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Severe renal artery stenosis (RAS) is a relatively uncommon com
plication after renal transplantation but is a curable cause of hyper
tension, which demands reliable early diagnosis to reduce morbid
ity, mortality and graft loss. Captopril renography has been used for
a number of years as a method of detecting RAS but controversy
still exists as to the diagnostic accuracy of this test and as to the
most appropriate interpretation criteria with which to establish a
positive result. Methods: This report presents the results of using
artificial neural networks to impartially assess these interpretation
criteria. Data comprised 31 ""Tc-MAGS captopril renography

investigations undertaken on hypertensive renal transplant patients
with a suspected diagnosis of RAS. Each renogram study was
correlated with an arteriogram as the "gold standard". Training of
the network was performed using the round-robin technique. Re
sults: An accuracy of 95% could be achieved by considering
perfusion index, time-to-peak activity, accumulation index and ex
cretion index for both pre- and post-challenge studies. This varied
as the parameters were either included or excluded. Conclusion:
Artifical neural network analysis is a useful technique to evaluate the
most appropriate criteria for interpreting captopril transplant renog
raphy investigations.
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Severe renal artery stenosis (RAS) leading to hypertension or
impairment of renal function in transplant patients is relatively
uncommon (7), but it is a potentially curable entity in which
early diagnosis and appropriate treatment can reduce morbidity,
mortality and loss of graft. There are several methods of
detecting RAS, but angiography remains the "gold standard"

(2,3). This is an invasive technique, however, and one which is
potentially dangerous to graft function. An alternative is the
captopril renogram test (CRT) which has been used since 1983
(4) as a noninvasive investigation to diagnose functionally
significant RAS in renovascular hypertensive patients. Most of
the published data deal with stenoses in patients with native
kidneys and only a few institutions have investigated the role of
CRT in the diagnosis of transplant renal artery stenosis (TRAS)
with results available from only a small number of patients
(2,3,5-7). Controversy still remains as to the diagnostic value of

the test and as to the most appropriate interpretation criteria
with which to establish a positive result (2,8-12). We recently
introduced an additional interpretation criterion of a consider
ation of the perfusion change between pre- and post-challenge
studies which resulted in an improvement in specificity (13).
We have now extended this work to take advantage of impartial
interpretation afforded by artificial neural networks.

Artificial neural networks form a branch of artificial intelli
gence which has experienced rapid development since the
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middle 1980s (14-17). They are computer systems which can
be trained to recognize similarities in patterns and which learn
by example (18,19). One of the more straightforward types of
artificial neural networks is the feed forward neural network
(FFNN), which is a fully connected network of neural nodes
arranged in input, hidden and output layers shown in Figure 1.

We have previously reported the use of FFNNs for classifi
cation of hypoperfusion patterns in bull's-eye representation of
201T1 SPECT myocardial perfusion studies (20,21). We have

now used FFNNs to impartially assess the interpretation criteria
for use in establishing a positive CRT test and have used these
criteria to assess the accuracy of the CRT for the diagnosis of
TRAS.

MATERIALS AND METHODS
The study comprised 31 CRT investigations with corresponding

angiograms undertaken on hypertensive renal transplant patients
with a suspected diagnosis of TRAS. Renography was performed
after a bolus administration of 200 MBq 99mTc-MAG3, with the

patient supine under a small field of view IGE 300a gamma camera
fitted with a low-energy, general-purpose, parallel-hole collimator.
Sixty 1-sec frames and eighty-seven 20-sec frames were acquired
on a 64 X 64 matrix. The investigation protocol consisted of a
baseline study followed by a second study performed on a
following day 1 hr after oral administration of 50 mg of captopril.
ACE inhibitors and diuretics were stopped at least 3 days before
the initial study and until after the second study (X). The patients
remained well hydrated.

For both the pre- and post-challenge studies: the Guy's Perfusion

Index was calculated from the perfusion phase according to the
method of Hilson (22) and renogram activity-time curves were
generated. Values of time-to-peak activity, accumulation index
(background corrected activity at 3 min) and excretion index (ratio
of the activity at 3 min to the activity at 20 min) were calculated
from the renogram curves. Each of the 31 investigations was
categorized into: true-positive, false-positive, true-negative and
false-negative by correlating the CRT result with the angiogram.
As previously described (13), a CRT result was classed as positive
if either excretion index decreased or time-to-peak activity in
creased and the Guy's Perfusion Index decreased between pre- and

post-challenge studies. There were 22 true-positives and true-
negatives giving an accuracy of 71%, which is similar to previously
reported figures (2).

