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PET methods for single-scan measurement of the cerebral met-
abolic rate of glucose (CMRgic) generally involve sampling of
radioactivity in arterial plasma over the course of the experiment.
The purpose of this study was to develop an analytic procedure
that would require substantially fewer plasma samples to mea-
sure CMRglc using the single-scan method. Methods: This
technique uses a model for the curve describing the time course
of radioactivity in plasma. Results: This model obviates the
need to draw arterial samples at short time intervals or at all
during the first 30 min after radiotracer injection. The new tech-
nique uses six samples to provide the same accuracy and pre-
cision as the conventional method provides with 30 or more
samples. Conclusion: The proposed method greatly simplifies
quantitative PET studies of glucose metabolism.
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T:e autoradiographic 2-deoxy-D-1-[**C]glucose method
to determine the cerebral metabolic rate of glucose
(CMRglc) was developed for use in laboratory animals
over a decade ago (). The technique was later extended to
studies using PET and the radiotracers 2-['*F]fluoro-2-
deoxy-D-glucose (FDG) and 2-deoxy-D-1-['C]glucose in
humans and subhuman primates (2-5).

To calculate CMRglc, autoradiographic and PET deoxy-
glucose methods require the following measurements:

1. Radioactivity in tissue at a time when radiotracer
uptake is essentially complete, usually 45 min or
more after the injection of radiotracer.

2. Concentration of glucose in arterial plasma.

3. Concentration of radiotracer in arterial plasma (Cp),
at multiple times (t) from injection of the radiotracer
until measurement of radioactivity in tissue.
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The time course of Cp (i.e., Cp(t)) is the input function for
a calculation of expected concentration of radiotracer in
the tissue of interest. An operational equation is used to
calculate CMRglc from these values using rate constants
for the transport, phosphorylation and dephosphorylation
of the radiotracer and an estimate of the relative predilec-
tion of the brain to take up and phosphorylate the ra-
diotracer as compared with glucose (3).

Calculations of CMRglic traditionally integrate Cp,(t) nu-
merically. The set of values of Cp,(t) are subject to a
variety of errors that can cause one or more of the samples
in the set to differ from their correct values. Samples of
Cpa(t) can also be missing from the set. Numeric integra-
tion techniques generally contain no mechanism to reduce
the effect of a small number of errant data values. To
reduce the effects of such errors, an analytically integrable
function can be fitted to the values of Cp,(t). The fitting
process, if properly done using a suitable function, can
reduce the effect of the incorrect or missing data points on
the value of the integral. Some equations that are used for
this purpose include two-, three-, and four-term linear ex-
ponentials and sums of gamma functions (3,4,6,7). Tech-
niques that fit Cp(t) to a function may reduce the variance
in measurements of CMRglc. Such techniques, however,
rely on measurement of the entire time course of Cp and
therefore are no simpler than numeric integration tech-
niques.

There have been attempts to calculate metabolic rates
for glucose in the heart without sampling the entire time
course of Cp. Values of cardiac glucose metabolism calcu-
lated by the Patlak method are highly correlated with those
of a simple index of FDG uptake (% dose/100 ml tissue) (8).
This index can be determined without blood sampling. It is,
however, sensitive to uncontrollable factors, such as the
levels of glucose and insulin in plasma.

Calculation of CMRglc can be based on an integration
that is generated by averaging several curves of Cp(t) to
form a population-average curve (9). To correct for differ-
ences in the dose administered and in the body mass of the
subject, the population-average curve can be normalized to
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match the activity of two different samples of Cp,(t).*
Values of CMRglc calculated by numerically integrating
the normalized population average curve of Cp(t) correlate
well with those calculated by the conventional method.
This method is less sensitive to uncontrolled factors (see
above) than the previous method. It does, however, re-
quire a highly standardized injection protocol; and, as
shown below, it also may be sensitive to differences in
tracer clearance rates.

The purpose of this study was to develop a model to
predict CMRglu by fitting Cp(t) using a small number of
plasma samples. Ideally, the process would be insensitive
to variance in injection technique and to uncontrollable
factors, such as concentrations of insulin and glucose in
plasma, and to tracer clearance rates.

This article addresses the following six questions:

1. Is there sufficient information within a small subset of

samples of Cp,(t) to predict CMRglc?

2. What analytic function best represents the curve of

Cp(t)?

3. How many adjustable parameters are required in the

function?

4. How sensitive is the calculation to the shape or mag-
nitude of the “‘peak’ or maximum amount of radio-
activity in plasma?

. How sensitive is the calculation to aberrant samples?

6. What is the minimum number of plasma samples re-

quired?

(9

MATERIALS AND METHODS
Theory

Models generally used for measuring metabolic rates for glu-
cose have three compartments and four rate constants. The com-
partments and their forward and reverse rate constants are de-
fined as follows: Cp, the plasma compartment; C,, the
compartment directly coupled to plasma and governed by facili-
tated transport of the radiotracer in tissue; C,, the compartment
containing labeled phosphorylated metabolite (2-['*F]fluoro-2-
deoxy-D-glucose-6-phosphate). The forward rate constants are K,
and k;. The reverse rate constants are k, and k,.

The phosphorylated metabolite remains inside the cell for a
relatively long time because it cannot readily cross the cell mem-
brane, nor is it a suitable substrate for further glycolysis.
Dephosphorylation is slow since it requires the enzyme glu-
cose-6-phosphatase, which is not abundant in the brain or
heart. Schematically, the model is represented as follows:

K, k3
Cp E=3 C] E=3 CQ. B]. 1
k2 ke

*The terms Cp(t), C,(T) and C,(T) refer to concentrations of radiotracer (as
FDG or its metabolite), in the compartment, as a function of time
after injection (t or T). The terms Cpft,), C,(T), and C,(T) indicate concentrations
evaluated or measured at the specic times {, or T, The values of radioactivity in
samples of plasma are referred to as Cp,(t). The subscript n denotes the (ordinal)
number of the sample. The time, after injection of radiotracer, at which the sample
was drawn is t. When the notation C, is used, the subscript x can take on either of
the values 1 or 2. Thus, C,(T) means the values of either function, C, (T, or C,(T),
evaluated at the time T,.

Model to Calculate Glucose Metabolism e Phillips et al.

We can derive equations for the three-compartment model as
follows:

dc
d—t‘ =K|G(t) - (ko + kp)Cy(t) + k,Ct)  Eq.2

d
’(% = kyCy(t) — kCy(1).

