CONCLUSION

The newly designed ECAT EXACT HR™* scanner provides an
excellent spatial resolution, which can advantageously be used for
brain, heart and small animal studies. Whereas the relatively low
slice sensitivity may hamper the capability for performing fast
dynamic studies in the two-dimensional mode (e.g., H,['°O]
studies), the scanner offers a sufficient sensitivity and count rate
capacity for fully three-dimensional whole-body imaging.
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Improved Resolution for PET Volume Imaging
through Three-Dimensional Iterative Reconstruction
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Minneapolis, Minnesota

It has been demonstrated that in two-dimensional iterative recon-
struction, a resolution model can improve image resolution while
controlling noise. With the lower noise levels of three-dimensional
PET volume imaging, these iterative reconstruction advantages may
be extended to three dimensions to further improve the recon-
structed image resolution. Methods: We have implemented three-
dimensional versions of iterative filtered backprojection (IFBP) and
the maximum likelihood by expectation maximization (ML-EM) re-
construction algorithms and applied them to three-dimensional PET
volume datasets. The results were compared to images obtained
using the standard three-dimensional reprojection reconstruction
(B3DRP) algorithm. Results: For IFBP with 15 iterations and no
regularization compared to 3DRP, both using a ramp filter, the
transaxial resolution improved 52%, and the axial resolution im-
proved 39%. With a strong regularization, the transaxial and axial
resolution |mprovements were reduced to 6% and 5%, respectively.
If a Hanning roll-off is applied to the ramp filter in the transaxial
direction, the transaxial resolution for IFBP without regularization
improved 35% compared to 3DRP; with regularization the improve-
ment dropped to 19%. The axial resolution for IFBP and 3DRP was
unaffected by this transaxial smoothing in the reconstruction filter.
With the same Hanning roll-off, the noise for IFBP without regular-
ization increased by a factor of 6 compared to 3DRP; with regular-
ization the noise was increased only by a factor of 3. Compared to
IFBP, the three-dimensional ML-EM reconstruction produced simi-
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lar resolution improvements with a much smaller increase in noise
and slower convergence. Resolution improvements from both IFBP
and ML-EM reconstructions are visually apparent in three-dimen-
sional FDG brain images and result in increased activation signals in
a three-dimensional ['*Ojwater functional activation study.
Conclusion: Our results demonstrate that resolution improvement
is possible for IFBP and ML-EM compared to 3DRP with or without
noise increase.

Key Words: PET; three-dimensional volume imaging; iterative re-
construction; resolution improvement
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'Ee removal of interplane septa to allow off-plane coinci-
dences to be collected for multi-ring detectors has increased the
sensitivity of PET cameras (/,2). This increased sensitivity is
especially useful in studies where the required frame duration is
short, the tracer used has a short half-life, or the tracer uptake is
limited and confined to small regions within the scanning field
of view (3). However, there are two drawbacks to three-
dimensional PET volume imaging (PVI). First, the oblique
penetration of photons in the detectors degrades the axial
resolution compared with two-dimensional imaging with the
septa extended (3,4). Second, the standard three-dimensional
filtered backprojection reconstruction (the three-dimensional
reprojection algorithm (3DRP) (5)) is based on forward project-
ing a low-statistics two-dimensional image volume to estimate
the missing part of the truncated projections, followed by a full
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three-dimensional filtered backprojection. As a result, recon-
structed images contain a significant amount of estimated data
in the end planes, which degrades the transaxial resolution in
the end planes relative to the central planes (3). Other three-
dimensional reconstruction methods such as FAVOR (6) or
pseudo three-dimensional methods using rebinning approaches
[e.g., single-slice rebinning (7), multislice rebinning (§) and
frequency-space rebinning (9)] were proposed primarily to
avoid the manipulation of large datasets and the computational
burden of the full three-dimensional forward- and backprojec-
tion in 3DRP. These alternative three-dimensional reconstruc-
tion methods may be suitable for some imaging situations [e.g.,
small axial acceptance angle (/0)], but they do not attempt to
recover the lost axial resolution, and they are not expected to
have better noise performance than 3DRP.

