Investigations of Breast Tumors with Fluorine-18-Fluorodeoxyglucose and SPECT

Departments of Nuclear Medicine, Gynecology and Pathology, University Clinics of Saarland, Homburg/Saar, Germany

Methods: We designed a prospective study to investigate the feasibility of combined FDG-SPECT and whole-body acquisition in the diagnosis and staging of breast tumors applying visual analysis. We studied 50 patients with breast tumors of unknown histology.

Results: All malignant diseases were accurately detected in tumors >2.3 cm, while the smallest FDG-positive lesion was 1.4 cm. In a subgroup of these patients, quantitative evaluation (tumor-to-background ratio) was added, which improved the sensitivity. Lymph node metastases were accurately indicated in 9 of 13 patients, while the detection of distant metastases depended on the location and size. False-positive FDG scans were observed in inflamed tissue, in a rapidly growing phyllodes tumor and in supposedly healthy breasts.

Conclusion: These results are comparable with prior investigations of other groups using PET. Therefore, FDG-SPECT and whole-body acquisition may be an adequate and less expensive technique to meet the increasing demand of FDG examinations.

Key Words: fluorodeoxyglucose; breast tumors; SPECT; whole-body acquisition; radionuclide imaging

J Nucl Med 1996; 37:615-622

Breast cancer is one of the leading malignant diseases of women in the western hemisphere and is the most frequent cause of death from malignant disease in women (1). Prognosis depends on early detection of the primary tumor site and worsens after the development of metastases and disease progression (2). Standard imaging methods give accurate information in many patients, but there is concern that mammography results in many unnecessary surgeries to obtain needed histological information (3). Small lesions and recurrences after surgery often lead to diagnostic problems. Therefore, an imaging method to detect primary and metastatic malignancies and to distinguish between malignant and nonmalignant disease would be useful.

Recently, some efforts were made to use the glucose analog 18F-fluoro-2-deoxy-D-glucose (FDG) for this purpose (4,5). For several decades, tumor cells have been known to exhibit increased glycolytic activity due to a higher energy demand and changes in the intracellular enzymatic profile (6,7). FDG is phosphorylated like glucose by intracellular hexokinase and undergoes no further metabolism, a phenomenon which results in vigorous intracellular accumulation (8,9). Several experi-
mental tumors were investigated with FDG and all showed high
FDG uptake suitable for PET or gamma camera imaging with
specially fitted collimators (9–13). Human studies demonstra-
ted the feasibility of FDG for imaging lymphomas (14–16),
lung tumors (17–19), head and neck tumors (20,21), colon
cancer (22,23), liver tumors (24,25), brain tumors (26,27),
thyroid cancer (28) and breast cancer (29,30). FDG was used
for primary and metastatic tumor detection and follow-up
studies to assess the effectiveness of the tumor therapy
(5,25,31,32). Thus, FDG is suitable for imaging tumors with
enhanced glycolytic activity.

As a positron emitter, 18F is best used with PET. PET centers
are rare, however, and their limited access precludes PET
studies for all patients with suspicious lesions. To reduce costs
and improve investigational capacities, alternative techniques
for imaging FDG (and other positron emitters) have become
more common (33–35). Although the spatial resolution of
gamma cameras is less than PET tomographs, their capacity for
whole-body acquisition and its larger field of view are advan-
tages. The purpose of this study was to investigate the useful-
ness of a commercially available dual-head gamma camera with
specially designed high-energy collimators to evaluate breast
tumors of unknown histology using a combination FDG-
SPECT and whole-body technique.

MATERIALS AND METHODS

Patients

Fifty women (aged 20–82 yr, mean age 57 yr) suffering from
breast tumors of unknown histology were studied. Each patient was
told about the investigative nature of the study and its potential
risks and benefits before informed consent was obtained prior to
the investigation. The studies were performed between March 1993
and May 1994. All tumors were identified by mammography
and/or ultrasound before the examination. Histology was con-
ferred by surgery or biopsy within 14 days after the investiga-
tion. The number of investigations was limited by the restricted avail-
ability of the FDG, with the possibility of up to four investigations
per week.