The solution is given by the following integral equations:

_ Kl _ —agt _ _ - agt
) = [k — e (ks — ade M1 ® Gyt)
Eq. 3A

K‘K3 - agt = ast
CyT) = [ -e" @Gy, Eq.3B

(az — a;

where T is the time of measurement of radioactivity in tissue (e.g.,
by PET scan). Given C,(T) and C,(T), CMRglc may be estimated
by any of several operational equations (3,10, 11). The symbol ®
represents convolution and a, and a;, (the characteristic eigenval-
ues of the differential equation system) are defined as follows:

o (kg + kg + kg) = (kg + k3 + k)’ = dkok
=
2

_lotks+ k) + o+ ks + ko)’ - dkoky
: :

a) Eq. 4
The letter t refers to time after injection of FDG. All measures of
radioactivity are decay-corrected to the time of injection of the
radiotracer. The following values of the rate constants were used:
K, = 0.102 min~', k, = 0.13 min~!, k; = 0.062 min~" and k, =
0.0068 min~" (3). The values of C,(T) and C,(T), together with the
amount of radioactivity in the tissue (C(T)) are entered into an
operational equation such as that of Huang et al.:

_ G Kk G(T)-C(T)
Le(k+ky) CM °

that relates metabolic rate to the measurements.

Development and Testing of the Model

Development of the model required sequential investigation of
the questions posed in the introduction. Each question was an-
swered in a separate step that entailed a specific series of analy-
ses. The results of each step were used to modify the approach
taken subsequently. Steps 1 through 3 defined the actual model,
whereas steps 4 through 6 examined its sensitivity to specific
perturbations.

1. Is There Sufficient Information within a Small Subset of
Samples of Cp,,(t) to Predict CMRgIc? The first task in this study
was to demonstrate the possibility of the existence of a model that
could accurately represent the integral of Cp(t) (implicit in Eqgs. 3
and 4) from a small number of samples of Cp,(t). Because of the
formulation given in Equation 5, accurate estimation of C,(T)
would yield accurate estimation of CMRglc. As we reasoned that
the nature of any correlation between C,(T) and Cp(t) would
provide evidence for the existence of a useful model, we per-
formed a series of correlations between C,(T;) and Cp(t,).

Values of Cp(t,) were calculated at a fixed set of times by linear
interpolation using the measured values of Cp,(t) from human

Eq.5
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PET studies (see below). The sets of times (T; and t,) ranged from
500 to 6000 sec in 500-sec intervals. The dataset in each correla-
tion analysis consisted of values of C(T;) calculated by numeric
integration to one of the times T;, paired with values of Cp(t, ). The
analyses encompassed all possible pairs of times (T;,t,). Since it
was important to determine which samples of Cp,(t) have useful
information about the calculated values of C(T), correlations
between numerically calculated values of C,(T;) vs. the largest
observed value of Cp,(t) were also calculated.

The regression analysis used a linear correlation (i.e., an at-
tempt to fit the calculated values of C.(T;) to an equation) as
follows:

C(T) = ST, )Cp(ty) + L(Tty), Eq. 6

in which S,(T;,t,) was the slope of the regression line, and I (T;,t,)
was the intercept. The behaviors of the slope (S,(T,t)) and the
intercept (L (T,t)) were important predictors of the utility of using
a few samples of Cp,(t) to calculate C(T). If the behavior were
characterized by large random fluctuations, the only correct pro-
cedure for calculation of C,(T) would have been to perform the
calculations of Equation 3 using numeric integration of the values
from the samples of Cp,(t). If, on the other hand, the behaviors of
S, (T,t) and I (T,t) were smooth and predictable in both T and t, it
would have been possible to use a simpler procedure for perform-
ing the calculations implicit in Equation 3.

The nature of the relationship between S,(T.,t), T and t could
most easily be displayed in three-dimensional surface plots. If any
of S,(T,t), Sy(T,t), I,(T,t) or I,(T,t) would have displayed large
random fluctuations, the surface would also have fluctuated ran-
domly. If the surface were smooth, the shape of the surface would
have indicated the nature of the relationship between C(T) and
Cp(t) and what form the analytic calculation of C(T) from Cp(t)
would take. A flat surface would have indicated a linear relation-
ship. If the surface were curved, but monotonic in T and t, the
relationship would likely have been an exponential and/or a poly-
nomial in T and t. If, on the other hand, the surface would have
been nonmonotonic (i.e., contain “hills’ and “‘valleys”), it would
probably have been better to parameterize the essential portion of
the curve described by actual measurements of Cp,(t). As shown
below, a function which could be fitted to the values of samples of
Cp,(t) was required. It was sought as the answer to the next
question.

2. What Analytic Function Best Represents the Curve of Cp(t)?
A series of curve fitting experiments were conducted using differ-
ent analytic functions. The objective was to select a function that
accurately reproduced the results of numeric integration with the
least sensitivity to aberrant samples, and the fewest adjustable
parameters. The analyses used the following equations to fit each
curve of Cp(t):

Cylt) = byel ™™V 4 byel 2 Eq.7

and

Cy(t) = byte( =@ + byel ~ o, Eq. 8

In both equations, a,, a,, b, and b, were constants determined
separately for each curve of Cp(t) by a nonlinear least-squares
fitting routine. Equation 7 was selected since it appeared in the
literature as a suitable function for fitting the curve of Cp(t) (4).
The effects of adding additional terms to Equation 7 were also
studied. The first extra term involved additional fitting parameters
b, and a, in a manner exactly analogous to the use of parameters
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b, and a,. Equation 8 was selected after a series of experiments
involving subsets of the data showed that it fit all the curves with
minimal residuals, and produced estimates of C,(T) that were
insensitive to missing data in the curve of Cp,(t).

3. How Many Adjustable Parameters Are Required in the
Function? Estimates were performed to determine how many
parameters were required to evaluate Cp(t) and its analytic inte-
grals. It was reasoned that if the exponents and magnitudes (a and
b) were proportional, then it would be possible to eliminate two of
the four free parameters of Equations 7 and/or 8. The proportion-
ality constants, m and n (see below), were derived from the entire
dataset. After appropriate substitutions in Equation 8 (i.e., re-
placement of ““a,” with ‘““na”, ““a,”” with ““a”’, “b,”” with “mb”’,
and “b,”” with “b”’), Equation 8 was written as follows:

Cy(t) = bimte e, Eq.9

4. How Sensitive Is the Calculation to the Shape or Magnitude
of the “‘Peak’’ or Maximum Amount of Radioactivity in Plasma?
Studies were performed to test the sensitivity of the calculations
of C,(T) and C4(T) to the magnitude of the peak Cp,(t). In these
studies, differences between analytically and numerically derived
estimates of C,(T;) and C4(T;) were correlated with magnitudes of
the peak Cp,(t) both as the decay-corrected activity and as a
normalized activity. Peak Cp,(t) was normalized by dividing it by
the decay-corrected activity at 45 min (an arbitrary choice).