Iterative reconstruction algorithms have been extensively
studied in two-dimensional imaging. Their ability to incorpo-
rate models such as resolution, attenuation and scatter during
the reconstruction process can, in general, improve recon-
structed image quality compared to filtered backprojection
(FBP). Among two-dimensional iterative algorithms, iterative
filtered backprojection (IFBP) was initially developed to handle
missing projections for CT reconstruction (//) or to estimate
and compensate for attenuation in SPECT imaging (/2). As a
general reconstruction algorithm, the two major advantages of
IFBP over most other iterative algebraic methods are its
relatively fast convergence due to the use of a filtered back-
projector (/3) and its ease of implementation. Because IFBP
uses the filtered backprojection operator in the standard filtered
backprojection reconstruction, one needs only to implement the
forward projector. For three-dimensional IFBP, it is even easier
since the algorithm can be directly modified from 3DRP, which
uses both a three-dimensional forward projection and a three-
dimensional filtered backprojection operator. Another widely
studied iterative reconstruction algorithm, Maximum Likeli-
hood by Expectation Maximization (ML-EM), is based on a
Poisson noise model coupled with an inherent positivity con-
straint (/4,15). In two dimensions, ML-EM images have proven
to have some noise advantage over both FBP and IFBP images
if resolution recovery beyond the intrinsic detector resolution is
desired (/6) or if low-count areas are compared (/7). However,
the major problem with ML-EM is its slow convergence, which
is expected to become even worse in three dimensions as the
size of the dataset increases significantly compared to that in
two dimensions.

Recently, several modified iterative reconstruction algo-
rithms have been proposed. Some have focused on speeding up
convergence (/8,19), while others have tried to improve signal-
to-noise ratios by introducing penalties (20) or side information
(21). However, most of these methods have been tested only
with simple simulations or limited real data, and additional
investigations are required to demonstrate their practical per-
formance. In addition, many of these methods, which are
complicated and require significant computer resources when
implemented in two dimensions, are presently computationally
impractical in three dimensions. The goal of this paper is not to
select the best or the fastest iterative reconstruction algorithm
for PVI. Rather, we demonstrate the comparatively simple,
direct extension of two-dimensional IFBP and ML-EM (in their
original forms) into three dimensions and investigate whether
their advantages for two-dimensional studies carry over into
three-dimensional studies. In particular, the sensitivity increase
due to three-dimensional acquisition for PVI may be used to
obtain improved three-dimensional resolution for the same
noise levels obtained with the two-dimensional algorithms,

such as an improved signal-to-noise ratio. Preliminary results of
resolution and noise measurements for three-dimensional IFBP
and ML-EM are compared to those from 3DRP based on-line
sources and a 20-cm cylindrical phantom. Applications to FDG
and ['*O]water studies of the human brain are given. The
reconstruction time using the two iterative algorithms imple-
mented in three dimensions is also discussed.

THEORY

Iterative Filtered Backprojection

Iterative filtered backprojection belongs to one of the itera-
tive algebraic reconstruction methods. The generalized process
of iterative algebraic reconstruction can be expressed by the
following equation (/3):

xk* D = x® 4+ rO(p — AxW¥), Eq. 1

where x**! and x®) denote the image vector at the (k+1)th
and kth iteration, A is the system transition matrix mapping the
object from image space to projection space, p is the measured
projections, r is an overrelaxation parameter and O is a
generalized backprojection operator. For IFBP, O is replaced by
a filter followed by a backprojector, the same operation nor-
mally performed in FBP. Instead of converging to the least-
squares solution, IFBP converges to a weighted least-squares
solution with the reconstruction filter being the weighting
function (/3,22). If only a ramp filter is used, the algorithm is
equivalent to weighting by an ideal delta point-spread response
(PSR). In two-dimensional cases, a similar situation occurs with
a preconditioning filter (23) derived from a simulated two-
dimensional PSR, but the preconditioning filtering operates in
two-dimensional space after the backprojection operation,
whereas the IFBP approach applies a one-dimensional filter to
the projections before the backprojection. A smoothing roll-off
applied to the ramp filter for noise reduction in IFBP is similar
to a penalty function. Depending on how O is chosen, Equation
1 also may become ART, SIRT, Landweber, Generalized
Landweber or weighted least-squares. A detailed discussion on
this iterative algebraic reconstruction framework and its con-
vergence properties is given in (/3).

Maximum Likelihood by Expectation Maximization
(ML-EM)

The basic working equation for an ML-EM algorithm based
on maximizing the log-likelihood function of a Poisson distri-
bution is:

Eq. 2

- xr[z ai,-<p,~/p;>] [za
j j

J

where

_ k
P = 2 aX;
i

i and j are the indices of image pixel and projection sample,
respectively. p; is the measured projection, p;’ is the calculated
forward projection and a;; is the system transition matrix, the
elements of A in IFBP (Eq. 1). x**! and x¥ are the image pixel
values at the (k+ 1)th and kth iterations. It is well established
that as the IFBP and ML-EM solutions converge, they become
very noisy and require some form of regularization for the
images to be useful. In this study, we chose to apply the method
of sieves (24) in the form of a postreconstruction filter for
regularization noise control.
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FIGURE 1. (A,B) Mean transaxial resolution measured from sources at the axial center (Plane 16) and the axial end (Plane 30) for iterative filtered
backprojection (IFBP) and (C,D) maximum likelihood by expectation maximization (ML-EM) compared to three-dimensional reprojection (3DRP, horizontal