Gamma Camera

Images were obtained on a commercially available dual-head
gamma camera with two rectangular (50.8 × 35.6 cm) NaI(Tl)
crystals. Crystal thickness was 0.5 in for better detection efficiency
of the annihilation photons. The intrinsic efficiency for 500 keV
photons relative to those at 70 keV (100%) is 36% for the 0.5 in
crystal compared to 28% for a 0.375 in crystal, respectively,
according to information of the manufacturer. Thus, compared to
a 0.375 in crystal, the detection efficiency for 511 keV photons is
increased by 29.5% using 0.5 in crystals. The photomultiplier tubes
and the preamplifiers are analog, starting at the summing circuitry
the camera operates digitally. The analyzer electronics were
adjusted by the manufacturer to accommodate 511 keV photons.
The camera was shielded accordingly and with extra-high energy
collimators (hexagonal hole diameter 6.6 mm, septa thickness 3.3
mm, septa length 90 mm). The calculated septal penetration was
12% using a Gaussian fit of the line spread function (36). The
sensitivity maps were created with a planar phantom with 18F in
water, collecting 120×10^6 counts per head. The system sensitivity
with the extra high-energy collimators was measured to 66 cpm/37
MBq for 18F (for 99mTc, it was 163 cpm/37 MBq). The system
resolution was 1.4 cm FWHM at a 10-cm distance from the
collimator surface in water (37).

Imaging Procedure

Patients received 500–1000 MBq FDG as a bolus injection after
fasting overnight. Thus, the majority of the patients showed little or
no myocardial physiological FDG uptake, resulting in improved
imaging conditions for the detection of tumorous tissue, i.e., breast
lesions. FDG was produced by the Kernforschungszentrum
Karlsruhe and transported to our department by courier service
over a distance of 100 km. Fluorine-18 was produced by the 18O
(p, n)18F nuclear reaction using highly enriched 18O water. The
reaction in an IBA processing module is based on the transfer
mediated substitution of triflate by [19F]fluoride. The nonpyrogenic
FDG solution had a radiochemical purity higher than 95%.

Anterior and posterior whole-body acquisition started 50 min
after the FDG application using a scan speed of 15 cm/min. During
the whole-body acquisition, patients were in the supine position.
The subsequent SPECT acquisition was performed in the prone
position to increase the breast's distance from the chest. Sixty
views were acquired over 360°, and 5–6 × 106 counts were
collected per study. Acquisition of 360° SPECT images ensured
that the breast lesions, axillary lymph nodes and distant metastases
could be detected with adequate quality. Attenuation artifacts using
360° SPECT images (instead of 180°) are unlikely, since high-
energy photons undergo little absorption in tissue. If whole-body
scan demonstrated suspicious FDG accumulation outside the tho-
rax region, additional SPECT scans were acquired when possible.

Data were saved in a 64-word mode matrix for further analysis.
A Butterworth filter with a cutoff of 0.7 and order 5 was used for
data reconstruction. No attenuation correction was performed.
Color images of three planes were printed for the interpretation. In
some difficult cases, the volume-rendered images and the cine
mode were helpful tools in the interpretation procedure. Image
review and interpretation were performed by two experienced
clinicians blinded to the results from other imaging studies. FDG
accumulation in the tumors was scored visually as four grades:
from 0 = no accumulation, to 3 = high accumulation. This grading
actually represented the visual tumor-to-background ratios. Grades
2–3 were regarded as abnormal increased for the primary tumors
(29), and for the lymph nodes, any increase in accumulation was
interpreted as pathologic (grade 1–3).

In most patients, quantitative retrospective analysis of the lesions
could be performed. Regions of interest (ROIs) were defined for
the primary lesion, the opposite breast and for normal breast tissue
(background), which often correlates with the opposite breast.
Ratios of the mean count rate of the lesions' ROI versus back-
ground were calculated. Due to the retrospective character, these
ratios were not used for further evaluation of the results.

The results were compared to those of the other imaging
techniques (ultrasound, mammography, 99mTc-MDP bone scan,
radiography and MRJ). Histological results were considered the
gold standard for further evaluation. The tumor size was measured
histologically. If this was not possible, the largest diameter of other
imaging methods was used if lesion could be accurately differen-
tiated from surrounding tissues.