5. How Sensitive Is the Calculation to Aberrant Samples? To
test the accuracy of the analytic technique, we studied the effect
of aberrances in the curves of Cp(t) on the calculation of C.(T;).
Correlation analysis was used to determine the causes of differ-
ences between results of calculations of C,(T;) based on numeric
integration and results of calculations of C,(T;) based on analytic
integration. The most useful correlation compared the percentage
difference in the fit of Equation 9 to the values of Cp,(t) with the
percentage difference in results of corresponding calculations of
C(T)).

6. What Is the Minimum Number of Plasma Samples Re-
quired? Correlation analyses were performed to test the stability
of the calculation of CMRgic to the number of samples of Cp,(t)
to which Equation 9 was fitted. Matrices of correlation coeffi-
cients were constructed between six sets of values of C (T). The
set of times to which the integration was performed were those
times >20 min at which samples of Cp,(t) had been drawn during
the corresponding PET study (see below). This choice eliminated
endpoint corrections from the calculation.

Calculations of C,(T), as specified in Equation 3, were per-
formed on the data from each PET study, using each of six
possible functions as Cp(t). These calculations generated six sets
of values of C(T). To obtain Set 1, all values of Cp,(t) were used,
and the integration implicit in Equation 3 was performed by nu-
meric methods. The other sets of values of C,(T) were calculated
by performing the integration implicit in Equation 3 analytically.
In the analytic calculations, the function Cp(t) was based on
Equation 9 with the coefficients (a and b) determined by fitting the
equation to one of five subsets of values from each curve of
CpA(1)-

In calculating Set 2 values of C,(T), the constants (a and b) in
Equation 9 were determined by fitting the equation to all of the
values from samples of Cp,(t) with t > 20 min. The calculation of
the values of C,(T) in Set 3 started with the same set of samples
of Cp,(t) as were used in the calculations for Set 1. The two
samples of Cp,(t) with the largest residuals from the fit were
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removed, however, and the fitting process was repeated to deter-
mine the constants (a and b) in Equation 9. In calculating the
values of C,(T) from the remaining datasets (4, 5 and 6), the
constants (a and b) in Equation 9 were determined by fitting the
equation to the values in one of three different subsets of six
samples of Cp,(t). After an initial curve fitting process, the two
samples of Cp,(t) with the largest residuals were removed and the
fitting process was repeated with four samples. The calculations
of C(T) in Set 4 used the first six samples of Cp,(t) with t > 20
min. The calculations of C,(T) in Set 5 used the last six samples of
Cp,(t). The samples used to obtain Set 6 were spaced uniformly in
time and were drawn >20 min but <90 min after injection of FDG.

Calculation

A routine was used numerically to integrate the time course of
Cp,(t). It interpolated between each two adjacent time-activity
points with a straight line, and analytically convolved this line
with the appropriate exponential function. When the time of in-
tegration did not correspond exactly to the time at which a value
of Cp,(t) had been measured, endpoint corrections were per-
formed by linear interpolation of the value of Cp,(t) taken imme-
diately before and the value taken immediately following the time
T to which the integration was calculated.

Human Studies

Subjects for this study were human volunteers participating in
PET measurements of CMRglc by the single-scan FDG method.
All had physical examinations that showed various physiological
parameters to be within normal limits. Diabetes, cardiovascular
disease and renal dysfunction were among the exclusionary cri-
teria of the protocols.

All subjects except one were male. The subjects ranged in age
from 21 to 45 yrs (mean age = 31 yr). All subjects gave informed
consent to the procedures in the protocols, which were approved
by the institutional review boards of Johns Hopkins Medical In-
stitutions and Francis Scott Key Medical Center, where the
NIDA Intramural Research Program is located.

Data from 119 PET FDG studies of 61 subjects were used.
Most of the studies tested acute effects of drug abuse on CMRglc.
Subjects in these protocols underwent two PET studies, each
involving administration of either placebo or an active drug, in
random order and double-blind fashion. Of the 61 subjects, 20
were substance abusers enrolled in studies on the effects of co-
caine HCI (40 mg intravenously) (12), 12 were involved in studies
on the effects of morphine sulfate (30 mg intramuscularly) (13) and
three participated in a study on the effects of buprenorphine HCI
(1 mg intramuscularly) (14). Twenty-one subjects were normal
controls. Of these, six received nicotine (1.5 mg intravenously)
(15) and the remaining 15 received no drugs.

Five subjects with histories of polydrug abuse were studied in
two other protocols. Four participated in a study in which two
subjects who were physically dependent on opioids were main-
tained on heroin (7.5 mg subcutaneously four times per day).
CMRglc (one measurement) in these subjects was compared with
that in two subjects who were not physically dependent on opioids
and who received no drug (16). One subject participated in a study
on naloxone-precipitated opiate withdrawal. He underwent three
PET studies, two of which were on the same day in a test-retest
paradigm (17-19). While physically dependent on heroin, he re-
ceived naloxone (0.4 mg intramuscularly) before the first measure-
ment of CMRglc and morphine sulfate (15 mg intramuscularly)
before the second. At the time of the third study, several weeks
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later, no drug was administered and the subject had been detox-
ified.

All subjects received a standard nonketogenic breakfast on the
day(s) of PET scanning (13). Subjects fasted for 3-7 hr and did not
smoke for at least 2 hr prior to injection of FDG.

FDG for all studies was synthesized from ['®F]fluoride as de-
scribed previously (20). Radiochemical purity of the product,
determined using thin-layer chromatography or high-performance
liquid chromatography, exceeded 98%. All preparations were de-
termined to be sterile and pyrogen-free. FDG (nominally 185 MBq
in 5.0 ml saline (all but one of the subjects) or 148 MBq in 5.0 ml
saline (only the subject who received three PET scans) was in-
fused manually, over 30 sec, through a catheter inserted into a
vein in the forearm. Saline (20 ml) was infused after the FDG
injection (13).

The PET scanner was a NeuroECAT with three rings of de-
tectors (CTI, Knoxville, TN). Since the tomograph did not ac-
quire data from the entire axial field of view in a single scan, a test
session consisted of four scans of 15-min duration each; the sub-
ject was repositioned between scans. The first scan followed the
injection of FDG by approximately 45 min. Repositioning the
subject between scans required 2 to 5 min. Thus, the total duration
of the study, from injection to end of the last PET scan, was
approximately 2 hr.

Thirty to 35 blood samples were drawn manually through an
indwelling radial arterial catheter, according to a schedule of de-
creasing frequencies starting at the time of FDG injection. The
first eight samples were drawn at 15-sec intervals, then four at
30-sec intervals, two at 1-min intervals, four at 2-min intervals and
two at S-min intervals. Samples were then drawn at 10-min inter-
vals until the subject was removed from the tomograph, at which
time the final sample was drawn. The blood samples were centri-
fuged and aliquots of plasma were taken and counted in a well
counter.