line). The bars on each symbol and the thickness of the shaded line

the standard deviation of the mean resolution of the five sources. For 3DRP

and IFBP, no smoothing was applied in the reconstruction filter. For IFBP and ML-EM, a three-dimensional Gaussian of FWHM 0.58 X 0.58 X 0.5 cm was

used as both the resolution and the sieve kemel.
MATERIALS AND METHODS

All experiments and measurements were conducted on a Sie-
mens ECAT 953B PET camera (Knoxville, TN) with an axial field
of view of 10.8 cm (2). Data were reconstructed into contiguous
two-dimensional image volumes consisting of 31 slices. A mea-
sured attenuation correction was performed based on two-dimen-
sional transmission scans.

Spatial Resolution and Noise

To obtain a set of three-dimensional resolution measurements
for the 953B camera, the following experiments were conducted.
For transaxial resolution, five sources made of capillary tubes of
0.08/0.11 mm (ID/OD) X 90 mm containing high concentrations of
'8F were aligned parallel to the axial direction on a rigid frame and
separated by 4 cm from each other radially (25). Static emission
scans were acquired in three-dimensional mode at two different
axial locations: axial center (Plane 16) and one axial end (Plane
30). For axial resolution, three capillary tubes filled with '*F were
attached to the frame perpendicular to the axial direction and
separated from each other by 8 cm radially. Data were collected
only for the axial center (Plane 16). To improve axial sampling for
the axial resolution measurement, 10 three-dimensional static
emission scans were acquired with axial offsets of 0.1 cm with
respect to each other. All images were reconstructed by 3DRP,
IFBP up to 15 iterations and ML-EM up to 120 iterations with no

attenuation correction. For IFBP and ML-EM, a spatially invariant
three-dimensional Gaussian function approximating the measured
PSR of the camera was used as the resolution model (FWHM =
0.58 X 0.58 X 0.5 cm). To mimic real scanning situations where
noise is present, the same three-dimensional Gaussian function was
also used as the postreconstruction sieve filter for regularization.
For 3DRP and IFBP, two different reconstruction filters were used:
(a) a ramp filter with no smoothing, representing the ideal (noise-
less) condition for maximum resolution recovery and (b) the same
ramp filter with Hanning roll-off to the Nyquist frequency (1.6
cycles/cm) only in the transaxial direction. The FWHM of the
transaxial resolution was obtained by fitting a one-dimensional
Gaussian function to each source transaxially in the reconstructed
images. The FWHM of the axial resolution was obtained by fitting
a Gaussian to the axial samples extracted from the 10 reconstructed
images with 0.1-cm spacing about each source.

To measure the image noise associated with each reconstruction
algorithm, a separate three-dimensional scan of a 20-cm solid
cylindrical germanium phantom was acquired. Images were recon-
structed by 3DRP, IFBP up to 15 iterations and ML-EM up to 120
iterations. The 15-iteration stopping point for IFBP was chosen
based on our previous two-dimensional experience (/3), and the
120-iteration stopping point for ML-EM was chosen because of the
asymptotic behavior of its image resolution (Fig. 1). Corrections
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FIGURE 2. (A) Mean axial resolution measured from sources at the axial
center for IFBP and (B) ML-EM compared to 3DRP (horizontal line). For 3DRP
and IFBP, no smoothing was applied in the reconstruction filter. For IFBP and
ML-EM, a three-dimensional Gaussian of FWHM 0.58 X 0.58 X 0.5 cm was
used as both the resolution and the sieve kemel. See Figure 1 for the key to
the bars and thickness of the shaded line.

for measured attenuation, randoms and detector homogeneity
(normalization) were applied before the reconstruction. For 3DRP
and IFBP a ramp filter with Hanning roll-off to the Nyquist
frequency in the transaxial direction was used. A mean and
standard deviation were measured for each plane using a 15-cm
ROI placed at the center of the cylinder, and the results were
compared for all three reconstruction algorithms.

FDG Brain Data

A 5-min, three-dimensional FDG scan of a normal human brain
was obtained 40—45 min after the injection of 5 mCi FDG. Data
were reconstructed by 3DRP, IFBP and ML-EM with the same
settings previously described for the cylinder. For 3DRP and IFBP
the ramp filter with Hanning roll-off to the Nyquist frequency in
the transaxial direction was used. Regularization with the Gaussian
sieve was applied to IFBP and ML-EM images. Results from the
three reconstructions were compared.

