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Matched Ventilation, Perfusion and Chest
Radiographie Abnormalities in Acute
Pulmonary Embolism
Alexander Gottschalk, Paul D. Stein, Jerald W. Henry and Bruce Relyea
Michigan State University, East Lansing, Michigan and Henry Ford Heart and Vascular Institute, Detroit, Michigan

This investigation assessed the positive predictive value of matched
ventilation/perfusion (V/Q) and chest radiographie defects (triple-
matched defects) for the detection of acute pulmonary embolism
(PE). Methods: Data are from the Prospective Investigation of
Pulmonary Embolism Diagnosis (PIOPED). Only patients random
ized for obligatory pulmonary angiography were included. Lungs
were excluded if they showed any mismatched V/Q defect or any
pleural effusion. Results: Positive predictive values of triple-
matched defects in the upper plus middle zones, 1 of 27 (4%), were
less frequent than in the lower zones, 13 of 57 (23%) (p < 0.05).
Triple-matched defects that involved 25-50% of a zone showed PE
in 12 of 38 (32%) which was a higher positive predictive value than
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with smaller or larger triple-matched defects, 2 of 46 (4%) (p <
0.001). Conclusion: Refinement of the PIOPED data by elimination
of nonrandomized patients, elimination of lungs with mismatched
perfusion defects and elimination of lungs with a pleural effusion
indicate that triple matches with PE (radiographie pulmonary in-
farcts) are infrequent in the upper and middle lung zones. When a
triple match with PE occurs, it is most likely to be 25-50% of a zone.

Key Words: pulmonary embolism; thromboembolism; pulmonary
scintiscans; ventilaton/perfusion lung scans
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Xhe finding of a matched ventilation/perfusion (V/Q) defect
with associated matching chest radiographie opacity (the triple
match) has been reported to be an intermediate (indeterminate)
finding, with a positive predictive value for acute pulmonary
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embolism (PE) of 26% (7). This was similar to the positive
predictive value for PE of a perfusion defect which matched the
chest radiograph, 27% (2). The triple match can be caused by
pulmonary embolism creating a pulmonary infarction (usually
pulmonary hemorrhage) but other etiologies are more common
(7). Worsley et al. (7) showed that PE was present more
frequently with triple matches in the lower zones of the lung as
compared with the upper or middle zones. They indicated that
matching V/Q defects and chest radiographie opacities isolated
to the upper and middle zones represent a low probability of PE,
whereas triple-matched defects in the lower zone represent an
intermediate probability for PE (7).

This investigation further explores the diagnostic value of
triple-matched defects by using a refined subset of patients from
the collaborative study, Prospective Investigation of Pulmonary
Embolism Diagnosis (PIOPED) (3).

METHODS
Data are from patients who participated in PIOPED (3). Only

patients in arm of PIOPED who consented for randomization to
obligatory pulmonary angiography as described in the original
PIOPED report (3) were included in this investigation.

A triple-matched defect was defined as a radiographie opacity
accompanied by a defect on the perfusion lung scan and a defect on
the ventilation lung scan that were both equal in size to the
radiographie opacity. This determination was made directly from
the V/Q scan description which had been entered into the PIOPED
data base.

The size of triple-matched defects was graded in PIOPED as
<25% of a zone, 25-50% of a zone, 51-75% of a zone and >75%
of a zone. In PIOPED, a zone of the lung was defined as the upper,
middle or lower third of the lung, divided in the cranial-caudal
direction without regard to lung volume (4). Although experienced
readers of radionuclide lung scans often underestimate the size of
segmentai defects (5), there is no evidence that there is a compa
rable difficulty in estimating the fraction of a zone of a lung that
shows a defect. Assessments were made by two experienced V/Q
scan readers who agreed on the size of the defects for the PIOPED
data base. Interobserver variability of these observations was not
assessed in PIOPED.

To maximize the database, we evaluated individual zones of
single lungs. Any lung with a moderate size or large mismatched
segmentai perfusion defect (any mismatch S25% of a segment)
was excluded. Mismatched perfusion defects are associated with at
least an intermediate probability for PE (6,7). Lungs of patients
were also excluded if they showed a pleural effusion. Perfusion
defects associated with a small pleural effusion that caused
blunting of the costophrenic angle were associated with PE in over
20% of patients (8).

Each lung studied in this analysis was evaluated by pulmonary
angiography. A PE was defined as being present in the zone of the
triple-matched defect if the pulmonary artery or its branches in the
corresponding lobe showed PE. For example, if a triple-matched
defect was in the right upper zone, the right upper lobe artery or its
branches must have shown PE to qualify as a right upper zone
triple-matched defect with PE. The methods employed for obtain
ing and interpreting pulmonary angiograms and V/Q scans were
described previously (3).

We previously showed that stratification according to prior
cardiopulmonary disease improves the V/Q assessment in some
circumstances (6). Therefore, patients in this analysis were in
cluded only if they had a known history of the presence or absence
of prior cardiopulmonary disease. Patients were categorized as
having no prior cardiac disease if, according to the PIOPED
clinical physician, they had no history or evidence of valvular heart

TABLE 1
Positive Predictive Value of Triple-Matched Defects According to

Lung Zone

Upper zone
Middle zone
Lower zone
TotalGottschalk*

PE/No. of
zones(%)0/13(0)

1/14(7)
13/57(23)*

14/84(17)Worsleyf

PE/No. of
zones(%)4/36(11)

6/52(12)
61/187(33)Â§

71/275 (26)

â€¢Datafrom Gottschalk et al. (4).
TData from Worsley et al. (7 ).