For FFNN analysis, the values of the four parameters obtained
from the post-challenge curve were normalized to a corresponding
pre-challenge value of 100 and used as input values. These are
shown for each of the 31 CRT investigations in Table 1. This
procedure was required because it was found that the network
could not converge when the raw pre- and post-challenge values
were presented as inputs to the network.

The network was trained on unambiguous data, i.e.. only on the
true-positives and true-negatives. Its ability to extract reliable
information was then examined by testing it on both this restricted

INTERPRETATIONOFCAPTOPRILRENOGRAPHYUSINGA NEURALNETWORKâ€¢Hamilton et al. 1649



TABLE 1
Values of the Four Parameters (PI, TP, AI, El) Calculated from

Post-Challenge Perfusion and Renogram Curves in Each of the
Four Classification Categories*

FIGURE 1. A three-layer artificial neural network showing the nodes as
ellipses and the connecting weights as lines. The input, hidden and output
layers are shown from left to right.

data and subsequently on all dataseis. The network was tested to
establish which parameters were necessary for accurate interpreta
tion by undertaking the above analyses firstly using all four
parameters as input and then by removing one parameter in turn so
that it was only trained and tested on three input parameters.

The input layer of the network consisted of nodes representing
each of the normalized input parameters. The output layer of the
network consisted of a single node whose value represented the
likelihood of the renal artery being stenosed. During training, this
output value was coded as 0.99 when the angiogram showed a
stenosis in the renal artery greater than 50% or as 0.01 when the
angiogram did not demonstrate significant stenosis. There were
three nodes in the hidden layer.

The network was trained using the stochastic backprojection
learning rule with a terminating condition of 0.1 maximum error.
The network was trained and tested using the round-robin method.

According to this method, all patterns but one are used to train the
network and the trained network is then tested on the pattern left
out. The process is repeated so that every pattern is left out once.
This process overcomes the problems associated with limited data.
It utilizes the full potential of the available data for training without
sacrificing the statistical significance of the testing phase (23). For
testing the data patterns in the false-positive and false-negative
categories, all of the training data sets were used.

The performance of the FFNN for each analysis category was
assessed on the basis of receiver operating characteristics (ROC)
analyses (24), in which the area under the ROC curve was used as
the figure of merit (25-27). This and the s.e. have recently been

suggested as a reliable, robust and unbiased means with which to
evaluate the performance of neural networks (27). The ROC curves
were constructed by determining pairs of true-positive-ratio and
false-positive-ratio at threshold values of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7

and 0.9 (25). The area under the ROC curves and the s.e. were
calculated using the Wilcoxon statistic computational method
described by Hanley and McNeil (26). The accuracy of the network
in each input parameter exclusion category was compared to that in
the category which included all four input parameters by calculÃ¢t-

CategoryTrue-positiveFalse-positiveTrue-negativeFalse-negative"Values

are normalized

challenge curves.PI3859464468648360954382962963959010734607741673851176587616532125138to
aTP40028820018018849911491128112143120282150192550100100855210010010077432286330947126865correspondingAl12286154140104100133107859011411279107132165651331171438413313085691329111617513761valueof100PI

= Guy's Perfusion Index; TP = time-to-peak activity; Al =El37877961713210291129290988352536963151117115158131119114130571011244727293120in

the pre

accumula-tion
index; El = excretion index.

ing the z score and assessing its magnitude relative to the
significance value for a two-tailed test (27).

RESULTS
The networks trained in the number of epochs which are

shown in Table 2. A limit of 20,000 epochs was imposed if the
network could not converge. This occurred twice in the cate
gory which excluded excretion index as an input parameter and
12 times in the category that excluded Guy's Perfusion Index.

