
MATERIALS AND METhODS

Subjects
We selected 43 patients (35 men, 8 women; aged 33â€”63yr)

examined by both PET and SPECT cerebral perfusion studies.
Thirty patients were in a chronic state of ischemic or hemorrhagic
stroke and 13 had other neurological diseases, including Alzhei
mer's dementia (7 patients), vascular dementia (3 patients),
Binswanger type dementia (1 patient) and brain tumors (2 patients).
Dementia was diagnosed using standard criteria (8,9). No patient
had structural lesions in the cerebellum.

IMP-SPECT was performed on 15 patients, HMPAO-SPECT on
20 and ECD-SPECT on 8. No patient received SPECT two or more
times. A PET study was performed in all patients to measure
quantitative rCBF using the â€˜50C02steady-state method. Inter
examination intervals of SPECT and PET were within 2 wk.

SPECT Tracers
Iodine-l23-IMP (0.45 mg N-isopropyl-p-iodoamphetamine hy

drochloride in 3 ml saline solution) was supplied commercially.
Patients received I 11 MBq IMP intravenously. To block the
accumulation of free radioactive iodine in the thyroid gland,
potassium iodine (30 mg/day) was given for 4 days starting on the
day before the study.

Technetium-99m-HMPAO was prepared from a freeze-dried kit
by the addition of I I 10 MBq freshly eluted pertechnetate in 5 ml
saline solution just prior to injection, and approximately 925 MBq
HMPAO were administrated intravenously.

Technetium-99m-ECD was also prepared from a commercially
supplied kit. The ECD preparation kit consisted of two vials, one
containing a sterile and nonpyrogenic lyophilized mixture and the
other a liquid phosphate buffer. Three milliliters of normal saline
were injected into the first vial to dissolve its contents. Techne
tium-99m generator eluant (1 110 MBq) was injected into the
second vial and 1.0 ml of the contents of the first vial was then
transferred into the second vial. The mixture was allowed to stand
at room temperature for 30 mm, after which approximately 925
MBq ECD were injected.

SPECT
A multidetector ring-type SPECT scanner, which provides three

transaxial images with a slice interval of 30 mm was used. The
spatial resolution was 12 mm FWHM in the center of the field of
view, and the axial resolution was 23.5 mm FWHM (10). Two
SPECT scans were obtained to acquire six slices of SPECT images
at 15-mm intervals. Data acquisition began 5, 10 and 30 mm after
the administration of IMP, HMPAO and ECD, respectively.
Scanning time was 15 mm for IMP and 10 mm for both HMPAO
and ECD. We started data acquisition at different times for three

It is well known that many cerebral perfusion tracers underestimate
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Inrecentyears,variouscerebralperfusiontracers,including
1231-N-isopropyl-p-iodoamphetamine (IMP), 99mTc@d,l@hexam@
ethyl-propyleneamine oxime (HMPAO) and 99mTc..ethyl..cys..
teinate dimer (ECD), have been introduced in clinical nuclear
medicine as an indicator ofregional cerebral blood flow (rCBF)
measured by SPECT. Although these tracers move across the
blood-brain barrier (BBB) efficiently and regional brain distri
bution essentially reflects rCBF, the significant underestimation
of rCBF in the high flow regions has also been demonstrated
(1,2). This underestimation is due to either the influence of
backdiffusion (1 ) or relatively low tracer extraction (3).

To correct the nonlinearity of the brain SPECT counts and
rCBF, Lassen et al. (4) proposed the linearization algorithm
based on the backdiffusion model of HMPAO. However, it may
not be appropriate to apply this method for the tracers with
limited first-pass extraction such as ECD. We have previously
proposed a model for the correction of nonlinearity (5) using
the permeability-surface area (PS) product model (6, 7). In this
article, we examined the feasibility of this approach for the
linearization correction of IMP, HMPAO and ECD brain
SPECT images.
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tracers because each time frame was determined to maximize
image quality and to maximally reflect CBF information for each
tracer. Each time sequence was used routinely in our institute. IMP
is trapped in the lung first, then distributes brain gradually. To
maximize the CBF information, we started data acquisition as soon
as possible (5 mm) after injection. HMPAO is trapped in the brain
at first-pass and the distribution is fixed, whereas backdiffusion a
few minutes after injection should be considered. Ten minutes after
injection was considered to be enough time to end the backdiffu
sion. ECD is also trapped in the brain and fixed rapidly and there
is less backdiffusion compared to HMPAO. For the ECD study, 30
mm after injection was chosen to minimize radioactivity outside of
the brain. The patient's head was positioned parallel to the
canthomeatal line using a light beam on the patient's face to ensure
uniform positioning for SPECT imaging. The SPECT images were
reconstructed by a filtered backprojection algorithm using a ramp
filter convoluted with a Butterworth filter (cutoff frequency 0.3,
order 4). Attenuation correction was performed using elliptical
fitting. Scatter correction was not performed. The final SPECT
images covered the field of 21 cm in diameter with a 64 X 64
matrix.