*p < 0.05 Upper + middle zone versus lower zone.
Â§p< 0.005 Upper zone versus lower zone; middle zone versus lower

zone.

disease, coronary artery disease, "other heart disease," and no

history of left- or right-side heart failure prior to the episode of
suspected acute pulmonary embolism. Patients were categorized as
having no prior pulmonary disease if they had no history of asthma,
chronic obstructive pulmonary disease, interstitial lung disease,
"other lung disease" and no recognized acute pneumonia or acute

respiratory distress syndrome at the time of evaluation for the
suspected PE, and no history of a prior PE.

Statistical Methods
Positive predictive value was defined as the frequency of PE

with triple-matched defects. A chi square test was used to compare
various positive predictive values. The 95% confidence intervals
were determined on the basis of the exact binomial distribution.

RESULTS
The following results are from 66 patients among whom 70

lungs had 84 zones with triple-matched defects. The pulmonary
diagnoses in 25 patients with triple-matched defects who did
not have PE were pneumonia (n = 11), pulmonary carcinoma
(n = 5), pulmonary fibrosis (n = 2), atelectasis (n = 2), chronic
obstructive pulmonary disease (n = 2), tuberculosis (n = 1),
pulmonary eosinophilia (n = 1) and heart failure (n = 1). In 29
patients who did not have PE, the cause of the triple match was
not indicated in the computerized data.

Positive Predictive Value of Triple-Matched Defects

According to Zone
The positive predictive value for PE of all triple-matched

defects was 14 of 84 (17%) (95% CI 9-26%). Pulmonary
embolism was infrequent in the upper or middle zones (Table
1). The positive predictive value in the lower zone, 13 of 57
(23%) (95% CI 13-36%), was higher than in the upper plus
middle zones 1 of 27 (4%) (95% CI 0-19%) (p < 0.05) (Table
1).

Positive Predictive Value of Triple-Matched Defects

According to Size
Triple-matched defects that involved 25-50% of a zone

showed a positive predictive value for PE of 12 of 38 (32%)
(95% CI 18-49%) (Table 2). Triple-matched defects of 25-
50% of a zone showed a higher positive predictive value than
defects smaller than 25% of a zone, 2 of 23 (9%) (p < 0.05).
Triple-matched defects of 25-50% of a zone also showed a
higher positive predictive value than defects larger than 50% of
a zone, 0 of 23 (0%) (p < 0.01).

Stratification According to Prior Cardiopulmonary Disease
Stratification according to prior cardiopulmonary disease

showed a comparable positive predictive value for PE of
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TABLE 2
Positive Predictive Value of Triple-Matched Defects

According to Size

Size of triple-match

(% ofzone)<25

25-50
51-75
>75Gottschalk*

PE/No. of
zones(%)2/23

(9)
12/38(32)*

0/11 (0)
0/12(0)Worsleyt

PE/No. of
zones(%)23/86

(27)
34/125(27)

8/36 (22)
6/28(21)

'Data from Gottschalk et al. (4 ).

TData from Worsley et al. (1 ).
*p < 0.05, 25%-50% versus <25%; 25%-50% versus 51%-75%;

25%-50% versus >75%.

triple-matched defects in the lower zones of patients with prior
cardiopulmonary disease and patients without prior cardiopul-
monary disease 8 of 37 (22%) versus 5 of 20 (25%) (NS). The
positive predictive value for PE was also comparable in the
upper plus middle zones, 0 of 19 (0%) versus 1 of 8 (13%)
(NS).

DISCUSSION
Triple-matched defects in the same lung as mismatched

perfusion defects were not excluded by Worsley et al. (/). In
PIOPED, the angiographie data identified only the lobar artery
that showed thromboemboli. The location of the branch to
particular segments was not identified. Therefore, it was not
always possible to determine if a PE shown on the pulmonary
angiogram caused the triple-matched defect if mismatched
defects were not excluded. For example, if a PE were in the
apical segmental branch of the lower lobe artery, it could cause
a mismatched perfusion defect in the middle zone. If a triple-
matched defect occurred in the lower zone of the same lung and
was not caused by PE, this nonembolic triple-matched defect
would erroneously be attributed to PE because the lower lobe
artery showed PE. In our study, lungs with mismatched perfu
sion defects were excluded, as well as lungs with pleural
effusions. It was reasonable to assume, therefore, that any PE
shown on the pulmonary angiogram was the cause of the
triple-matched defect. We believe, therefore, that triple-
matched defects in our data relate to the PE found on the
pulmonary angiogram.

Our data, in general, support the observations of Worsley et
al. (I ). We observed, as did they, that triple-matched defects in
the lower zone should be assessed as intermediate probability

(indeterminate probability) for PE. We also observed, as they
observed, that PE is uncommon with triple-matched defects in
the upper or middle zones. A trend in our data suggested that
triple-matched defects in the upper zone or middle zone satisfy
the criteria for a very low probability interpretation [<10%
positive predictive value (8)], rather than low probability
[10-19% positive predictive value (9)].

In contrast to Worsley et al. (I ), we showed that the size of
the triple-matched defect relates to the positive predictive value

for PE. Pulmonary embolism was more frequent in patients with
triple matches that involved 25-50% of a zone than either larger
or smaller triple-matched defects. Triple-matched defects that
involved <25% of a zone tended to represent a linear opacity,
whereas triple-matched defects >50% tended to be large areas
of consolidation. The 25-50% of a zone category usually

represents a segmental appearance.

CONCLUSION
Refinement of the PIOPED data by elimination of nonran-

domized patients, elimination of lungs with mismatched perfu
sion defects and elimination of lungs with a pleural effusion
indicates that PE with triple-matched defects (radiographie
pulmonary infarcts) is infrequent in the upper and middle zones
of the lung, but PE commonly occurs with such defects in the
lower zone. When a triple-matched defect results from PE, it is
most likely to be 25-50% of a zone (1 to 2 segments).
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