RESULTS

Nineteen of 23 histologically benign primary lesions showed
little or no FDG uptake corresponding to low-grade visual
uptake (score 0–1). All results are summarized in Table 1. One
patient with a rapidly growing phyllodes tumor, one with
fibrocystic mastopathy of both breasts, one with acute suppu-
rative mastitis (Fig. 1) and one with chronic inflammation had
high FDG uptake. The ratios for the acute supplicative mastitis
and for the fibrocystic mastopathy were significantly increased
(>1.6, Table 1). All other ratios of benign lesions and healthy
breasts without indication for malignancy had values <1.6.

Eighteen of the 27 patients with primary malignant diseases
exhibited high-grade visual uptake scores (Fig. 2). The sizes
ranged from 1.4 cm (Fig. 3) to 10 cm (mean ± s.d. 3.62 ± 0.4
<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (yr)</th>
<th>Histology</th>
<th>Tumor size (cm)</th>
<th>TNM (UICC)</th>
<th>Uptake grade</th>
<th>Evaluation</th>
<th>Location</th>
<th>L/Bckg</th>
<th>R/Bckg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>Ductal carcinoma</td>
<td>0.7</td>
<td>pT1 pN0, G2</td>
<td>0</td>
<td>FN</td>
<td>L</td>
<td>1.88</td>
<td>0.92</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>Ductal carcinoma</td>
<td>1.3</td>
<td>pT1 pN0</td>
<td>0</td>
<td>FN</td>
<td>L</td>
<td>2.08</td>
<td>1.32</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>Ductal carcinoma</td>
<td>1.2</td>
<td>pT1 pN0, G2</td>
<td>0</td>
<td>FN</td>
<td>L</td>
<td>0.99</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>Ductal carcinoma</td>
<td>1.4</td>
<td>pT1c pN0, G2</td>
<td>1</td>
<td>FN</td>
<td>R</td>
<td>1.25</td>
<td>1.56</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>Ductal carcinoma</td>
<td>1.7</td>
<td>pT1 pN0, G2</td>
<td>0</td>
<td>FN</td>
<td>R</td>
<td>0.98</td>
<td>2.20</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>Comedo carcinoma</td>
<td>1.8</td>
<td>pT1 pN0</td>
<td>0</td>
<td>FN</td>
<td>R</td>
<td>1.21</td>
<td>1.51</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>Ductal carcinoma</td>
<td><2</td>
<td>pT1b pN0, G2</td>
<td>0</td>
<td>FN</td>
<td>L</td>
<td>1.86</td>
<td>1.37</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>Comedo carcinoma in situ</td>
<td>2</td>
<td>pT1</td>
<td>0</td>
<td>FN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>Lobular carcinoma</td>
<td>2.3</td>
<td>pT2 pN1b</td>
<td>1</td>
<td>FN</td>
<td>L,R*</td>
<td>1.71</td>
<td>1.96</td>
</tr>
</tbody>
</table>

10	77	Ductal carcinoma	1.4	pT2 pN0, G2	2	RP	L	1.65	0.88
11	65	Ductal carcinoma	1.5	pT2 pN0, G3	3	RP			
12	80	Ductal carcinoma	1.5	pT2 pN1, G3	2	RP			
13	64	Ductal carcinoma	1.8	pT1c pN1	2	RP			
14	82	Ductal/lobular carcinoma	2.1	pT2 pN0, G2	3	RP	R	0.35	2.23
15	51	Ductal carcinoma	2.3	pT2 pN0, G3	3	RP	R	0.98	5.29
16	65	Ductal carcinoma	2.4	pT2 pN2, G3	3	RP			
17	64	Ductal carcinoma	2.5	pT2 pN1	3	RP			
18	68	Ductal carcinoma	2.8	pT2 pN1, G2	3	RP	L	9.24	1.00
19	49	Comedo carcinoma	3	pT2 pN0, G2	2	RP	R	1.10	3.52
20	63	Ductal carcinoma	3.5	pT2 pN0, G2	3	RP	R	0.95	6.22
21	69	Ductal carcinoma	4.2	pT4 pN2, G3	3	RP			
22	43	Ductal carcinoma	5	pT3 pN1, G2	3	RP			
23	72	Ductal carcinoma	5.2	pT4 pN1	3	RP	L	3.53	0.90
24	53	Ductal carcinoma	6	pT3 pN2, G3	3	RP			
25	72	Ductal carcinoma	6.5	pT4 pN1, G2	3	RP			
26	46	Ductal carcinoma	10	pT4 pN2, pM1	3	RP	L	7.16	0.73
27	77	Ductal carcinoma	NA	pT1s	2	RP	L	2.10	0.84