PET SWdy
Regional cerebral blood flow (rCBF) was measured by the

â€˜5O-carbondioxide (C02) steady-state method (11) using a mul
tislice PET scanner, (12, 13). One scanner had four detector rings,
each containing 192 bismuth germanate crystals, which allowed
simultaneous acquisition of seven tomographic slices at 16-mm
intervals. The spatial resolution of the reconstructed clinical PET
images was 10 mm in FWHM at the center ofthe field ofview and
an axial of 12 mm. The other camera simultaneously acquires 15
slices with an interslice distance of 7 mm. The spatial resolution
was 9 mm FWHM in the transaxial plane and 6.5 mm in the axial
direction. On both PET scanners, prior to the emission measure
ments, tomographic transmission data (68Ge/@8Ga)were obtained
for photon attenuation correction. Tissue activity concentration in
the images was cross-calibrated against the well counter using a
cylindrical phantom filled with â€˜8Fsolution. The subject's head
was immobilized with a headholder and positioned parallel to the
canthomeatal line using a light beam. A small catheter was placed
in the brachial artery for blood sampling. The subject wore a light,
disposable plastic mask and nasal cannula for inhalation of 150 gas
produced by a small cyclotron. The steady-state inhalation method
for â€˜50-labeledCO2 with 5-mm data acquisition and intermittent
arterial blood sampling was used to calculate rCBF.

Permeabilfty Surface Area Model
We have assumed that these tracers have no backdiffusion and

the kinetics are based on the microsphere model. Therefore,
regional activity of the tracers in the brain can be expressed as
follows:

Eq. 1

where F is rCBF (ml/min/100 g brain), E is first-pass extraction,
and Ca(t) is arterial input function (5). Based on the assumption of
the uniform PS throughout the brain, E can be expressed as a
function of F and PS (6):

Eq. 2

From Equations 1 and 2, the SPECT count ratio to the reference
region (C/Cr) can be expressed as a function of flow ratio (F/Fr)
and PS as follows:

I â€”PS
C F

@ /â€”PS\ Eq.3
1 - exp@-j@--)

This equation can be facilitated as

x(lâ€”

Y= 1â€”f3 â€˜ Eq.4

where X = F/Fr, Y = C/Cr and (3 =@

D@a M@
Initially, original PET images were interpolated to construct the

three-dimensional volumetric dataset, and we selected the slices
that were closest to the corresponding SPECT images. After
adjusting the pixel size, PET and SPECT images were superim
posed visually by shifting and rotation. Identical regions of interest
(ROIs) then were placed on the cerebral cortices, 17 X 17 mm in
size, and cerebellar hemispheres, 23 X 23 mm in size. Relatively
large ROIs were chosen to compensate for the different partial
volume effects caused by the varying spatial resolution of PET and
SPECT. ROIs were placed in the frontal, temporal, occipital and
parietal cortices in the bilateral cerebral hemispheres. In cerebro
vascular diseases, to exclude the effect of crossed cerebellar
diaschisis or hypoperfusion (14,15), ROIs in the cerebellar hemi
sphere were placed ipsilateral to the cerebral lesion. The ratio of
cerebral region-to-cerebellum on SPECT (Y) and PET (X) was
compared. These datasets were used to estimate fJ in Equation 4.
The optimal value of @3was obtained with least-squares fitting
methods.

The linearization correction of the relative SPECT counts (=
C/Cr) was performed using the table look-up method because
Equation 4 cannot directly provide X values from Y values. For
this purpose, the look-up table of Y was calculated for each X
value, and the relationship ofX and Y was obtained by fourth-order
polynomial curve fitting as follows:

X=A0+A1Y+A2Y2+A3Y3+A4Y4. Eq.5

RESULTS
Comparison of the SPECT and PET data demonstrated

excellent correlation of tracer uptake and rCBF for all SPECT
tracers as shown in Figure 1. However, the slope of the
regression line was less than 45Â°for all tracers, suggesting
lesser contrast between high- and low-flow regions in SPECT
images compared with rCBF measured by PET. At the lower
range of absolute values (F/Fr < 0.75), the uptake ratio C/Cr is
consistently greater than the flow ratio, probably due to scatter
radiation of the SPECT images, because scatter correction was
not performed. Figure 1D shows the correlation between PET
(F/Fr) and ECD (C/Cr) with fitting curve with (3 = 0.30,
indicating that the fitting procedure worked well. Table 1
summarizes the calculated f3 and PS values for IMP, HMPAO
and ECD. The obtained PS values were highest for IMP (116
ml/minhlOO g), followed by ECD (66 ml/min/100 g) and
HMPAO (46 ml/min/100 g). The values ofA@ to A4 in Equation
5 were 0.07, 0.22, 1.75, â€”1.85,0.97 on IMP, 0.02, 0.28, 1.21,
â€” 1.96, 1.45 on HMPAO and 0.1 1, 3.33, 1.75, â€” 1.85, 0.97 on