Oxygen-15-Water Brain Activation Study

A total of eight three-dimensional scans were acquired in a
functional activation (speech) study. For each scan, approximately
17.5 mCi ['*O]water were infused intravenously at 1 ml/sec by
means of a computer-controlled infusion system (26). PET scan-
ning commenced when the radioactive tracer reached the brain,
typically 10-20 sec after injection (detected by an abrupt increase
in total scanner counts), and data acquisition continued for 90 sec.

FIGURE 3. Mean transaxial resolution measured from sources at the axial
center for IFBP reconstructed with a Hanning roll-off to the Nyquist frequency
in the transaxial direction compared to 3DRP (horizontal line). A three-
dimensional Gaussian of FWHM 0.58 x 0.58 x 0.5 cm was used as both the
resolution and the sieve kemel. See Figure 1 for the key to the bars and
thickness of the shaded line.

Scans alternated between baseline (unstimulated) and activated
conditions with 10-min rest periods in between to allow for 'O
decay. During the four activated scans, the subject was asked to
perform a speech task (sounding nonsense syllables). Data were
reconstructed by 3DRP and by IFBP up to 15 iterations, both with
Hanning roll-off to the Nyquist frequency in the transaxial direc-
tion. After aligning the eight volumes with respect to the first
(baseline) volume using a six-parameter rigid body transformation
(27) and normalizing by administered dose and subject weight, a
subtraction analysis was applied (28). Subtraction and t-statistics
images were generated for the two reconstructions, respectively,
and compared (28).

RESULTS
Spatial Resolution

Figure 1 compares the mean transaxial resolution of the five
sources measured from the three reconstructions at two differ-
ent axial locations. For 3DRP and IFBP, a ramp filter with no
roll-off was used. The mean transaxial resolutions of the five
sources for IFBP and ML-EM are calculated and plotted as a
function of the iteration number. For IFBP with no sieve
compared to 3DRP, the mean resolution at all iterations is better
and improves as the number of iterations increases. At 15
iterations, the mean transaxial resolution has improved 52% at
the center and 48% at the end (Figs. 1A and B). For IFBP with
sieve compared to 3DRP, the transaxial resolution is initially
worse and becomes better for 10-15 iterations. The mean
transaxial resolution improvements at 15 iterations are 6% at
the center and 9% at the end. Note that the mean transaxial
resolution for 3DRP degrades from 0.6 cm at the center (Fig.
1A) to 0.68 cm at the end (Fig. 1B) because of the forward
projection in the reconstruction. For IFBP with sieve at 15
iterations, the transaxial resolutions at the axial center with
respect to the radial distance at 8 cm, 4 cm and 0 cm are 0.58
cm, 0.52 cm and 0.54 cm, respectively. This radial difference is
about 10% and is slightly smaller at the axial end. On the other
hand, 3DRP shows a quite uniform (0.6 cm) resolution regard-
less of the radial positions. Mean transaxial resolution for
ML-EM also improves as the number of iterations increases.
For ML-EM at 120 iterations without sieve compared to 3DRP,
the mean transaxial resolution improvements at both the axial
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FIGURE 4. (A) Normalized standard deviation (s.d/mean X 100) measured
from a 15-cm ROl at the axial center (Plane 16) of a 20-cm cylinder
reconstructed by IFBP compared to 3DRP. (B) Normalized standard devia-
tion of the 15-cm ROI for all planes reconstructed by IFBP at 5 and 15
iterations compared to 3DRP. Both 3DRP and IFBP are with a Hanning
roll-off to the Nyquist frequency in the transaxial direction.

center and the axial end are >60% (Figs. 1C and D). With sieve
regularization, the transaxial resolution at the center becomes
slightly worse than that of 3DRP (Fig. 1C). At the axial end,
ML-EM with sieve retains a constant slight improvement after
40 iterations compared to 3DRP (Fig. 1D).

Figure 2 compares the mean axial resolution of the three
sources measured from the three reconstructions at the axial
center. With no sieve, both IFBP at 15 iterations and ML-EM at
120 iterations show mean axial resolution improvements
>30%. After sieve, the improvements are reduced to 5%. Note
that the axial resolution measured from the three sources for
IFBP with sieve and for ML-EM both with and without sieve
are more uniform compared to 3DRP. Both the transaxial and
axial resolution for ML-EM improves very slowly after 40
iterations (Figs. 1C, D and 2B).

The results in Figures 1 and 2 represent resolution improve-
ments for situations where statistical noise is not a concern. In
practice, when Poisson noise is present, additional smoothing is
usually necessary to achieve a better signal-to-noise ratio in the
reconstructed images. Figure 3 compares the mean transaxial
resolution measured from 3DRP and IFBP reconstructions at
the axial center, both using a ramp filter with Hanning roll-off
to the Nyquist frequency in the transaxial direction. The mean
transaxial resolution for 3DRP is degraded to 0.85 cm with the
Hanning roll-off. Similar degradation also is observed for IFBP.