28	55	Chronic inflammation	1.5		2	FP			
29	45	Fibrocystic mastopathy	1.8		2	FP	L,R	2.10	2.03
30	48	Acute suppurative mastitis	2.7		3	FP	R	0.93	4.35
31	55	Phyllodes tumor	6						
32	59	Fibrous mastopathy	NA		0	RN	L,R	1.51	1.58
33	69	Fibrocystic mastopathy	NA		0	RN	L,R	1.02	1.07
34	48	Fibrocystic mastopathy	NA		1	RN	L,R	1.39	1.24
35	49	Fibrosed mastopathy	NA		0	RN			
36	52	Fibroepithelial mastopathy	NA		0	RN			
37	80	Atrophic mammalian tissue	0.8		0	RN	L	1.14	1.48
38	34	Fibrocystic mastopathy	1		1	RN	L,R	1.00	1.25
39	21	Normal tissue	1.5		0	RN	R	1.27	1.40
40	37	Fibroadenoma	1.6		0	RN	R	1.42	1.53
41	23	Fibrous mastopathy	1.6		0	RN	R	0.93	0.98
42	19	Fibroadenoma	1.8		0	RN			
43	38	Fibroadenoma	1.8		0	RN	R	1.31	1.28
44	40	Fibrocystic mastopathy	2		1	RN	L	1.31	1.17
45	44	Fibrous mastopathy	2		1	RN			
46	54	Fibrocystic mastopathy	2		1	RN	L	1.35	1.22
47	25	Fibroadenoma	2.9		1	RN	L	1.43	1.34
48	52	Fibroadenoma	>2		1	RN			
49	53	Normal tissue	4		0	RN	L,R	1.44	0.96
50	65	Chronic inflammation	4		0	RN	L	1.32	0.52

*Follow-up proved malignancies of both breasts as indicated by the quantitative data.
FN = false-negative; TP = true-positive; FP = false-positive; TN = true-negative; NA = not available; L,R = lesion in the left, right breast; L/Bckg and R/Bckg are calculated tumor-to-background ratios (due to technical reasons not always available).

CM), whereas false-negative tumors were significantly smaller: with 0.7–2.3 cm in diameter (mean ± s.d. 1.55 ± 0.5). By using the ratios, five additional malignant tumors could be accurately identified with values >1.6. The smallest had an extension of only 0.7 cm in diameter (Table 1), but three tumors of 1.2, 1.4, and 1.8 cm still showed no significant FDG uptake.
In addition, 9 of 12 axillary lymph node metastases were visualized exhibiting increased metabolic activity. All false-negative lymph node metastases were smaller than 0.8 cm in diameter. The positive lymph nodes were at least 1.7 cm in the longest diameter. Patients with metastatic disease are listed in Table 2.

Distant metastases were defined by other imaging techniques in three patients. Liver metastases showed high FDG uptake in the planar whole-body scan in two patients. In one patient, a single lesion 3 cm in diameter was clearly detected by focal FDG uptake. The other patient demonstrated two focal lesions on the whole-body scan, while ultrasound suggested multiple foci within the whole liver. Therefore, at least two of these metastases exhibited high glycolytic activity.

In three patients, bone metastases were evident on the 99mTc-MPD bone scan. In these three patients, FDG whole-body scans showed at least one skeletal focus. One single metastasis of the massa lateralis showed high uptake of both FDG and MPD. In one patient, the MPD bone scan demonstrated multiple metastases of the whole spinal column, the pelvis and the right humerus, while the FDG whole-body scan demonstrated focal uptake only in the right humerus, pelvis and lumbar spine. Radiographic investigation, however, showed osteolysis in only those metastases that were detected by FDG (Fig. 4). The MPD scan of the third patient demonstrated only slightly enhanced osteoblastic activity, while the FDG scan and SPECT scans demonstrated malignant bone infiltration of large parts of the spine and pelvis, even in areas without osteolysis proven radiographically.