ECD. Figure 2 shows the comparison ofuptake ratios and rCBF

after linearization correction. In the linear regression analysis
with corrected data, all SPECT tracers demonstrated excellent
linear correlation, and the regression lines were close to the
unity. Figure 3 demonstrates the ECD SPECT images before
and after linearization. With linearization, image contrast of the
lesion to normal cortex is more clear.
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FIGURE1. Comparisonof rCBFratio(F/Fr)and IMP @A4,HMPAO(B)and ECD(C)uptake ratio
(C/Cr).(D)showsthe correlationbetween rCBFratioand ECDv@thflthngcurvewfthf3= 0.30.

I
0.5 1.0

rCBF ratio (F/Fr)

DISCUSSION
It is well known that most of the cerebral perfusion tracers

underestimate rCBF in the high flow range. This underestima
tion is due to the limited first-pass extraction ofthe tracer and/or
backdiffusion from the brain to the blood. We previously
reported that technetium-labeled SPECT tracers, such as HM
PAO and ECD, are less favorable than IMP in regard to the

TABLE I
Summary of f3,Blood Flow in Reference Region and PS Values

contrast between normal and hypoperfused regions (2), which
may be due to the nonlinear relationship between rCBF and
brain uptake of these tracers. For HMPAO, Lassen et al. (1,4)
demonstrated that significant backdiffusion of lipophilic
HMPAO was the major cause of the nonlinearity, although it
showed sufficiently high first-pass extraction, and proposed a
method for linearization correction. On the other hand, the
first-pass extraction of ECD was reported to be lower than
HMPAO or IMP (16, 1 7). To correct the underestimation of

rCBF by the limited extraction of the tracer, we proposed a
correction method based on the PS product model (5).

The concept of PS product was originally proposed by Crone
and Renkin (6,18). Our method is based on brain activity
measured by SPECT, and the obtained PS values do not
necessarily show the first-pass extraction. In the present results,
the PS value for ECD was higher than that for HMPAO and
lower than that for IMP. The PS value measured in human and

0.0

rCBF ratio (F/Fr) rCBF ratio (F/Fr)rCBF ratio (F/Fr)

FIGURE 2. Comparison of F/Fr and IMP (A@,HMPAO (B)and ECD (C)uptake ratio after correction wfth PS model (C/Cr)'. Excellent linear relationship was
observed for each tracer.
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and with other different physiological and pathological condi
tions.

FIGURE 3. ECD SPECT images before (upper) and after (lower)linearization.
These images were nOrmalizedby each maamum value.A 63-yr-oldman
withleftinternalcarotidarteryocclusionshowed decreased tracer uptake in
theleftoccipito-parietalregion.Clearerdemonstrationoftheischemiclesion
afterlinearizationisnoted.

monkey's brains demonstrated the highest PS value for IMP,
and the PS value of HMPAO is higher than that of ECD
(19,20). IMP has first-pass extraction with slow washout
(21â€”23),and the PS value in this study gave similar results as
the monkey brain (19). The discrepancy for HMPAO and ECD
is obviously due to the significant backdiffusion of HMPAO.
On the other hand, ECD was reported to have lower extraction
compared with HMPAO and IMP (3), with less backdiffusion
than HMPAO (16), which suggests that this method may be the
most suitable among the three tracers. Because the major reason
for nonlinearity of HMPAO uptake and rCBF is tracer backdif
fusion (4,24,25) and the slope of the regression line is far from
unity in our study, it may not be appropriate to apply the present
approach for linearity correction and the backdiffusion model
may be more favorable (26,27).

Since the present approach is based on brain activity mea
sured by SPECT, we must recognize that the PS value obtained
in this study is determined by various factors, including
first-pass extraction, backdiffusion and the physical character
istics of SPECT imaging. Hence, it is not a physiological PS
value. For example, slow washout of IMP causes a significant
decrease in brain activity at the end of scanning, which
underestimates the PS value. Both limited spatial resolution and
undesired scatter radiation decrease the contrast between high
and low rCBF regions. Although we used â€˜5OCO2as a
reference flow tracer, even it has limited extraction compared
with â€˜1C and â€˜50-butanol (7,28,29). Another issue is that
physiological PS value differs across the brain (29), which was
not implemented in our model. However, Berridge et al. (29)
reported that the underestimation of rCBF by â€˜50-watercom
pared to â€˜50-butanol in high flow ranges was well corrected
using the uniform PS value, 133 ml/minIlOO g. Hence, assump
tion ofuniform PS value is at least practically helpful. Although
the nonlinearity correction based on this model was successful
for all three tracers, the PS values were estimated from group
data; hence intersubject variation of the PS value was not taken
into account. Our method may not be appropriate for the patient
whose cerebellar flow decreased, such as bilateral cerebral
infarction and spino-cerebellar degeneration.

