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Brain SPECT Evaluation of Patients with Pure
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This study was performed to determine the utility of 99rTTc-HMPAO

brain SPECT in evaluating patients with pure photosensitive epi
lepsy. Methods: Seven patients (2 boys, 5 girls), aged 8 to 15 yr
(mean 11.1 Â±2.5 yr), were studied. All patients underwent a detailed
neurologic examination, interictal and ictal EEGs, CT and/or MRI
and SPECT imaging. The baseline SPECT study was performed
during the interictal period and the activation study was performed
while the patients were having seizures provoked by watching
television. Results: The baseline SPECT study showed that six of
seven patients had relatively hypoperfused regions in their frontal
lobes that could involve the neighboring parietal and temporal
regions. The activation study revealed that all seven patients had
relative hyperperfusion in these brain regions that were relatively
hypoperfused in the baseline study. The side-to-side asymmetry
indexes for these visually-interpreted rCBF abnormalities ranged
from 3% to 6%. Conclusion: The relatively consistent pattern of
frontal rCBF alterations suggests that frontal lobe functions were
implicated in the evolution of photosensitivity-related seizures in
patients with pure photosensitive epilepsy.
Key Words: pure photosensitiveepilepsy;technetium-99m-HMPAO;
brain SPECT; photic activation
J NucÃ­Med 1996; 37:1755-1759

A hotosensitivity is found in 5% of epileptic patients and is
associated with idiopathic generalized epilepsy, in which the
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prevalance may be as high as 25% (7). Forty percent of patients
with seizures and photosensitivity have pure photosensitive epi
lepsy, in that all their attacks are visually precipitated and sponta
neous seizures apparently do not occur (I). Seizures are commonly
tonic-clonic (84% of this group, absences occur in 6%, partial

seizures in 2.5% and myoclonic seizures in 1.5%). Nearly half
of patients have a normal basic EEG, with abnormal activity
occurring only on intermittant photic stimulation (IPS) (/).

The most common precipitant of seizures is television view
ing. A more recent stimulus is the computer screen, although
seizures may be induced by other sources of flickering light.

SPECT and PET functional neuroimaging techniques are
used increasingly to diagnose seizure disorders, offering an
accuracy of focus localization of approximately 90% for ictal
and postictal studies in adult patients with complex partial
seizures of temporal lobe origin (2,3). It has been suggested that
99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT

scanning may be useful in early diagnosis of partial status
epilepticus, especially in cases where the initial EEG and
clinical symptoms are difficult to interpret (4). However, little is
known about abnormalities in cerebral perfusion or metabolism
in generalized seizures and photosensitivity-induced seizure

disorders have not been studied with functional neuroimaging.
The aim of this study was to determine the utility of 99mTc-

HMPAO brain SPECT in evaluating patients with pure photo
sensitive epilepsy.
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TABLE 1
Patient Clinical Data

Patient
no.1234567AgeW98151291312SexFMMFFFFClinicalseizuretypeAbsence,

bilateral myoclonus limited toeyelidsAbsence,
bilateral myoclonus limited toeyelidsAbsence,
bilateral myoclonus extendingfromeyelids
tofaceAbsence,
bilateral myoclonus extendingfromeyelids
tofaceAbsence,

myoclonus involving the entirebodybilaterallyAbsence,

myoclonus involving the entirebodybilaterallyAbsence,

bilateral myoclonus limited to eyelidsEEG

(baseline)8-9

Hzbackground8-9
Hzbackground9-1

1 Hzbackground8-9

Hzbackground9-10

Hzbackground8-9

Hzbackground8-9

Hz backgroundEEG

(watchingTV)Diffuse

polyspikedischargesDiffuse
polyspikedischargesDiffuse
spikewave andpolyspikedischargesBilateral

paroxysmal sharpwave,spikewave
multiple spikewavepredominantly

parieto-occipitalregionSlow

wave, spike wavepolyspikedischarges,
bilateralparieto-occipitalsecondary

bilateralgeneralizationDiffuse
polyspike discharges,bilateralfrontal

predominanceDiffuse
spike wave, polyspike dischargesCT/

MRINormalNormalNormalNormalNormalNormalNormal

MATERIALS AND METHODS

Patients
Seven patients, ranging in age from 8 to 15 yr (mean 11.1 Â±2.5

yr), with histories of having seizures while watching television,
were included in this study. All patients had seizures that started
within a few weeks before admittance and were free of antiepilep-
tic medication at the time of the SPECT study. Informed consent
was obtained from parents for this investigation. Clinical exami
nation of the patients during the interictal period was normal. All
patients underwent EEG and CT and/or MRI examination (Table
1). After clinical and laboratory evaluation, all patients were
diagnosed to have pure photosensitive epilepsy (PPE) with absence
of type of seizure and myoclonic components to varying degrees
(Table 1).