Detection of one lung metastasis (2 cm) behind the heart and one ovarian metastasis was unsuccessful, probably due to the adjacent heart and bladder which exhibit physiologically high FDG uptake. Reduced uptake of the cancer bearing breast compared with the healthy breast was observed in one patient. There was no indication of inflammation or benign alterations of the healthy breast by other imaging techniques. Further follow-up of this patient (Patient 9, Table 1), however, demonstrated malignant disease in the opposite breast 4 mo later. Both sides demonstrated ratios >1.6. Therefore, malignant disease of both breasts was retrospectively indicated by FDG-SPECT only.

One other patient had unsuspicious mammography results, ultrasound and clinical examination, but sanguinous secretion of the mamma. Again, only FDG-SPECT images demonstrated pathologically increased FDG uptake, and a small ductal carcinoma (pTis) was proved histologically (Patient 27).

Discussion

General Considerations

Due to its favorable accumulation characteristics, FDG has become an important radiopharmaceutical in nuclear medicine and oncology. It has been used for the detection and follow-up of primary and metastatic disease of different malignant tumors. These studies revealed high sensitivity for the detection of malignant disease, but there are no data on the specificity of FDG uptake for malignant disease with FDG as a marker for glycolytic activity.

FDG studies are almost exclusively performed with PET scanners. Due to the limited availability and the high operating costs of PET, alternative techniques for the detection of the annihilation photons are of increasing interest. Although multicrystal gamma cameras (33), multiwire detectors and seven pinhole SPECT (34) did not gain wide recognition, specially collimated conventional gamma cameras (35) have become more accepted in clinical use. Low cost and high availability are two important advantages of FDG-SPECT. Also, the large field of view and the possibility for whole-body acquisition are other advantages in oncologic imaging.
Primary Tumor Detection

All malignant tumors with an extension >2.3 cm were identified by increased FDG uptake. In addition, 6 of 15 tumors below this size were accurately characterized as malignant. Five additional tumors could be identified accurately as malignant by retrospective quantitative evaluation. The smallest had a diameter of only 0.7 cm, which is below the system’s resolution. This exemplifies that the target-to-nontarget contrast ratio is more important for the detectability than system resolution.

On the other hand, one 2.3-cm lesion and seven 2-cm or less lesions showed no significantly increased FDG uptake. Minn and Soini investigated 17 patients with planar gamma camera technique and had 18% false-negative FDG scans (29). Compared to their results, we had a considerably higher number of false-negative FDG scans (33%). One must consider, however, that seven of the nine patients with false-negative results had stage pT1 (by UICC) tumors (i.e., small tumors), whereas Minn and Soini only had 1 of 17 patients with a tumor in this stage. Therefore, any differences should be attributed to variances in patient population (i.e., tumor sizes). Based on our quantitative analysis, we had a false-negative rate of 14% (at a threshold of 1.6). In the Wahl et al. (30) study, FDG-PET accurately (attenuation-corrected images) detected breast tumors of at least 3.2-cm in diameter in ten patients with no false-negative scans. Larger tumors obviously are not problematic in conventional diagnostic procedures; tumors 3.2 cm or larger were accurately detected in our study as well. Hoh et al. (5) used whole-body PET techniques (38) in breast cancer studies and could detect tumors with a minimum extension of 1 cm compared to 1.4 cm in our FDG-SPECT study. Tumor size, however, should not be the limiting factor. If the radionuclide uptake is high enough, the hot spot imaged indicates the presence of disease but does not provide data on geometric size. Therefore, even a point accumulation would be detected if the resulting average count rate within one voxel leads to sufficient contrast. Theoretically, a reduction in pixel size would contribute to increased ratios, but it is not useful since the spatial resolution is already lower than the pixel size, (i.e., the difference between pixel (voxel) size and the resolution elements).