Although this method has several limitations, it can be used
widely for nonlinearity correction of clinical SPECT images by
taking the advantage of its simplicity. For this purpose, it is
necessary to validate the method in larger subject population
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CONCLUSION
The present approach based on the PS model may be useful

for nonlinearity correction of brain perfusion SPECT images,
especially for ECD.
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In 1913,NielsBohrpresentedhisnow
familiar model of the atom, consisting of
a central nucleus with â€œorbitingâ€•elec
trons. We now know that this model does
not accurately and fully represent reality.
Indeed, quantum physicists such as
David Bohm have argued that protons,
neutrons and electrons do not actually
exist as particles. Even so, we continue to
use Bohr's model for many applications.
Why? Because we can accomplish im
portant goals by doing so. My mentor,
Henry N. Wagner, Jr., often has said: â€œBe
as rigorous as necessary, not as rigorous
as possible.â€•

Quantification is important in the prac
tice of nuclear medicine. â€œQuantifica
tionâ€•means more than assessment of the
amount of radioactivity; it implies esti
mation of physiological or biochemical
parameters of interest. Quantification in
volves a simplification or â€œfilteringâ€•of
the raw dataâ€”an abstraction. Of neces
sity, this abstraction is based on a con
ceptual and associated mathematical
model of the physiological or biochemi
cal process. In practice, the need to
model, and the utility of a particular
model, depend on the model's intended
purpose. That is, modeling can only be
judged in the context of its usefulness in
solving a specific research or clinical
problem.

In this issue of JNM, Tsuchida et al.
(1 ) describe the development and appli
cation of a model to correct the nonlinear
relationship between regional cerebral
blood flow (rCBF) and the uptake of
[123I]IMP, 9@Tc-HMPAO and 99mTc@
ECD. I would like to make four points
about modeling in emission tomography,
the first three of which are illustrated by
this excellent article. First, the success
with which these investigators were able
to produce corrected data with SPECT
that correlated well with PET highlights
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the advances SPECT has made. We now
need to think in terms of â€œemissionto
mographyâ€•rather than distinguishing be
tween SPECT and PET. This is true not
only for â€œimagequalityâ€• (e.g., spatial
resolution, contrast or signal-to-noise ra
tio), but for estimation of physiological
or biochemical parameters, such as rCBF
(1 ) or even parameters as difficult to
assess as receptor binding (2). Second,
simplified approaches to kinetic model
ing will promote more widespread use of
modeling. These include easier acquisi
tion protocols (e.g., the use of only a
single dose or simplified blood sampling)
and more automated data analyses (3â€”5).
Third, since nuclear medicine is so ori
ented toward images, it seems likely that
the type ofquantification being discussed
here will be presented in the form of
images rather than as collections of num
bers. Such images, called parametric im
ages, have pixel values that represent a
physiological or biochemical parameter
rather than radioactivity concentration
per se. They facilitate interpretation of
regional data because they permit the
viewer's brain to recognize regional pat
terns. For example, the bottom row of
Tsuchida et al.'s Figure 3 shows model
corrected images that are no longer sim
ple distributions of radioactivity, but
have pixel values that are directly propor
tional to cerebral blood flow. These im
ages are both more accurate and have
higher contrast than the corresponding
uncorrected images in the top row of the
figure. Excellent additional examples of
this point can be found in recent issues of
JNM (4,6). A fourth point, not directly
addressed by Tsuchida et a!., is the con
cept ofalwaysjudging utility in a specific
context. The investigators do state that â€œit
is necessary to validate the method in
another group of subjects with a larger
population and with different physiolog
ical and pathological conditions.â€• Such a
validation would demonstrate the quanti
tative accuracy of the model and their
correction approach. I would argue that a
completely different type of study would

be necessary to demonstrate the diagnos
tic or prognostic accuracy of their ap
proach. Without such a study, we do not
really know the clinical utility of the
approach, although its advantages for
research are clear. An excellent example
of â€˜judgment of utility in context' is
found in the January 1996 issue of JNM

(7).
Few who use models believe that they

are absolutely accurate descriptions of
â€œrealityâ€•(however perceived) (8). They
need not be in order to be useful. If we
can clearly define a problem whose solu
tion requires the ability to describe and
(especially) predict the results of further
measurements, and if a given model pro
vides the relevant solution in a feasible
way, it is useful, and its widespread
application should be encouraged. The
challenge is in articulating the degree of
accuracy required and knowing when (to
quote Dr. Wagner again) to â€œstopgroom
ing the horse and start riding it.â€•
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