To calibrate the well counter with the tomograph, radioactivity
in a uniform cylindrical phantom filled with a solution containing
a positron-emitting isotope (nominally 74 MBq of '°F or ®Ga in
approximately 4 liters of water) was measured in the PET scanner
on each day that a study was performed. Aliquots of this solution
were counted in the same well counter as the plasma samples.

RESULTS

Analysis of Linear Correlations

Correlation analysis of the calculated values of C,(T;)
versus Cp(t,) at fixed pairs of times (T;,t,) yielded a corre-
lation coefficient r > 0.89 whenever t, > 15 min and T; >
15 min (Table 1, Fig. 1A, B). The mean (s.d.) of the cor-
relation coefficients was 0.97 (0.02). There was little cor-
relation between the calculated values of C,(T;) versus
peak Cp,(t) (Fig. 1C, D). Adding a second plasma sample
to the relationship provided a small improvement (Table 2),
as shown by a small decrease in the s.d. of the residuals
(Fig. 2).

The high correlations observed in these calculations in-
dicated that only one or, at most, two degrees of freedom
would be required to predict values of C,(T) at any time T
that exceeded 20 min after FDG injection. Standard devi-
ations of the percentage residuals of these linear regres-
sions were between 1% and 4%, but there were maximal
percentage residuals of up to 20%.
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TABLE 1
Correlation Coefficients Relating Numeric Calculation of C,(t) (A) and C,(t) (B) to Cp(t)*

A. Sample time, t (min)

Scan time,

T (min) 333 1.7 50.0 58.3 66.7 75.0 83.3 91.7 100.0
333 0.998 0.983 0.98 0.976 0.969 0.965 0.96 0.954 0.946
417 0.998 0.997 0.991 0.986 0.977 0.973 0.97 0.966 0.96
50.0 0.993 0.998 0.998 0.991 0.983 0.98 0.977 0.975 0.969
58.3 0.989 0.992 0.998 0.998 0.992 0.987 0.984 0.983 0.977
66.7 0.983 0.984 0.992 0.999 0.998 0.992 0.988 0.987 0.982
75.0 0.976 0.977 0.987 0.993 0.999 0.999 0.994 0.991 0.987
833 0.972 0.972 0.983 0.988 0.993 0.999 0.999 0.994 0.991
91.7 0.967 0.971 0.983 0.987 0.991 0.996 0.999 0.999 0.995

100.0 0.963 0.967 0.978 0.983 0.988 0.993 0.996 0.999 0.999
Scan time, B. Sample time, t (min)

T (min) 333 41.7 50.0 58.3 66.7 75.0 833 91.7 100.0
333 0.955 0.927 0.925 0.922 0.918 0.912 0.905 0.897 0.890
a7 0.968 0.945 0.942 0.938 0.933 0.927 0.921 0.914 0.907
50.0 0.977 0.957 0.954 0.950 0.945 0.939 0.933 0.927 0.920
58.3 0.983 0.965 0.964 0.960 0.954 0.950 0.943 0.937 0.930
66.7 0.987 0.971 0.970 0.967 0.961 0.956 0.950 0.945 0.938
75.0 0.989 0.975 0.975 0.972 0.967 0.962 0.957 0.951 0.945
833 0.990 0.977 0.978 0.976 0.972 0.968 0.962 0.957 0.951
91.7 0.991 0.979 0.981 0.980 0.976 0.972 0.967 0.962 0.956

100.0 0.992 0.981 0.983 0.983 0.979 0.976 0.972 0.967 0.961

*One hundred seventeen data pairs were used for each correlation. The probability of finding so large a correlation coefficient by chance was

<0.0001 for each pair of variables.
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FIGURE 1. Typical plots showing the comelations of C (T) (ordi-
nates) with Cp(t) (abscissas). (A) Correlation between C,(50 min)
and Cp(33 min). The correlation coefficient was 0.99. (B) Correlation
between C,(50 min) and Cp(33 min). The cormelation coefficient was
0.98. (C) Correlation between C,(50 min) and the peak value of
Cp(t). (D) Correlation between C,(50 min) and the peak value of
Cp(t). The low correlations observed in panels C and D (r = 0.32 and
r = 0.45, respectively) were typical of those obtained when C,(T)
were correlated with the peak value of Cp(t).
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Three-dimensional surface plots of the slopes (S,(T;,t,))
calculated in the regression analyses of C(T;) on Cp(t,)
were smooth (Fig. 3), indicating that values of C(T) (i.e.
C,(T) and C,(T)) could be predicted from individual sam-
ples of Cp(t,) (Fig. 3). The Y intercepts, I,(T;,t,) and I(T;,t,),
did not differ significantly from zero (data not shown).

If the surface had been flat and the maximal percentage
errors had been consistently lower than 5%, we would
have expressed the relationships between arbitrary values
of Cp,(t) and calculated values of C,(T) as simple linear
functions. If the surfaces had been monotonic, the relation-
ship could have been expressed as either a sum of expo-
nential functions or as a polynomial. The surfaces, while
smooth, were neither flat nor monotonic in t or T. No
satisfactory parameterization of the surface could be
found. Such a parameterization would be essential for cal-
culation of values of C(T) whether from a single value of
Cp,(t) or an average using several values. The shape of the
surface and the values of the maximal percentage residuals
supported the conclusion that parameterization of the
curve of Cp(t) was an appropriate approach to predict
values of CMRglc.

Equation for Fitting Cp,,(t)
Equations 7 and 8 were used to fit each curve of Cp(t)
using only those values of Cp,(t) with t > 20 min. There
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TABLE 2
Results of Linear Correlation between C,(T) (A) and C,(T) (B) as the Dependent Variables with Cp(t,) and/or Cp(t,) as
Independent Variables*

A

T t, t, adj r? r2 12 max min mean sd.
333 333 peak 0.996 0.996 0.345 3.14 -3.62 -0.027 1.22
50.0 333 peak 0.987 0.986 0.318 7.88 -7.04 -0.055 245
58.3 58.3 peak 0.996 0.996 0.324 3.09 -4.67 -0.003 1.35
917 58.3 peak 0.968 0.966 0.333 6.76 -11.26 -0.109 3.65
333 333 58.3 0.996 0.996 0.953 3.32 -3.83 -0.032 1.12
58.3 333 58.3 0.998 0.978 0.996 243 -2.99 -0.003 1.00
91.7 333 58.3 0.975 0.935 0.974 6.52 -11.69 -0.107 364
B