For the various parameter inclusion patterns: Tables 3A,B show

TABLE 2
Number of Epochs Required to Train the Network for the Various

Categories of Input Parameters

CategoryAll

No Al
No TP
No El
NoPISee

Table 1 for abbreviations.Epochs830-2490

1000-3150
1710-4710

4070-20,000
1870-20,000
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TABLE 3
Categories of Input Parameters with Corresponding Values of Areas
Under the ROC Curves, s.e., z-Score, Significance and Accuracy*

True-positive and true-negative data only

CategoryAllNo

AlNo
TPNo
ElNo

PIROC

area0.9460.9420.8380.6790.508s.e.0.0240.0270.0790.1210.121z-Score_0.121.312.173.53Signficance_nsns0.01

< p <0.05p
< 0.001Accuracy

(%)9586826455All

data

Category ROC area s.e. z-Score Signficance Accuracy (%)

AllNo
AlNo
TPNo
ElNo

PI0.7800.7650.7050.5450.5060.1060.1090.1080.1130.1040.100.501.521.84nsnsnsp<0.17771685552

'Significance is the level of the z score for a two-tailed test comparing this
category's ROC to that of the "All" category ROC. ns indicates not

significant at the 0.1 level.
See Table 1 for abbreviations.

the areas under the ROC curves, s.e. values, z score of each
parameter exclusion category against the four input parameter
category and its statistical significance. Also shown is the
accuracy.

For the true-positive and true-negative data only, the accu
racy of the networks varied from 95% to 55% and the area
under the ROC curve from 0.946 to 0.508 (Table 3A). The ROC
curves of both the excretion index and the Guy's Perfusion

Index exclusion categories were significantly poorer than the
four input parameter category, shown by the significance levels
in Table 3A. The accumulation index and time-to-peak activity
exclusion categories were not.

For the complete data set the accuracy of the networks varied
from 77% to 52% and the area under the ROC curve from 0.780
to 0.506 (Table 3B). The Guy's Perfusion Index exclusion

category was significantly poorer than the four input parameter
category at the 0.1 level, the other parameter exclusion catego
ries were not.

DISCUSSION
When the four input parameter trained network was tested on

the true-positive and true-egative data only, it was nearly as
accurate as that achieved by using conventional algorithmic
criteria, giving an accuracy of 95%. When this network was
tested on all of the data, it performed better than using the
conventional algorithmic criteria, achieving an accuracy of 77%
compared to 71%, replacing three false-negative results with
one new false-negative. This demonstrates one of the main
advantages of the artificial neural network in that it can extract
its own best pattern and may provide more information than
conventional techniques.

Evaluation of the input parameter exclusion results revealed
that accumulation index or time-to-peak activity could be
removed without significantly reducing the accuracy of the
network. When, however, excretion index was removed the
performance of the network deteriorated, not significantly in the
complete data set but significantly in the true postive and true
negative only data. When the Guy's Perfusion Index was

removed the performance of the network deteriorated signifi
cantly in both of these categrories.

The CRT technique has previously been shown to be a good
excluder of functional RAS in that negative results, based on the
evaluation of the renogram curve, can be relied on to exclude
this cause of hypertension (6,9). The test, however, has been
associated with a high level of false positive results (2,3,6-9).

In a previous work (13) we introduced an additional criterion of
requiring a positive test to include a decrease in the Guy's

Perfusion Index from pre- to post-challenge studies which
improved the specificity. The results shown here, using the
impartial interpretation technique of artificial neural networks,
shows that accurate analysis required the Guy's Perfusion Index

and to a lesser extent the excretion index, whereas both the
accumulation index and time-to-peak activity could be excluded
without significantly affecting the accuracy. Thus, of the four
input parameters, the Guy's Perfusion Index and time-to-peak

activity were shown to be the most important to the network for
accurate interpretation. It may be, however, that other parame
ters presently in use or the raw curves themselves may be better
as input into the artificial neural networks and the analysis
could easily be extended to assess these.

CONCLUSION
In this study, the artificial neural network analysis has been

shown to be an accurate interpreter of CRT data, surpassing the
conventional algorithmic approach by 77% to 71% (ns, p >
0.5). It has also been shown to give an insight into the
parameters most important for accurate interpretation. Although
only four such parameters were used in this study, the analysis
could easily be extended to accommodate the many parameters
used for interpretation in various institutes.
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Baseline and Postcaptopril Renal Blood Flow
Measurements in Hypertensives Suspected of Renal
Artery Stenosis
G. Schreij, P.N. van Es, M.J.P.G. van Kroonenburgh, G.J. Kemerink, G.A.K. Heidendal and P.W. de Leeuw
Departments of Internal Medicine and Nuclear Medicine, University Hospital Maastricht, The Netherlands