Lymp Node Involvement

Lymph node metastases were accurately detected in 9 of 13 patients in our study. Of course, spatial resolution did not allow discrimination of each involved lymph node, but increased FDG uptake (due to several involved lymph nodes in some patients) accurately indicated metastatic disease. In general, the limited spatial resolution of any imaging device will not allow for precise delineation of adjacent lymph nodes presenting FDG uptake. Therefore, a difference in the number of surgical specimens and imaging results is to be expected. In contrast to primary tumors, lymph node metastases are in an environment of physiologically higher FDG uptake. Since muscle and liver represent the primary form of glucose (and FDG) storage after glucose administration (39), dietary conditions do influence its glucose and FDG uptake markedly (40). Malignant cells, on the other hand, supposedly have maximum glycolytic activity already (7). Higher glucose levels lead to a higher competition at the transporter proteins and, consequently, to impaired FDG uptake into the malignant cells, although no influence from insulin was observed (13,41).

Dietary Considerations

Fasting results in low glucose, low insulin and relatively higher FDG blood levels and, due to reduced utilization rates, in enhanced plasma half-life times. The best target-to-background ratio for distant metastases of breast cancer should be obtained after fasting. The duration of fasting is debatable (4). Yamada
et al. (42) described remarkably decreased myocardial FDG uptake in rats after 12 hr and even less after 24 hr of fasting. After this period, no further decrease was observed. Berry et al. (43), however, found good myocardial PET image quality in 50% of patients after 12 hr of fasting (43). Therefore, in some patients, myocardial (and muscular) FDG uptake was evident in the whole-body scan even after 12 hr of fasting. Thus, all increased focal FDG uptake in the axillary region was judged as pathologic.

A principal problem in detecting primary and metastatic disease is variances in FDG accumulation. Joensuu and Ahonen (28) observed thyroid carcinoma metastases with and without 131I and with and without FDG accumulation in the same patients, and did not find any correlation between the different uptake behaviors. There may even be different accumulation characteristics between the primary tumor and its metastases leading to higher FDG uptake to axillary lymph node metastases than in breast carcinoma (30). The heterogeneity of the primary tumor, as well as the metastases, is exhibited in a wide range of biological characteristics, including enzymes, growth properties, sensitivities to various therapeutic agents, etc. (44).

Distant Metastases

A solitary liver metastasis demonstrated increased focal uptake, but in one other woman only two foci were detected, while ultrasound indicated multiple liver metastases. Physiologically high FDG uptake of the liver cells (plasma glucose regulation) follows high FDG clearance due to high glucose-6-phosphate activity (7) of the liver cells. The subsequent demarcation of the malignant tissue allows the detection of metastases and primary liver tumors as firstly described by Paul et al. (24).

Bone metastases were detected in three cases and were found to be lower, higher and identical in sensitivity compared to the MDP bone scans. In one patient, only osteolytic metastases (confirmed by x-ray) were detected by the FDG whole-body scan, while the MDP bone scan showed metastases of the whole spinal column. Another patient had only slightly increased osteoblastic activity with increased glycolytic activity. A follow-up bone scan 3 mo later demonstrated increased osteoblastic activity in the regions of increased FDG uptake measured 3 mo earlier. The third patient had only one bone metastasis detected by both FDG and MDP. Previously, MDP-negative bone metastases of myeloma and esophageal carcinoma had been detected with high FDG uptake (45). Minn and Soini reported an MDP-negative bone metastasis in breast cancer with high FDG uptake while an osteoporotic fracture showed inverse accumulation characteristics (29). Comparison with radiographs demonstrated no clear correlation of osteolysis and FDG uptake in our patients.

FDG-SPECT did not detect distant metastases in two patients: one lung metastasis behind the heart and an ovarian metastasis close to the bladder. Supposedly due to physiologically increased FDG uptake of the adjacent heart, a 2-cm lung metastasis was not detected due to low target-to-background ratios and limited spatial resolution. The ovarian metastasis was not seen on the planar study and SPECT was not performed in this region. The metastasis might have been seen in SPECT reconstructions.

