquid scintillation;
linearftytest

J NucIMed1997;38:723-726

Yttrium-90hasattractedmuchresearchattentioninradioim
munotherapy because its 64-hr half-life and pure beta emissions
are potentially useful for cancer therapy. Some of its unique
advantages (1â€”5)include: availability of methods for attaching
the radiometal to chelate-carrying proteins and antibodies;
physical T,,2 suited for tumor localization; long-range beta
emissions (maximum energy 2.2 MeV) capable of delivering
homogeneous radiation to heterogeneous tumors (range 8â€”100
mm for soft tissue-solid tumors, respectively); and its decay to
a stable daughter with no additional toxicities.
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