T t, t adj P r,? r? max min mean sd.
333 333 peak 0.947 0912 0.490 10.45 -9.92 -0.222 448
50.0 333 peak 0.974 0.954 0.449 7.70 -7.49 -0.121 3.2
58.3 58.3 peak 0.938 0.922 0.436 15.88 -11.9 -0.265 534
91.7 58.3 peak 0.969 0.960 0.410 1232 -8.39 -0.131 3.84
333 333 58.3 0.919 0.912 0.850 11.97 -14.26 -0.364 544
58.3 333 58.3 0.968 0.966 0.922 7.74 -8.11 -0.169 3.50
91.7 33.3 58. 0.983 0.982 0.960 5.36 -6.36 -0.099 2.55

*The column labeled adj r gives the adjusted r? for the bilinear fit, while the columns labeled r,2 and r,2 give the r? value found in separate linear
regression analyses with Cp(t,) and Cp(t,), respectively, as independent variables. The columns labeled max and min give the maximum and
minimum values for residual of the fit, as a percentage of the fitted value. The columns labeled mean and s.d. are the mean and standard deviation,

respectively, of the percentage residuals. Addition of the sample with peak radioactivity did not improve the fit.

was no attempt to force the fit to accommodate the shape,
magnitude or time of peak Cp,(t) because linear correlation
studies (see above) indicated that early (t < 20 min) values of
Cp(t) were not correlated with C(T;). The fitted curve un-
derestimated the value of Cp,(t) at peak by a factor of ap-
proximately three to four. The patterns of residuals from the
fit of Equation 7 revealed many outliers. This finding indi-
cated that the shape used for fitting was not optimal. The
mean (s.d.) of the percentage residuals was 0.05% (3.7%)
(Fig. 4A). The parameters were sensitive to elimination of
data points from the fitting process. Addition of extra terms
to Equation 7 provided flexibility in matching the shape of
the fitted curve to the curve of Cp,(t), but it made the fitting
process unstable. In contrast, the residuals from fitting Equa-
tion 8 to the curve of Cp,(t) were small. The mean (s.d.) of
the percentage residuals was 0.03% (2.0%) (Fig. 4B).

Number of Parameters in the Equation for Cp(t)
Correlation plots of a, versus a, and of b, versus b, from
all curves of Cp,(t) were prepared. The plots of results
based on fitting Equation 7 to Cp,(t) indicated that a, and a,
had some correlation, but that b, and b, did not. In con-
trast, the results calculated using Equation 8 showed that
the exponents, a, and a,, were linearly related, as were the
magnitudes, b, and b, (Fig. 5). The relationships were such
that a, = na, and b, = mb,, with m = 0.0072 min~" and n

Model to Calculate Glucose Metabolism ¢ Phillips et al.

% Difference in C,(T)

FIGURE 2. (A) Percentage difference in C,(30 min) calculated
using numeric integration and using linear regression of C, (30 min)
on Cp(30 min). The mean (s.d.) was —0.053% (2.45%). (B) Per-
centage difference between C, calculated using numeric integration
and using bilinear regression of C,(30 min) on Cp(30 min) and
Cp(60 min). The mean (s.d.) was —0.012% (1.72%). (C) Percentage
difference between C,(30 min) calculated using numeric integration
and linear regression of C,(30 min) on Cp(30 min). The mean (s.d.)
was —0.22% (4.13%). (D) Percentage difference between C,(30
min) calculated using numeric integration and bilinear regression of
C2(30 min) on Cp(30 min) and Cp(60 min). The mean (s.d.) was
-0.21% (3.94%). Addition of a second sample of Cp(t) in the re-
gression analysis reduced the s.d.
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S,(TA)
S,(T 1)

FIGURE 3. Three-dimensional surface plots of the slope from
linear regression analyses of C,(T) on Cp(t) (A) and C,(T) on
Cp(t) (B). The form of the regression was summarized in Equation
6 (C.(T) = S,(TitCp(t) + L(Tit)). The values of C,(T) used in the
linear regression were calculated by numeric integration of Cp,,(t), as
indicated in Equation 3. Ten values each of T; and t, were combined
to give 100 measurements of S,(T,t) evenly distributed in time,
starting at 25 min after injection and continuing until 100 min after
injection of FDG. The surface regions between the measured values
of S,(T,t) were generated by bi-cubic interpolation.

= 0.40. Replacing symbols in Equation 8 as follows gave
Equation 9: ““na”’ for ““a,”, ““a” for ““a,”, “‘mb”” for “b,”,
and “b” for “‘b,”.

We obtained the percentage difference between the ex-
perimental and analytical curves of Cp,(t) using Equation
9. The s.d. of the differences was 2.2% and the mean was
0.027%. The s.d. was consistent with that given by calcu-
latipns based on counting statistics in the well counter. The
largest difference was less than 10% (Fig. 6). The coeffi-
cient of correlation between the measured value of Cp,(t)
and that calculated from the equation was 0.99. Reducing
the number of free parameters to one (by replacing the
exponent ‘‘a” in Equation 9 by the mean ‘“a” from all
curves and fitting the resulting function to the curves of
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FIGURE 4. Percentage difference from fitting both Equations 7
(left) and 8 (right) to Cp,(t). The percentage differences were not
always constant with time after injection, as indicated by curves
deviating from being fiat. Extreme outliers were visible after fitting
Equation 7 with four free parameters. Note the different scale in the
two panels. The range of values of differences from fitting Equation
7 was nearly twice as large as that found using Equation 8. Both the
shape and the size of the differences from fitting Equation 7 to the
values of Cp,(t) made it unreliable for predicting C,(T). In contrast,
when the curve of Cp(t) was fit by Equation 8 the values of the
residuals were smaller and had a fiatter distribution.
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FIGURE 5. Correlation of parameters from fits of Equations 7 (A,
B) and 8 (C, D) to all curves of Cp(t) (n = 119). (A) Correlation
between the two exponents (a, and a,) from Equation 7. (B) Corre-
lation between the two magnitude parameters (b, and b,) from
Equation 7. (C) Correlation between the two exponents (a, and a,)
from Equation 8. (D) Correlation between the two magnitude param-
eters (b, and b,) from Equation 8. The two sets of coefficients
determined by fitting Equation 8 (C, D) showed high correlation and,
therefore, could be replaced by two coefficients without loss of ac-
curacy.

Cp,(t) increased the s.d. of the percentage differences to
over 9%. The increase in the s.d. explains why no satis-
factory parameterization of the surfaces shown in Figure 3
could be found. The model implicit in that calculation ig-
nores the effect of different values of the exponent ““a.”

The percentage residuals for C,(T;) calculated by ana-
lytic integration of Equation 9, as compared to the corre-
sponding values obtained by numeric integration, had a
mean (s.d.) of 0.9% (1.6%) for calculations of C,(T;) and
0.33% (3.6%) for calculations of C,(T;) (Fig. 7).