In one patient (Patient 9), the supposedly healthy breast demonstrated higher FDG uptake than the breast with cancer which was interpreted as a false-negative result. Further follow-up of this patient proved advanced cancer on the supposedly healthy breast 4 mo later. The lower uptake compared to the opposite breast lead to a false low uptake grading of the cancer-bearing breast but, as retrospectively estimated, the ratios indicated malignancies in both breasts. In fact, the other imaging methods, except FDG-SPECT, did not detect metastases in the “healthy” breast.

In Patient 27, negative results of the other imaging methods, except FDG-SPECT, led to normal diagnosis, but malignant disease was proven histologically.

Since FDG is a glucose analog, it is not surprising that nonmalignant diseases also accumulate FDG when they have increased glycolytic activity. Hoh et al. (5) also found FDG uptake in benign mammary fibroadenomas. Our observations demonstrated little or no FDG uptake in most of the fibroadenomas. Only one fibrocystic mastopathy showed significant FDG uptake and increased target-to-background ratios in both breasts (Patient 29). High-grade FDG uptake was also observed in one phyllodes tumor which grew to 6 cm in diameter within 7 wk. Thus, increased metabolic activity is obvious but, for lesion histology, had to be evaluated as false-positive.

Inflammation

In two patients with increased FDG uptake, acute and chronic inflammation could be proven histologically. High FDG uptake was observed in both abdominal and cerebral abscesses in human PET studies (46,47), while sterile turpentine abscesses did not accumulate FDG in rabbits (9). Examinations of the intratumoral distribution of FDG demonstrated high uptake into
macrophages and granulation tissue and significantly less FDG uptake in the tumor cells themselves (48). About 30% of the tumor mass may be due to macrophage infiltration (49). These results suggest that FDG uptake of tumors with high macrophage content is due to these cells rather than to the tumor cells themselves. On the other hand, follow-up studies demonstrated a correlation between FDG uptake and the aggressiveness of different malignant diseases (15,20), suggesting that the proliferation rate determines the FDG uptake in cancer cells. This observation is suggested by a correlation between S-phase cells measured by DNA flow cytometry and the FDG uptake in both planar and PET studies (20,21). Follow-up studies, however, have to consider the macrophage content and the presence of granulation tissue in the tumor.

The lower detection sensitivity of the gamma camera for the 511-keV photons made it necessary to apply an activity which was higher than usual for PET investigations. This caused higher radiation doses for the patient and the nuclear staff. The latter could be reduced by sufficient additional shielding during the investigation. The former was, in our view, tolerable since the method offers the possibility to investigate both primary and metastatic disease. Theoretically, it may be a problem in patients with benign lesions, but the radiation dose should play a minor role in view of the diagnostic value.

Alternative Methods

A direct comparison of our results with FDG-PET would have been desirable to determine if possible differences were of clinical relevance. The dynamic character of the FDG distribution could be problematic since the time of investigation after the application may influence the results. Therefore, a two-day protocol would be necessary for comparative purposes, resulting in reduced acceptance by the women on one hand and to further radiation exposure on the other.

We will compare our FDG-SPECT results with 99mTc-methoxyisobutylisonitrile (MIBI) in future studies since other groups have obtained excellent results with MIBI in the evaluation of breast tumors (50,51). Even if the data for primary lesions are encouraging, we see problems with the detection of lymph node and metastatic disease. The high muscular uptake and excretion through the liver suggest increased background activity when using MIBI. In addition, the muscular uptake cannot be influenced by fasting in contrast to FDG.

MRI in combination with dynamic gadolinium-DTPA studies gives accurate information in primary breast tumors (52,53), but it requires correct lesion measurement, which may be difficult in advanced mastopathy. In addition, simultaneous evaluation of lymph nodes and distant metastases is not possible with one investigation. Therefore, FDG as a marker for glycolytic activity offers some advantages compared to MIBI and dynamic MRI for breast tumor imaging.