Electroencephalogram
EEGs were recorded with an 8-channel apparatus through scalp

electrodes (10-20 system). Six montages were used: two were
monopolar and the others were bipolar. Table 1 shows the results
of the EEG patterns.

SPECT
An unstabilized version of 99mTc-HMPAO was used as the

perfusion agent. Commercially available kits were labeled accord
ing to the manufacturer's instructions. The SPECT study consisted

of two steps: a baseline and an activation matrix.
Baseline SPECT. The baseline SPECT study was performed

during the interictal period. Patients were injected intravenously
with 297-370 MBq 99mTc-HMPAO in a quiet room. Images of the
head were acquired over 60 angles through 360Â°,with each angle
being collected for 30 sec (dual-headed rotating gamma camera
equipped with high-resolution collimator). Assessments were done
with the patient in a quiet and semidark room with eyes open. Total
acquisition time was approximately 30 min. Data were stored on a
computer in a 64 X 64 matrix.

Activation SPECT. The activation study was performed on a
separate day while the patients were watching television from a
short distance to provoke seizures. Their EEGs were monitored at
the same time. HMPAO was reconstituted by an experienced
radiopharmacist according to manufacturer's instructions at the

bedside after the start of television watching. The patient was
injected with 297-370 MBq 99mTc-HMPAO, prepared in advance,

at the onset of seizures through a previously inserted two-way
intravenous catheter. A sample of the injected material was
collected at the time of injection and quality was checked. All
patients had seizures that started less than 10 min from the onset of
watching television and quality control checks revealed a labeling

yield of 85% to 90% at the time of injection. Seizures lasted 15-20
sec on average and the patients continued to watch television for
3-4 min after recovering from the initial seizure. Some patients

had additional seizures during this period. Repositioning of patients
for the activation study was done carefully according to their
previously recorded position during the baseline study with the
help of a projected light source and bedside measurements. The
lateral views of the baseline SPECT image (90Â°angle) were used

as references to compare the slope of the orbitomeatal line. The
SPECT study was performed with the same acquisiton parameters
used for the baseline study.

Following image backprojection, image reconstruction was per
formed using Butterworth and ramp filters with an attenuation
coefficient of 0.12, cutoff frequency of 0.39 and power factor of
10. Transaxial slices were obtained parallel to the orbitomeatal
line. Transaxial, coronal and sagittal slices were generated in 6-mm
pixels. Slices were analyzed visually and quantitatively.

Visual Evaluation
Interpretation of the SPECT scans was performed qualitatively,

by reviewing the images on a computer screen as well as on the
recorded hard copy films, and independently by two experienced
physicians who were blind to the EEG and structural imaging data.
Disagreements were resolved by consensus.

An area was interpreted to show increased perfusion if the
degree of uptake appeared substantially greater than that of
adjacent and contralateral areas of the brain. Conversely, a region
showing less uptake compared to adjacent and contralateral areas
was considered hypoperfused. This type of subjective evaluation
has proven accurate, particularly in patients with epilepsy (4-7).

Additionally, regions in the activation study were compared with
their counterparts in the baseline study. An area was reported as
abnormal if this abnormality persisted on at least two adjacent
slices.

Quantitative Evaluation
The mean counts per pixel were calculated for 11 regions of

interest (ROIs) on three representative transaxial slices. The lower
slice displayed gray matter and orbitofrontal and temporal lobes.
The middle slice displayed the frontal, parietal and occipital
cortices. The higher slice was above the corpus callosum and
displayed the frontal and parietal lobes. The slices were separated
by three 18-mm pixels.

The slices were displayed on 128 X 128 matrices to minimize
drawing errors. Eleven independent rectangular ROIs measuring
5X6 pixels were positioned manually over each area in each plane
by visual inspection and isocount pixels around the cortex. These
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TABLE 2
Results of Visual and Quantitative Evaluation