Equation 9

Cp(t)

% Difference i

0 50 150

Time after injection (min)

FIGURE 6. Percentage difference from fitting Equation 9 to Cp(t).
The area between the horizontal lines indicates the 95% confidence
interval. The values of the s.d. (2.2%) agreed well with the value
given by the counting statistics in the well counter.
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FIGURE 7. The ordinates show percentage differences in values
of C,(T) (left) and C,(T) (right), calculated in two ways using Equa-
tion 3. The differences were obtained by subtracting the values
obtained by analytic integration from those obtained by numeric
integration.

Sensitivity to Peak Cp(t)

Calculation of C,(T) was insensitive to the peak Cp,(t),
as shown by the absence of correlation (r = 0.05) (Fig. 8).
In contrast, calculation of C,(T) was sensitive to the peak,
as shown by the correlation coefficient of 0.60. Comparison
of Figures 7B and 8B shows that the effect of peak height
was only present for a relatively short time after injection.
When T > 45 min the effect of peak height on values of
C,(T) calculated using the modeled plasma curve was neg-
ligible.

The relationship between the magnitude of the percent-
age differences in values of C,(T;) calculated by numeric
integration versus analytic integration of Equation 9 and
the peak value of Cp,(t) was not one of simple proportion.
The curves with the largest values of peak Cp,(t) were not
necessarily those with the largest differences between cal-
culations of C,(T;) made by numeric versus analytic tech-
niques. The time and the shape (primarily the width) of the
peak were also important. Curves of Cp,(t) with a peak
occurring during the first 15-30 sec after FDG injection
often had large positive differences, indicating that results
of the analytic calculation were smaller than the results of
the numeric calculation (Fig. 9A, B). Curves in which the
peak occurred more than 1 min after FDG injection usually
demonstrated negative differences (Fig. 9C, D). Since the
observed differences were only appreciable for calcula-
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FIGURE 8. The ordinates show percentage differences in values
of C,(T) (left) and C,(T) (right), calculated two ways using Equation
3. The differences were obtained by subtracting the values obtained
by analytic integration from those obtained by numeric integration.
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FIGURE 9. (A) Portions of three curves of Cp(t). (B) Correspond-
ing percentage differences between calculations of Equation 3 per-
formed by numeric integration and by analytic integration using, as
Cp(t), Equation 9 with coefficients derived by fitting the equation to all
samples of Cp(t) with t > 20 min. The curves showed that the

magnitudes of the percentage differences were not proportional to
the value of peak Cp,(t) since the curve with the smallest peak had
a difference midway between those from the curves with larger peak
Cp,(t). (C) Portions of three curves of Cp,(t). (D) Corresponding
percentage differences between calculations of Equation 3 per-
formed by numeric integration and by analytic integration using, as
Cp(t), Equation 9 with coefficients derived by fitting the equation to all
samples of Cp(t) with t > 20 min.

tions in which the integration was performed to times T <
45 min, they could be ignored in calculations involving real
PET scans.

Some of the differences between values of C,(T) calcu-
lated by numeric integration and those calculated by ana-
lytic integration might have resulted from undersampling
the curve of Cp(t). The duration of the peak was generally
less than 15 sec, as samples of Cp,(t) immediately preced-
ing and following the sample with peak Cp,(t) generally had
much less than half of the peak value. Some of the large
differences were related to the technique for injection of
FDG, particularly in those cases where the peak Cp,(t)
occurred 1 min or more after the FDG injection was com-
pleted.

Sensitivity to Aberrant Samples

Most of the curves of Cp,(t) were fitted by Equation 9
with small, apparently random discrepancies (Fig. 10A, D).
Some curves had samples that could not be fitted to the
curve of Equation 9. These aberrant samples fell into one
of three categories as follows: individual samples that had
abnormally high or low levels of radioactivity compared to
neighboring samples, pairs of samples whose order appar-
ently had been switched and a block of samples that had
lower activity than was expected of a smooth function (Fig.
10B, C, E, F). Ten of the 119 curves of Cp,(t) displayed
one of these forms of aberration.

Another common problem with curves of Cp,(t) was
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missing data. This problem resulted from failure to draw
scheduled samples (as commonly happened when the sub-
ject was being moved into the scanner). Missing a value of
Cp,(t) resulted in a numeric integration calculation of C,(t)
that was larger, by as much as 5%, than would have been
calculated had the sample been present. The increase in the
calculated value of C,(t) resulted from linear interpolation
between samples of Cp,(t). Since the curve is always con-
cave upward for t > 20 min, the interpolation always over-
estimates the value of Cp,(t) between samples.

Discrepancies between measured values of Cp,(t) and
those calculated from the fitted curves were related to
differences in the values of C,(T) calculated by numeric vs.
by analytic integration. The discrepancies were directly
proportional to the difference in Cp(t) between measured
and fitted values when t = T (Fig. 11A), but not when t #
T (data not shown). The lack of correlation at other times
demonstrated the dependence of C,(T) on only a few sam-
ples of Cp,(t), specifically those samples with t = T. Cal-
culations of C,(T) were not sensitive to individual samples
of Cp,(t) and, hence, showed no correlation with the vari-
able on the abscissa of the plot, the difference between
Cp,(t) and Cp(t) calculated from the fitted function (Fig.
11B).

Number of Plasma Samples Required

Linear correlation coefficients were obtained among six
sets of values of Cy(T). The correlation coefficients were all
greater than 0.9 (Table 3). The means of the percentage
differences were all smaller than the standard deviations
(data not shown). Therefore, the analytic calculations of
C,(T) were not sensitive to the number of samples of Cp,(t)
to which Equation 9 was fitted. The calculation also was
not sensitive to the distribution in time of the samples.

Values of C,(T) in Set 1 were compared to values of
C,(T) in Set 6. The mean (s.d.) of the percentage differ-
ences between the two sets of values of C,(T) was 0.003%
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(2.1%) (Fig. 12A). The equivalent calculation for C,(T)
revealed a mean (s.d.) of 0.55% (3.9%) (Fig. 12B). These
results agreed well with those found in the comparison
(above) of values of C,(T) in Set 1 to those in Set 2, which
were determined based on fitting Equation 9 to all samples
of Cp,(t) with t > 20 min.