>
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FIGURE 5. (A) Normalized standard deviation (s.d./mean x 100) measured
from a 15-cm ROl at the axial center (Plane 16) of a 20-cm cylinder,
reconstructed by ML-EM compared to 3DRP. (B) Normalized standard
deviation of the 15-cm ROI for all planes reconstructed by ML-EM at 120
iterations compared to 3DRP. The 3DRP is with a Hanning roll-off to the
Nyquist frequency in the transaxial direction.

However, compared to 3DRP, the transaxial resolution im-
provement for IFBP with sieve occurs at three iterations instead
of at nine iterations, and at 15 iterations there is a 19%
improvement compared to the 6% obtained using a ramp filter
without roll-off (Figs. 1A and 3). The axial resolution of both
3DRP and IFBP were unaffected by this transaxial smoothing
as expected.
Noise

Figure 4A compares the noise indicated by normalized
standard deviation (s.d./mean X 100) from a 15-cm ROI
centered on images of a 20-cm cylindrical phantom recon-
structed by 3DRP and IFBP, both using a ramp filter with
Hanning roll-off to the Nyquist frequency in the transaxial
direction. For IFBP the noise increases as the number of
iterations increases. Compared to 3DRP, the noise for IFBP at
15 iterations with no sieve is seven times higher; with sieve
regularization, the noise is reduced but is still higher. Figure 4B
illustrates the normalized standard deviation of all planes for
3DRP compared to IFBP at § and 15 iterations. At 15 iterations,
the noise in most central planes is higher by a factor of 7
without sieve and reduces to a factor of about 3 with sieve. On
the other hand, the noise of IFBP at five iterations with sieve is
almost the same as in 3DRP. Results of the same mean and
standard deviation measurements for ML-EM are shown in
Figure 5. The noise for ML-EM at 120 iterations without sieve
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TABLE 1
Summary of Key Results in Resolution FWHM and Noise
Comparison for IFBP, ML-EM and 3DRP

Resolution FWHM Noise
(cm) % (std/mean)
Transaxial Axial Axial
Center End Center  Center
IFBP (15 iterations)
Ramp with sieve 0.55 0.62 0.55
Hann with sieve 0.68 0.53 240
(5 iterations)
Hann with sieve 0.78 0.58 7.7
ML-EM (120 iterations)
with sieve 0.64 0.66 0.54 8.2
3DRP Ramp 0.59 0.68 0.58
3DRP Hann 0.84 0.59 79

For IFBP and ML-EM, only reconstructions with sieve regularization are
shown. The noise was calculated from a 15-cm RO located on Plane 16 (at
the axial center). Numbers that are missing were not measured in this study.

is approximately a factor of 2 higher than that of 3DRP for most
except the two end planes. With sieve regularization, the noise
is reduced to the level of 3DRP and is quite consistent for all
planes (Fig. 5B).

Table 1 summarizes the key results in comparing resolution
FWHM and noise for IFBP, ML-EM and 3DRP. The results
clearly demonstrate that resolution improvement is possible for
IFBP and ML-EM compared to 3DRP with or without noise
increase. However, the number of iterations and the Gaussian
sieve used for comparison in Table 1 are not necessarily
optimal.

FDG Brain Data

Figure 6 compares a three-dimensional human brain FDG
volume reconstructed by the three algorithms. The top left panel
illustrates images reconstructed by 3DRP. The corresponding
IFBP images at five and 15 iterations with sieve regularization
are shown at the top right and bottom left, respectively. Images
at the bottom right were reconstructed by ML-EM at 120
iterations with sieve regularization. The images of IFBP and
ML-EM were selected based on their subjective visual appear-

FIGURE 6. A three-dimensional FDG
brain volume reconstructed by 3DRP (top
left), IFBP at five iterations (top right), IFBP
at 15 iterations (bottom left) and ML-EM at
120 iterations (bottom right). Both 3DRP
and IFBP are with a Hanning roli-off to the
Nyquist frequency in the transaxial direc-
tion. All IFBP and ML-EM volumes are
regularized with a Gaussian sieve of
FWHM 0.58 x 0.58 x 0.5 cm.

ance. Therefore, the resolution matching-a crucial factor when
comparing quantitative imaging performance (29)-is not con-
sidered optimal here. Figure 6 demonstrates that: (a) compared
to 3DRP, the resolution improvement for IFBP and ML-EM can
be clearly seen in both the transaxial and axial (coronal and
sagittal slices) directions; (b) compared to ML-EM at 120
iterations, IFBP at 15 iterations achieves the same or better
resolution faster at the price of higher image noise. On the other
hand, compared to ML-EM at 120 iterations, IFBP at five
iterations achieves slightly less resolution improvement but
with images appearing to be visually similar.