Baseline Activation

Visual evaluation
Patient no.(Hypoperfusion)1

RightfrontalRight
prefrontal2

LeftprefrontalLeft
frontoparietalRight
frontoparietalLeft

frontotemporal3

LettfrontalLeft
prefrontal4

LeftfrontoparietalLeft
parietal5

LeftfrontalLeft
prefrontalLeft
frontoparietalLeft

frontotemporal6

Normal7

Left prefrontalQuantification

(% Asymmetry)-3-3-3-3-2-3Q-3-2-3-3-3-4-40-3Visual
evaluation

(Hyperperfusion)Left

frontalLeft
prefrontalLeft
prefrontalLeft
frontoparietalRight
frontoparietalLeft
frontotemporalLeft

and righttemporalLeft
frontalLeft
prefrontalLeft
frontoparietalLeft
parietalLeft
parietotemporalLeft
frontalLeft
prefrontalLeft
frontoparietalLeft
frontotemporalLeft
parietotemporalLeft
temporalAnterior
frontalLeft

and rightfrontalLeft
and rightprefrontalLeft
and rightfrontoparietalLeft
prefrontalQuantification

(% Asymmetry)+3+3+4+4+4+4+3+4+4+3+4+3+5+5+5+5+5+5+6+6+6+

6+4

were rotated to best follow the cortical outline and then mirrored
across the midline, with minor lateral adjustments if necessary, to
obtain the count density in the corresponding regions of the
contralateral hemisphere. The same baseline set of ROIs was used
for the activation study.

Count density was calculated for each ROI and the asymmetry
from their counterparts in the opposite hemisphere and from adjacent
anotomical regions of the same hemisphere were expressed as follows:

% asymmetry index = 100 X (right - left)/(right + left) X 0.5.

RESULTS
Visual evaluation of the baseline study showed that six of the

seven patients had a detectable abnormality in regional cerebral
blood flow during the interictal period (Table 2, Fig. 1). These
abnormalities consisted of relative hypoperfusion in bilateral
frontal, prefrontal, frontoparietal and left frontotemporal and
parietal regions.

Visual evaluation of the SPECT images taken during televi
sion watching showed that all patients had abnormalities detected
as relatively hyperperfused brain regions, including the anterior
frontal, bilateral frontal, prefrontal, frontoparietal, frontotempo
ral, parietal, temporal and left parietotemporal regions (Table 2,
Fig. 1). These hyperperfused regions occupied larger areas than
baseline hypoperfused regions (Fig. 2) and were at the same
localization except in Patient 6, whose baseline was normal
(Fig. 3), and in Patient 1, whose hypoperfused and hyperper
fused prefrontal regions were at the opposite hemispheres.

Quantitative evaluation showed that side-to-side asymmetry
indices ranged between 3%-6% (Table 2). EEG recordings
taken during television watching and the ictal period had a
relatively common pattern of multifocal paroxysmal nonlocal-
ized abnormalities with myoclonic features (Table 1). In two
patients, a generalized epileptic pattern was preceded by bilat
eral parieto-occipital discharges by 1-2 sec. However, these

were not considered as a focus.

DISCUSSION

There is lack of agreement over what may be considered
abnormal in tracer uptake between symmetrical regions in
opposite hemispheres. Stapleton et al. (8) assessed the level at
which trained human observers deemed single-focal count

asymmetries to be clinically significant. They found that a
rather severe defect (5%-10%) was required for detection. If

such severe deficits were required in clinical practice, the
sensitivity of scanning in mild disease would be quite poor.
Although count reductions in individual regions of the brain
may differ only marginally from normal, recognition of a
typical clinical pattern of deficits can result in a confident
diagnosis (9). Therefore, we looked for an identifiable SPECT
pattern in our patients with PPE, and certain findings suggested
the presence of it.

In the baseline interictal study, six of seven patients showed
hypoperfusion in at least one of the regions of the frontal lobe.
The patient who had no abnormality in frontal lobe images had
a normal brain scan. The neighboring regions of parietal and
temporal lobes were also hypoperfused in three and two
patients, respectively. The pattern of interictal images, there
fore, was hypoperfusion in frontal regions either on one side or
bilaterally, sometimes including the neighboring parietal or
temporal regions.

In the activation ictal study, all seven patients showed
hyperperfusion in at least one of the regions of the frontal lobe.
Ictal hyperperfusion tended to occupy larger areas than interic
tal hypoperfusion and was more likely to involve neighboring
parietal and temporal regions. Ictal hyperperfusion was on the
same side of interictal hypoperfusion in five of seven patients.

In one patient, hypoperfusion was on the right side, hyper
perfusion being on the opposite side. The remaining patient had
a normal baseline interictal scan. As seen from these findings,
ictal images were also suggestive of an identifiable pattern for
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FIGURE 1. Visual evaluation of rCBF in patients with PPE. Schematic
representation of the low, middle and high transaxial slices of baseline and
activation SPECT Â¡magesfor individual patients.