Comparisons were performed between the values of
C.(T) in Set 2 and those in Set 6. The standard deviations
of the percentage residuals were 1.2% and 2.0% for calcu-
lations of C,(T) and C,(T), respectively (Fig. 12C, D). Thus
the values of C,(T) in Set 6, which were based on only six
samples of Cp,(t), were equivalent to the values of C,(T) in
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FIGURE 11. Ordinates show percentage differences in values of
C, (T (left) and C,(T) (right) calculated two ways using Equation 3.
The differences were obtained by subtracting the values obtained by
analytic integration from those obtained by numeric integration. The
percentage differences between the analytic and numeric calcula-
tions of C,(T) are comrelated with the percentage differences (or
percentage residuals) from fitting Equation 9 to the samples of Cp(t)
(r = 0.79). Presence of a high correlation coefficient implies that the
difference between the two calculations of C,(T) was due to the
residual in the fit of Cp(t). When the residuals in the fit of Equation 9
to Cp(t) were small, then the differences in the two calculations of
C,(T) were also small. In contrast, there was a low correlation
coefficient between the differences in calculation of C,(T) and in the
fit of Equation 9 to Cp(t), therefore, the calculation was sensitive to
samples of Cp(t) other than those with t = T.
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TABLE 3
Correlation Coefficients for Linear Correlation between C,(T) Values Calculated with Multiple Definitions for Cp(t) Versus C,(T)
Values Calculated with Several Possible Definitions for Cp(t)*

C,M

Definition 1 2 3 4 5 6
1 1.0000 0.9989 0.9998 0.9988 0.9992 0.9802
2 0.9989 1.0000 0.9989 0.9984 0.9982 0.9797
3 0.9998 0.9989 1.0000 0.9990 0.9991 0.9808
4 0.9988 0.9984 0.9990 1.0000 0.9979 0.9795
5 0.9992 0.9982 0.9991 0.9979 1.0000 0.9792
6 0.9802 0.9797 0.9808 0.9795 0.9792 1.0000

C.(M

1 2 4 5 6
1 1.0000 0.9918 0.9996 0.9987 0.9972 0.9270
2 0.9918 1.0000 0.9914 0.9914 0.9907 0.9192
3 0.9996 0.9914 1.0000 0.9991 0.9966 0.9279
4 0.9987 0.9914 0.9991 1.0000 0.9950 0.9215
5 0.9972 0.9907 0.9966 0.9950 1.0000 0.9237
6 0.9270 0.9192 0.9279 0.9215 0.9237 1.0000

*The six definitions for the function Cp(t) in Equation 3 were as follows:

. The measured values of Cp,(t) (using numeric integration).
Fitting Equation 9 to all samples of Cp,(t) with t > 20 min.

O HWN -

residuals and refitting.

Fitting Equation 9 to samples used in item 2, removing the two samples with the largest residual from the fitting process, and refitting.
Fitting Equation 9 to the six earliest samples with t > 20 min, removing the two samples with the largest residuais and refitting.

Fitting Equation 9 to the six latest samples with t > 20 min, removing the two samples with the largest residuals and refitting.

Selecting six samples uniformly spaced in time with 20 min < t < 90 min and fitting to Equation 9, removing the two samples with the largest

The calculation of the values of C,(T) in Set 1 was performed using numeric integration, all the others used analytic integration. The correlation
coefficients were >0.9 for both results of calculations of C,(T) and C,(T). Furthermore, the means of the percentage residuals were all less than the
corresponding standard deviations. Therefore, all six calculation methods produced equivalent results.

Set 2, which were based on all available samples of Cp,(t)
with t > 20 min. The results of calculations of C,(T) in both
Set 2 and Set 6 were equivalent to those in Set 1, which were
based on numeric integration of all samples of Cp,(t).
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FIGURE 12. (A, B) The ordinates show percentage differences in
values of C,(T) (A) and C,(T) (B) calculated two ways using Equa-
tion 3. (C, D) The ordinates show differences in calcu-

lations of C,(T) (C) and C,(T) (D) by analytic integration of Set 6
versus Set 2 using Equation 3.
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DISCUSSION

The results demonstrate that CMRglc can be calculated
from a small number of arterial plasma samples. The pro-
posed technique uses six samples of Cp(t), and provides a
precision and accuracy of +5% (95% confidence interval)
of that achieved using the standard technique, which uses
numeric integration of 30 or more values of Cp,(t). The use
of six samples permits detection and removal of up to two
aberrant samples during the fitting process. The proposed
technique is less sensitive than the standard technique to
missing or aberrant samples.

The high correlations between values of C(T) and Cp(t)
proved that one could, in principle, calculate CMRglc using
a single sample of Cp(t). The correlations required only a
standardization of t and T within each dataset, and were
applicable for any t and T greater than 20 min. This finding
supported and extended the findings that calculations of CM-
Rglc based on using two samples of Cp(t) to renormalize a
population-average curve of Cp(t) correlated well with values
calculated by the conventional method (9). Nonetheless, cal-
culation of CMRglc from only one or two samples of Cp(t)
can be influenced by aberrant samples, which can cause
discrepancies of up to 20%. The presence of such samples in
10 of the 119 studies forced us to implement an algorithm that
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could detect and remove such samples from the analysis. In
addition, we could discover no accurate and efficient param-
eterization of the equation required to calculate the values of
C(T) given a single value of Cp(t) when the times (t and T)
were arbitrary.

Using Equation 7 to fit the curve of Cp(t) revealed two
problems related to fitting a sum of exponentials to the time
course of Cp(t). The fit of Cp(t) to the equation was not
accurate, and the predictions of C,(T) varied with the se-
lection of data points. Use of Equation 8 or 9 as a fitting
function solved both of these problems.

Studies of the number of parameters showed that Equa-
tion 8 could be used to fit the curve of Cp(t) using only two
free parameters (Eq. 9). These studies relied on the high
correlation between like parameters (i.e., a, was correlated
with a,, and b, was correlated with b,). The relationship of
the pairs of parameters was represented as a proportion
rather than just a linear correlation. Reducing the number
of free parameters from four to two reduced the number of
data points required to achieve stable predictions of C,(T).

Studies of the model showed that calculations based on
one or two samples of Cp(t) are vulnerable to variations in
the shape of the curve of Cp(t). The proposed technique is
superior to using a curve shape derived by averaging a
sample of such curves (9).

There is variation (approximately 10%) in the time course
of Cp(t), for which our procedure corrects by allowing the
exponent ““a” to vary. A fixed curve, of whatever shape,
cannot account for such variation. The variation in curve
shape represented by the variable ““a’” is one of the main
reasons that no suitable parameterization could be found that
would allow calculation of C(T) from individual values of
Cp(t).

The set of data used in these analyses included plasma
curves from subjects who experienced a range of perturba-
tions in physical state including: changes in heart rate (pri-
marily tachycardia due to cocaine and nicotine), hypercapnia
(induced by morphine and breathing increased amounts of
CO0,), decreased breathing rate (induced by morphine and
buprenorphine), and others. None of these perturbations in-
duced any conditions which invalidated or worsened the
agreement of the model calculations with those of numeric
integration. Had any such effect been present, there would
have been outliers present in at least some of the figures.