Oxygen-15-Water Brain Activation

Figure 7 demonstrates the results of an ['°O]water speech
study reconstructed by 3DRP and IFBP. Only significant
activations in the temporal lobes (the two bright areas on the left
and right sides of the brain) are illustrated. For purposes of
comparison, spheres within the corner-cube environment were
used to represent the volumes and centroids of face-connected
voxels in the activated foci (30). Cluster size was determined
using a 98th percentile threshold from the subtraction image of
3DRP. (The threshold was determined by voxel values above
the 98th percentile of the voxel distribution in the 3DRP
subtraction images.) An MRI volume of the same subject was
registered to both subtraction volumes using the same six-
parameter rigid body transformation (27) and displayed on the
inner surface of the cube. Compared to 3DRP, the resolution
improvement for IFBP is indicated by the larger volume of the
activated foci in the subtraction image (Table 2). The volume
increase is 41% in the left temporal lobe and 23% in the right
temporal lobe, both with a =4% increase in mean intensity. The
centroid of the two activated areas remained unchanged. The
average t values of the two foci for IFBP are smaller compared
to 3DRP (Table 2). For both reconstructions, all voxels within
the two foci (above the 98th percentile) passed a significance
level of p = 0.01. However, for the same voxels, the number of
statistically significant voxels for IFBP dropped substantially
with a p value threshold of 0.001 compared to 3DRP (Table 2).

Reconstruction Time

Figure 8 compares the reconstruction time per iteration for
three-dimensional IFBP and ML-EM as a function of up to four
CSPI’s i860-based supercard II array processors (Billerica,
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FIGURE 7. A comer cube representation
of selected activated areas in the tempo-
ral lobes due to a speech task. Results
are from an ['SOjwater recon-
structed by 3DRP (left) and from IFBP for
15 iterations with sieve regularization
(right). The voxels shown in both images
were selected based on a 98th percentile
threshold of the subtraction volume of
3DRP. The wallpaper on the sides of the
cube are radiograph-style integrations
through the MRI dataset of the same
subject.

MA) currently available at the Minneapolis VA Medical Center.
The average reconstruction time for IFBP is 17 min per iteration
for our routine configuration of three supercards on a SUN
4/370 workstation, which is about the same as 3DRP. The
reconstruction time for ML-EM per iteration using the same
three-supercard configuration is 27 min, 60% more than mea-
sured for IFBP. For IFBP, the speedup factors from one to four
supercards are 1:1.5:2.3:3.3. The magnitude of the speedup
factors from one to three supercards are about the same for
ML-EM. The fourth supercard was not available at the time the
three-dimensional ML-EM reconstruction was performed.

DISCUSSION

The use of iterative reconstruction algorithms with a resolu-
tion model to improve reconstructed image resolution while
controlling noise has been studied in many two-dimensional
imaging situations. This paper extends two of the widely
discussed two-dimensional iterative algorithms into three di-
mensions and demonstrates that, compared to 3DRP, resolution
improvement in both the transaxial and axial directions can be
achieved (Figs. 1 and 2). The transaxial resolution improvement
can be greater than 48%, such as in the case of IFBP recon-
structed with a ramp filter without regularization. With a
Hanning roll-off applied to the ramp filter to control noise in the
transaxial direction, [IFBP with regularization still maintains a
19% transaxial resolution improvement compared to 3DRP
(Fig. 3) with up to three times more noise (Fig. 4). However, at
5 iterations IFBP with regularization achieves a 10% transaxial
resolution improvement with little noise increase compared to
3DRP (Figs. 3 and 4A). Both the resolution and noise perfor-
mance of IFBP at § and 15 iterations are consistent with the
visual appearance of their respective images (Fig. 6). Compared

to 3DRP, the axial resolution for IFBP at 15 iterations with
regularization improved by 5% and was unaffected by transax-
ial smoothing in the reconstruction filter.