Renal blood flow (RBF) measurements using first-pass radionuclide
angiography with DTPA, a glomerularly filtered agent, failed to show
significant differences between normal and stenotic kidneys. Since
MAG3 is an ideal agent for the study of RBF, this agent might be an
attractive alternative tracer to detect differences in RBF. Methods:
An angiographically controlled prospective study was performed in
48 hypertensive patients, in whom a diagnosis of renovascular
hypertension was suspected on clinical grounds. The study was
done to determine whether RBF measurements using first-pass
radionuclide angiography with 99nTc-MAG3 could be helpful in the
diagnostic work-up of the patients. Additionally, the study was done
before and after ACE-inhibition. Results: On renal angiography, 29
patients showed to have normal renal arteries (50 patients had
normal kidneys and 8 patients had small kidneys). Nineteen patients
had renal artery stenosis (13 uni- and 6 bilateral disease). In the
patients with normal kidneys, the mean value of RBF measurements
ranged from 10.5% to 10.9% of cardiac output. Only small stenotic
and small kidneys with normal renal arteries showed a significant
reduced baseline RBF as compared with normal kidneys (both p <
0.05); this difference disappeared after ACE-inhibition only for the
small kidneys with normal renal arteries. In patients with stenosed
kidneys, RBF tended to be reduced both at baseline and after
captopril, but the differences with normal kidneys were not statisti
cally significant. After ACE-inhibition RBF increased in the majority of
kidneys, but postcaptopril RBF data did not differ significantly from
those at baseline. Conclusion: RBF measurements using first-pass
radionuclide angiography with ""Tc-MAGS, either before or after
ACE-inhibition, cannot reliably discriminate between patients with
essential hypertension and patients with renal artery stenosis.
J NucÃ­Med 1996; 37:1652-1655

An 1987, Peters et al. (7) described a technique for noninvasive
measurements of organ blood flow, which was based on the
fractional distribution of cardiac output (CO). When applied to
the renal circulation, this method yielded values of renal blood
flow (RBF) that were similar to accepted normal values
(10%-15% of CO per kidney). Using 99mTc-DTPA as a tracer,

investigators estimated RBF in normal subjects to be 10.4% Â±
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1.2% of CO for the left kidney and 9.0% Â±1.1% of CO for the
right kidney. There was a consistent difference of about 1.5% of
the CO at the expense of the right kidney, a phenomenon which
was attributed to interference with uptake of tracer by the spleen
(/)-

Patients with both essential hypertension and renal artery
stenosis (RAS), the RBF may be reduced, although in the latter
category of patients, no correlation between the reduction in
flow and the angiographie grading of the stenosis is apparent
(2). In RAS, however, the RBF is usually reduced only on the
affected side. Thus, a further decrease may occur after ACE
inhibition (5). Therefore, the measurement of individual kidney
flows may reveal whether a renal artery stenosis is present or
not.

Although Peters et al. performed their studies with DTPA,
which is excreted by glomerular filtration, MAG3 may be a
good alternative tracer. MAG3 is excreted by both glomerular
filtration and tubular excretion (4) with renal clearance charac
teristics comparable to those of ortho-iodohippurate, an agent
frequently used for the study of RBF (5). If studies could be
done with MAG3, the theoretical possibility emerges to com
bine Peters' method with a quantitative estimation of RBF.

Thus, the present study was designed to evaluate prospec-
tively whether in hypertensive patients, in whom a diagnosis of
renovascular hypertension is suspected, measurements of RBF
from first-pass radionuclide angiography, at baseline and 2 hr
after ACE-inhibition, are able to detect RAS.

MATERIALS AND METHODS
Forty-eight consecutive patients in whom a diagnosis of reno

vascular hypertension was suspected clinically and antihyperten-
sive medication had been discontinued for at least 2 wk were
included in this study (6). All patients had 99mTc-MAG3 measure

ments of RBF by first-pass radionuclide angiography (/) per
formed on two separate days. On one of these days, baseline data
were obtained randomly. On the other day, RBF was determined 2
hr after the patients were administered an oral dose of 25 mg
captopril. Before RBF measurements, all patients were given 300
ml of fluid to guarantee urine output of at least 1 ml/min. Patients
remained supine during all investigations.

A bolus volume of about 1 ml saline solution containing 148
MBq 99mTc-MAG3 was given followed by rapid flushing with
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