The samples required for the proposed model are taken
late in the procedure (i.e., 45 min or later after injection of
FDG). At these times, measures of Cp,(t) taken from venous
blood samples closely (within 2%) match those measured
using arterial plasma samples (21). Therefore, the plasma
samples required for analysis, using this method, might be
taken from venous blood without loss of accuracy or preci-
sion.

CONCLUSION

A technique is proposed for estimating CMR;,. using
single-scan FDG-PET. The technique requires only six
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arterial plasma samples. To perform the most stable calcu-
lation of C,(T), plasma samples should be taken at 10-15-
min intervals starting at least 30 min after injection of the
radiotracer, thus obviating the need for sampling at 10-15-
sec intervals. This technique has been shown to be valid
over a wide range of physiological manipulations caused by
administration of drugs of abuse. It is expected that the
technique is valid in virtually any situation in which the
static (or single-scan) FDG-PET measurement technique is
valid. Further testing is required to determine if it is appli-
cable to studies in which the subject undergoes glucose
loading or elevation of insulin concentration in plasma.

ACKNOWLEDGMENTS

The authors thank Drs. R.F. Dannals and H. Ravert, who
prepared the FDG, and D. Clough, CNMT and S. Herda, CNMT,
who operated the PET scanner. They also gratefully thank Drs.
R.A. Margolin, E.P.M. Broussolle, J.M. Stapleton, M.J. Morgan,
N.G. Cascella, V.L. Villemagne, E.K. Shaya and S.F. Gilson for
their contributions, as well as L.P. Rippetoe, RN, R. Stauffer,
MS, RN, and M. Smith, RN, who participated in the data collec-
tion. The authors are deeply indebted to Drs. J.M. Links, D.B.
Vaupel and S.J. Grant for their helpful discussions of the theory
and presentation of our findings.

REFERENCES

1. Sokoloff L, Reivich M, Kennedy C, et al. The [**C]deoxyglucose method
for the measurement of local cerebral glucose utilization: theory, procedure,
and normal values in the conscious and anesthetized albino rat. J Neuro-
chem 1977;28:897-916.

2. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomo-
graphic measurement of local cerebral glucose metabolic rate in humans
with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol
1979;6:371-388.

3. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Non-
invasive determination of local cerebral metabolic rate of glucose in man.
Am J Physiol 1980;238:E69-ES82.

4. Huang SC, Phelps ME, Hoffman EJ, Kuhl DE. Error sensitivity of
fluorodeoxyglucose method for measurement of cerebral metabolic rate of
glucose. J Cereb Blood Flow Metab 1981;1:391-401.

S. Reivich M, Alavi A, Wolf A, et al. Use of 2-deoxy-D[1-''Cglucose for the
determination of local cerebral glucose metabolism in humans: variation
within and between subjects. J Cereb Blood Flow Metab 1982;2:307-319.

6. Kato A, Menon D, Diksic M, Yamamoto YC. Influence of the input func-
tion on the calculation of the local cerebral metabolic rate for glucose in the
deoxyglucose method. J Cereb Blood Flow Metab 1984;4:41-46.

7. Kuwabara H, Gjedde A. Measurements of glucose phosphorylation with
FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate.
J Nucl Med 1991;32:692-698.

8. Tamaki N, Yonekura Y, Kawamoto M, et al. Simple quantification of
regional myocardial uptake on fluorine-18-deoxyglucose in the fasting con-
dition. J Nucl Med 1991;32:2152-2157.

9. Takikawa S, Dhawan V, Spetsieris P, et al. Noninvasive quantitative fluo-
rodeoxyglucose PET studies with an estimated input function derived from
a population-based arterial blood curve. Radiology 1993;188:131-136.

10. Brooks RA. Alternative formula for glucose utilization using labeled deoxy-
glucose. J Nucl Med 1982;23:538-539.

11. Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ.
Alternative approach to single-scan estimation of cerebral glucose meta-
bolic rate using glucose analogs, with particular application to ischemia. J
Cereb Blood Flow Metab 1984;4:35-40.

12. London ED, Cascella NG, Wong DF, et al. Cocaine-induced reduction of
glucose utilization in human brain. A study using positron emission tomog-
raphy and [fluorine-18]fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:
567-574.

13. London ED, Broussolle EPM, Links JM, et al. Morphine-induced meta-
bolic changes in human brain: Studies with positron emission tomography
and [fluorine-18]fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:73-81.

The Joumnal of Nuclear Medicine * Vol. 36 * No. 9 » September 1995



. Walsh SL, Gilson SF, Jasinski DR, et al. Buprenorphine reduces cerebral

glucose metabolism in polydrug abusers. Neuropsychopharmacol 1994;10:
157-170.

. Stapleton JM, Henningfield JE, Wong DF, et al. Effects of nicotine on

cerebral metabolism and subjective responses in human volunteers [Ab-
stract]. Soc Neurosci Abstr 1992;18:1074.

. London ED, Margolin RA, Wong DF, et al. Cerebral glucose utilization in

human heroin addicts: case reports from a positron emission tomographic
study. Res Commun Subst Abuse 1989;10:141-144.

. Brooks RA, Di Chiro G, Zukerberg BW, Bairamian D, Larson SM. Test-

retest studies of cerebral glucose metabolism using fluorine-18 deoxyglu-
cose: validation of method. J Nucl Med 1987;28:53-59.

(continued from page 1552)

18. Chang JY, Duara R, Barker W, Apicella A, Finn R. Two behavioral states

studied in a single PET/FDG procedure: theory, method, and preliminary
results. J Nucl Med 1987;28:852-860.

19. Chang JY, Duara R, Barker W, et al. Two behavioral states studied in a

single PET/FDG procedure: error analysis. J Nucl Med 1989;30:93-105.

20. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of

no-carrier-added 2-['®F]-fluoro-2-deoxy-D-glucose using aminopolyether
supported nucleophilic substitution. J Nucl Med 1986;27:235-238.

21. Ohtake T, Kosaka N, Watanabe T, et al. Noninvasive method to obtain

input function for measuring tissue glucose utilization of thoracic and ab-
dominal organs. J Nucl Med 1991;32:1432-1438.

FIRST IMPRESSIONS:
TESTICULAR LESIONAL UPTAKE OF TECHNETIUM-99M-MDP

PURPOSE

A 35-yr-old man with a history of osteomyelitis in the
right upper femur was evaluated with " Tc-methylene
diphosphonate (MDP) scintigraphy. An anterior pelvic
image showed increased activity in the right trochanter
and a focus of activity in the left side of the scrotum,
suggesting a testicular lesion (Fig. 1). A repeat image
(Fig. 2) obtained after the patient changed clothes and
washed the area resulted in a normal scrotal image,
confirming urine contamination.
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FIGURE 2.

Model to Calculate Glucose Metabolism ¢ Phillips et al.
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