The choice of a sieve filter equivalent to the Gaussian PSR
results in a reconstructed image resolution approximately equal
to the intrinsic detector resolution (24). We used these sieved
images to represent the worst-case scenario in our resolution
improvement attempt. It is certainly possible to reduce the sieve
size, trading noise for resolution recovery, since in PVI the
increased sensitivity compared to two-dimensional imaging
provides a considerable noise advantage. In addition, many
tasks (e.g., typical ROI measurements) will not be applied on
images reconstructed using the worst-case voxel-based noise
measurements reported here. These trade-offs need to be
carefully studied for specific tasks. In the subtraction study for
IFBP compared to 3DRP, the volume of activated foci increased
together with a slight increase in the mean value for the
activated foci. This is exactly what happens in a resolution
improvement when the structure is much larger than the
resolution FWHM. The process involves sharpening the edges
and moving counts from outside to inside the structure, result-
ing in more voxels above the threshold without a significant
mean increase. On the other hand, the t values in the IFBP foci
are lower than for 3DRP, as a result of higher noise in the
individual IFBP images. Since the voxels are not independent
measurements and the two reconstructed images have different
resolutions (Fig. 3), their p-value thresholds need to be adjusted
accordingly to reflect the same confidence level. Because none
of the foci’s voxels are significant for either reconstruction with
the Bonferroni correction (37) (a very conservative adjustment
for data dependency), we compared the effect of two confidence

TABLE 2
Volume Size, Volume Mean, Centroid and t Values of Activated Foci in the Left Temporal Lobe and Right Temporal Lobe are Compared
for 3DRP Images and IFBP Images of 15 iterations with Sieve for an ['*O]Water Speech Study

No. of voxels above

Size Voxel Centroid Average tvalue th for
(voxels) mean x,v,2) t-value p = 0.01 p = 0.001
LTL 3DRP 80 0.1220 (186, 147, 26) 6.09 80 44
IFBP
113 0.1279 (185, 146, 27) 5.06 113 4
RTL 3DRP 163 0.1287 (76, 140, 27) 6.43 163 115
IFBP
200 0.1325 (77,140, 27) 5.24 200 27

The two foci were selected based on a 98th percentile threshold of the subtracted 3DRP images. The average t values were calculated from the same
voxels used in calculating the voxel mean. The number of voxels presented in the last two columns are those above the 98th percentile and above the two

p-value thresholds.
LTL = left temporal lobe; RTL = right temporal lobe.
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FIGURE 8. Reconstruction time in minutes per iteration for three-dimensional
IFBP and ML-EM as a function of the number of supercards. The fourth
supercard was not available at the time when the three-dimensional ML-EM
was performed.

levels by simply reducing the p-value threshold. Reducing the p
value from 0.01-0.001, the number of statistically significant
voxels in the IFBP foci dropped further than for 3DRP.
Ultimately, statistical thresholds for comparing reconstructions
will need to be based on models such as the one proposed in
Worsley et al. (28) to compensate for resolution effects and
voxel dependency. However, key model assumptions (e.g., t
values based on global versus local variance estimates) that will
affect such comparisons are still being investigated and debated
in the functional neuroimaging community (32,33). In general,
because the results we presented are the worst-case scenario, we
are optimistic that increased resolution recovery without a
significant task-dependent noise increase will be achievable
with IFBP.

The Poisson noise model in ML-EM seems to offer some
advantage over IFBP in controlling noise in three dimensions
(Figs. 4 and 5) as it does in two dimensions. However, 15
iterations for IFBP and 120 iterations for ML-EM do not
necessarily represent convergence for the two algorithms, nor
should they be considered optimal for resolution matching.
Although the mean transaxial resolution for ML-EM is still
improving after 120 iterations (Figs. 1C, D), the rate of
improvement is negligible. For IFBP, on the other hand, it is
possible to introduce a noise model, sophisticated penalty
functions or side information to further reduce noise. Therefore,
the convergence of three-dimensional ML-EM needs to be
studied in greater detail to ensure that its noise performance is
compared to that of IFBP at matched image resolution. Other
convergence criteria should also be evaluated, and the stopping
criteria should be determined by the trade-off between task-
dependent signal and noise (bias and variance), especially for
different quantitative imaging tasks (29,34).

Our results also indicate that for three-dimensional IFBP and
ML-EM, the signal of most visible structures seems to have
stabilized by 15 and 120 iterations, respectively—faster than we

previously reported in the two-dimensional case (29), especially
for ML-EM. We believe this is due to the different resolution-
to-sampling ratios in both images and projections for the two
different scanners studied. The ECAT 953B used to generate
this dataset has a resolution-to-sampling ratio of <2, whereas
the resolution to sampling ratio for the PC4600 (Cyclotron
Corp., Berkeley, CA) is >4 (29); the greater this ratio, the
slower the convergence. These observations may also explain
why different centers using different scanners have reported
different optimal stopping criteria for the same iterative algo-
rithms. The effect of intrinsic detector resolution and sampling
on the convergence of iterative reconstruction algorithms
should be considered in future studies.