FIGURE 2. Sequential transaxial slices of Patient 5. Upper row: baseline
study; relative hypoperfusion in left prefrontal, frontotemporal and frontopa-

rietal regions. Lower row: activation study; relative hyperperfusion in left
prefrontal, frontoparietal, frontotemporal, parietotemporal and temporal re
gions.

pathology. It was interesting to note that SPECT images
revealed a pattern that was more like complex partial seizure
disorders, although the EEG findings of our patients were
typical of a generalized seizure disorder.

In their PET study of generalized seizure disorders, Theodore
et al. (10) found that interictal glucose metabolism was normal
in eight of nine patients. In their SPECT study, Devous et al.
(77) found interictal hypoperfusion in only 3 of 15 patients,
while Leroy et al. (72) found mild frontal rCBF abnormalities in
11 of 24 patients. In partial complex seizures of temporal and
frontal lobe origin, the epileptic zone is hypoperfused during the
interictal period (13-16) and hyperperfused during the ictal
period (13,16). This sequence of events was observed in our
patients with PPE.

Our limited understanding of the pathophysiology of photo
sensitive epilepsies has been increased by studies performed in
the Papio papio baboon, which is the only natural experimental

c; A
13 years/femÂ«le

c e
patients with PPE, its most prominent feature being hyperper
fusion in the frontal regions.

Interictal EEG recordings of our patients were interpreted as
normal, and ictal EEG findings did not indicate a focal frontal

FIGURE 3. Upper row: baseline study; sequential transaxial slices of Patient
6 show normal perfusion. Lower row: activation study; sequential transaxial
slices of the same patient show relative hyperperfusion in all frontal cortex
regions.
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model resembling human photosensitive epilepsy (17-19). It

was demonstrated in photosensitive baboons, under IPS, that
the frontal cortical neurons were progressively activated before
paroxysmal discharges could be distinguished in the surface
EEG recordings (20). As soon as the discharges were consti
tuted, each burst became synchronous with a positive spike. The
activation bursts of frontal neurons and the paroxysmal dis
charges were reversible and stopped when IPS ended.

In other cortical and subcortical structures, unitary and
multiunitary recordings have shown a cellular activation only
when frontal paroxysmal discharges have reached sufficent
amplitude (21).

Silva-Barret et al. (22) demonstrated that generators of
paroxysmal discharges were localized in the frontal cortex by
performing a current-source density study in Areas 4 and 6 in
photosensitive baboons submitted to IPS. A bilateral chronic
infusion (7 days) of GABA into the motor cortex (Area 4) of
photosensitive baboons completely blocked both the EEG and
the clinical manifestations induced by IPS during the entire
infusion period (23). A similar infusion performed in the
occipital cortex was equally efficient, but infusions in Areas 6
and 8 had no effect. These results confirmed, first, that
generators of epileptic manifestations in baboons were situated
in the motor cortex and, second, that the visual affÃ©rentscoming
from the occipital cortex were necessary to trigger these
generators (24).

In photosensitive patients, IPS was reported to induce spikes
and waves that were localized occipitally in 59% of cases (25).
Their existence indicated that changes in the excitability of the
occipital cortex may be implicated in the mechanisms of
photosensitive epilepsy. When paroxysmal discharges in pho
tosensitive patients do not have an occipital origin, the charac
teristics of EEG and myoclonic discharges are very similar to
those observed in baboons (26).

For primary generalized epilepsy in human patients, as with
photosensitive epilepsy in baboons (27), no anatomical lesion
has been observed in the frontal cortex that serves to explain its
reactivity to IPS. Similarly, no anatomical lesion or functional
anomaly of the visual system has been detected.

We did not observe any change in rCBF to occipital regions
in any patient during interictal and ictal studies. This finding
was in accordance with those obtained in electrophysiologic
studies perfermed on baboons, which showed that the occipital
cortex was not the primary area where the bulk of electrical
activity occurs during IPS. This finding does not rule out a
probable implication of the occipital cortex in the generation of
photosensitive seizures, since a nerve impulse might be trigger
ing the events but may be too small to cause metabolic changes
that can be detected by neuroimaging methods. The rCBF
alterations in the frontal regions of patients with PPE were
probably reflections of the pathologic events taking place in
these cortical areas during, or even before, the generation of
seizures.

CONCLUSION
The relatively consistent pattern of frontal rCBF alterations

demonstrated in patients with PPE suggests that altered frontal
lobe functions may be implicated in the evolution of photosen-
sitivity-related seizures in humans.
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