CONCLUSION

Combined whole-body FDG scans and FDG-SPECT with a dual-head gamma camera offers an attractive and practical alternative to FDG-PET investigations. The technique is feasible for imaging primary and metastatic breast cancer and, because FDG uptake is indicative of metabolism, it provides additional data in unclear cases. Low FDG uptake in tumors larger than 2–2.5 cm is not indicative of malignancy. The lower spatial resolution of SPECT may be of minor importance if the FDG uptake is high even in small lesions. Quantitative evaluation of tumor-to-background ratios improves the accuracy and should be performed routinely. Recently, a technique for whole-body PET was introduced (38), but it is not readily available. Therefore, the combined FDG-SPECT and whole-body technique with a specially equipped gamma camera may be a temporary solution to the increasing demand for FDG tumor investigations.

REFERENCES

33. Höflin F, Ledermann H, Noepfli U, Wenrich R, Roesser H. Routine 18F-2-deoxy-2-
Dynamic Indium-111-Pentetreotide Scintigraphy in Breast Cancer

Marika Bajc, Christian Ingvart and John Palmer
Departments of Clinical Physiology, Surgery and Radiophysics, Lund University, Lund, Sweden

The efficacy of imaging breast cancer with 111In-pentetreotide (somatostatin receptor scintigraphy) was evaluated before surgery. Methods: Seventy-one whole-body scintigrams in 24 patients with known breast cancer and 24 whole-body scintigrams in 8 controls were obtained at 0.5, 5 and 24 hr after intravenous injection of 110 MBq 111In-pentetreotide. Anterior and posterior projection images were acquired simultaneously. SPECT of the thorax was performed at 5 or 24 hr after injection in all breast cancer patients. The specimens were imaged immediately after surgery and the distribution of pentetreotide was assessed qualitatively and quantitatively.

Results: Somatostatin receptor-positive tumors were found in 18/24 patients with breast cancer. Pentetreotide uptake was significantly greater in breast cancer patients compared to control patients. In all patients with positive images, the early scintigram (0.5 hr) showed abnormal uptake. It was possible to delineate three different dynamic patterns. Increased uptake was visually most distinct either at 0.5 hr (4 patients) or at 5 hr (5 patients), or equally distinct at each time (9 patients). Moreover, bilaterally increased pentetreotide uptake was observed in 10/18 true-positive patients (in 8 at each time and in 2 patients only at 5 hr), but only one patient had a known bilateral tumor. Conclusion: We found higher incidence of somatostatin receptors in patients with breast cancer than in the control group. Moreover, bilaterally increased pentetreotide uptake in clinically unilateral disease was an unexpected finding.

Key Words: breast cancer; indium-111-pentetreotide; dynamic imaging

Indium-111-pentetreotide scintigraphy has made it possible to visualize tumors expressing somatostatin receptors in vivo. The method has been established for diagnosis of gastrointestinal endocrine tumors (GEP) and has high sensitivity (1). In addition to neuroendocrine tumors, there are a variety of tumors in the lungs, lymphoepithelial system, central nervous system and breasts which also express somatostatin receptors (2–6).

Nesland et al. (7) have argued that some breast tumors have neuroendocrine features. Moreover, Papotti et al. (8) have defined a group of breast carcinomas expressing neuroendocrine features and the presence of somatostatin receptors. Reubi et al. (4) measured in vitro somatostatin receptors and showed that approximately half of the breast cancer tumors possess specific receptors. Krenning et al. (1) and van Eijck et al. (9) used in vivo scintigraphy and observed an even higher incidence of somatostatin receptors (74%). The detection of breast tumors with somatostatin receptor imaging is of biological and potentially of therapeutic interest. Presence of somatostatin receptors may be a useful prognostic factor and may play an active role in regulating tumor development (10).

The aim of this study was to investigate whether breast cancer expresses somatostatin receptors. The relation of the somatostatin receptor to the histopathology and to estrogen (ER) or progesterone receptor (PgR) also was studied.

MATERIALS AND METHODS

Patients

Patients with invasive breast cancer detected by physical examination, mammography and cytology who were scheduled for surgery were studied. The study was approved by the Ethics and Isotope Committees at Lund University. The study group consisted of 22 women and 2 men; aged 36–83 yr (mean age 61 yr). One woman had a bilateral tumor. There was a total of 25 known breast tumors used in the study. Pentetreotide scintigraphy was started 48 hr before surgery. Eight patients with GEP tumors in the same age group undergoing pentetreotide scintigraphy served as controls.