Because of the computational burden of three-dimensional
algorithms, these studies of two three-dimensional iterative
reconstruction algorithms are nontrivial, and their convergence
issues, particularly for ML-EM, become very important practi-
cally. Further reductions in reconstruction time will depend on
how efficiently the three-dimensional forward- and backprojec-
tor can be implemented and optimized. With the slow conver-
gence of ML-EM, other speedup tactics such as the space
alternative update strategy (/9) or ordered subsets (35) should
be considered.

CONCLUSION

We have demonstrated that both the three-dimensional IFBP
and ML-EM reconstruction algorithms with a resolution model
can improve image resolution compared to 3DRP. Examples of
phantom, human FDG and ['*O]water studies have been pre-
sented to support our findings. In general, IFBP achieves
resolution improvements with higher noise compared to 3DRP.
ML-EM achieves similar resolution improvements compared to
3DRP with almost no noise increase but with a larger iteration
number compared to IFBP. The ultimate performance of three-
dimensional IFBP and ML-EM should be compared and opti-
mally determined for particular tasks to which they will be
applied. To improve reconstruction time, dedicated computer
hardware and strategies to speed up the convergence for
ML-EM are necessary.
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Fluorine-18-Fluoromisonidazole Radiation
Dosimetry in Imaging Studies

Michael M. Graham, Lanell M. Peterson, Jeanne M. Link, Margaret L. Evans, Janet S. Rasey, Wui-Jin Koh,

James H. Caldwell and Kenneth A. Krohn

Departments of Radiology and Radiation Oncology, University of Washington School of Medicine; and Division of
Cardiology, Department of Medicine, Seattle Veteran’s Administration Medical Center, Seattle, Washington

Fluoromisonidazole (FMISO), labeled with the positron emitter '8F, is
a useful hypoxia imaging agent for PET studies, with potential
applications in patients with tumors, cardiovascular disease and
stroke. Methods: Radiation doses were calculated in patients un-
dergoing imaging studies to help define the radiation risk of FMISO-
PET imaging. Time-dependent concentrations of radioactivity were
determined in blood samples and PET images of patients following
intravenous injection of ['®FJFMISO. Radiation absorbed doses were
calculated using the procedures of the Medical Internal Radiation
Dose (MIRD) committee, taking into account the variation in dose
based on the distribution of activities observed in the individual
patients. As part of this study we also calculated an S value for brain
to eye. Effective dose equivalent was calculated using ICRP 60
weights. Results: Effective dose equivalent was 0.013 mSv/MBq in
men and 0.014 mSv/MBq in women. Individual organ doses for
women were not different from men. Assuming bladder voiding at
2- or 4-hr intervals, the critical organ that received the highest dose
was the urinary bladder wall (0.021 mGy/MBq with 2-hr voiding
intervals or 0.029 mGy/MBq with 4-hr voiding intervals).
Conclusion: The organ doses for ['®FJFMISO are comparable to
those associated with other commonly performed nuclear medicine
tests and indicate that potential radiation risks associated with this
study are within generally accepted limits.

Key Words: fluorine-18-fluoromisonidazole; dosimetry; Monte
Carlo simulations
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FLUORINE-18-FLUOROMISONIDAZOLE DOSIMETRY * Graham et al.

Euoromisonidazole (["®*F]FMISO, [1-H-1-(3-['*F]fluoro-2-
hydroxypropyl)-2-nitroimidazole], RO-07-0741) is a nitroimid-
azole that is structurally similar to the well-known radiosensi-
tizer, misonidazole. Both molecules distribute throughout the
total body water space, readily crossing membranes by passive
diffusion. Fluorine-18-FMISO is bound and retained within
viable hypoxic cells in an inverse relationship to the oxygen
concentration. Binding occurs at the same range of low oxygen
levels, which lead to ischemic cellular damage and increased
radiation resistance (/,2). Fluorine-18-FMISO is currently be-
ing used with PET imaging to noninvasively assess hypoxia in
human malignancies (3-6) and in the hearts of patients with
mg'ocardial ischemia (7). Accurate radiation dosimetry of
['*F]JFMISO is required to evaluate the benefits and the relative
radiation-related risks. This article presents estimates of the
radiation dose to various organs and to the whole body. The
estimates are derived from time-activity curves of blood and
normal tissue from imaging studies of patients with tumors,
coronary artery disease, paralysis or arthritis.

MATERIALS AND METHODS
Patients

Biodistribution data from 60 patients (55 men, 5 women) who
underwent ['®FJFMISO PET scans at the University of Washington
between August 1989 and January 1996 were used for dosimetry
estimates. Fifty-four of the individuals had cancer and were imaged
to assess tumor hypoxia before radiotherapy, three patients had
histories of myocardial ischemia, two were paraplegic and one had
rheumatoid arthritis. None of the patients had clinical congestive
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