
matical compartmental analysis have enabled quantifica
tion of receptor concentration and ligand affinityof these
receptors in the human brain. All previously described
methods, however, are based on the ligand-receptorinter
action model, whose usual structure includes three com
partments (plasma, free and bound ligand) and five param
eters (the receptor concentration, B@, and four kinetic
parameters, including association and dissociation rate
constants). The typical approach is to perform a kinetic
PET experiment, define regions of interest (ROIs)on brain
activity maps and deduce the corresponding time-concen
tration curves. Depending on the modeling approach im
plemented, these curves are used in one of three ways:

1. To calculate an index that presumably correlates with
the receptor concentration [e.g., the distributionvol
ume approachproposed by Koeppe et al. (4)].

2. To estimate receptor concentration directly [e.g., the
equilibrium approach based on Scatchard analysis
(5)].

3. To estimate ligand-receptor interaction model param
eters by using a fitting procedure, which may or may
not include receptor concentration.

Although the PET data correspond to ligand concentra
tion images, model parametric estimates are usually ob
tamed only for a few ROIs. Therefore, methods have been
devised to obtain parametric images of the receptor con
centration and some kinetic parameters.The advantage of
such images is visual screening of ligand transport and
receptor site concentration in the entire brain. Similar to
the ROI approach, these imaging methods can provide
receptor concentration images directly or index images of
receptor concentration. In the latter case, the correlation
between these indices and the receptor concentration re
quires validation studies.

The easiest approach assumes that the regional ligand
concentration images obtained approximately20 mm after
injection of['1C]flumazenil reflect benzodiazepine receptor
density (6). The main advantage of this approach is its
simplicity. Koeppe et al. (4) have suggested the use of a
two-parameter, two-compartment model to separate ligand

Invivostudiesof Iigand-receptorinteractionswithPETdataare
based on differentapproaches that provide either quantitative
results(receptordensityandaffinity)or indicesthatareassumed
to be correlatedwiththe receptorconcentration.The aims ofthis
studyareto obtainparametricimagesof benzodiazeplnerecep
for concentrationandof fiumazenilaffinityandto studythe va
IIdityof two receptorconcentrationindexes.Methods:A three
comparU@ientIigand-receÃ§@ormodel, [11CJflumazer@I,and
expenmentaldata obtainedusinga three-injectionprotocolin
humanvolunteerswereusedtoacquireparametricimages.The
delayedactivitymethodand the apparentdistributionvolume
(estimatedusinga two-compartmentmodet@werealso tested
andtheirresultscomparedw@thoseof the mufti-injectionap
proach. Results: Parametricimages of receptordensity,affinity
andall kineticparai@eterewereobtalnedwithacceptablevans
lioncoeffidents.A correlationbetweenreceptordensityandap
parentaffinitywasfound(r = 0.83;p < 0.0005).Thecorrelation
betweenreceptorconcentrationand apparentdistilbutionvol
urns (estimatedwith three-and two-compartmentmodels,u's-
spectively)wasaccessedusingbotha linear(theusualhypc@h
esis)and a nor@inearcorrelationderivedfromthe relationship
betweenthe receptordensityand the affinity.Conclusion: In
spite of the complexity of this protocol (three injections,a 2-hr
experimentbloodsamplinganda metabolitestudy),weshowed
thatthe mufti-injectionapproachis suftat@efor parametÃ±cbrain
imaging.Byusingthlsapproachasa reference,wededucedthat
the distributionvolumeand delayedactivityirnegesare valid
methods in the usual rangeofthe benzodiazepiriereceptorcon
centrationsfoundinthe humanbrain.
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enzodiazepine receptors have been studied in humans
using PET and [â€œCjflumazenil([â€œC]FMZ),an antagonist
ligand with high affinity and selectivity for central benzo
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diazepine receptors (1â€”3).Recent developments in mathe
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transport rate from the binding reaction. Pixel-by-pixel
analyses have been developed to yield functionalimages of
the transport rate (k1) and the apparent distribution volume
of the ligand (DVâ€•),thus providing independent estimates
of the ligand delivery and the benzodiazepine binding
(4,6,7).

The two methods are simple and need only a single
injection of tracer. They can, however, only provide indi
ces of receptor concentration, since the quantificationof
both receptor density (B,,,@)and the apparentequilibrium
dissociation constant (K.@V@requires different concentra
tions of bound ligand usually obtained using at least two
injections of the ligand with different specific radioactivi
ties. The study of Blomqvist et al. (8) was the first attempt
to determine a benzodiazepine receptor map using data
from two experiments on the same subject (two single
radioligandinjections with high- and low-specific activity,
respectively). The estimation of the three parameters (re
ceptor concentration, association and dissociation rate
constants) was obtained with a kinetic approach in which
the free radioligandconcentration was estimated from a
reference region assumed to be free of specific receptor
sites.

Previous studies have shown that the five parametersof
the flumazenil-benzodiazepinemodel can be identifiedwith
reasonable standarderrors,using a multi-injectionprotocol
(9). We have applied this modeling approach to obtain
brain maps of receptor concentration, ligand affinity and
the two kinetic parameters describing the exchanges be
tween plasma and the free ligand compartments. In this
article, we discuss some correlations between the model
parameters, such as linear correlation between receptor
density and apparent ligand affinity, which confirms results
reported from several other groups, including Delforge et
al. (10). Our experimental data have also been used to
compute indices according to previously published meth
ods (delayed activity maps and the distribution volume
approach). The correlation between these indices and re
ceptor concentrations identified with the multi-injection
approach are discussed.

METhODS

Ugand-Receptor Model
The compartmentmodelused in this study(Fig. 1) is a non

equilibrium,nonlinearmodel(9,11),whichcomprisesthreecom
partments(unmetabolizedFMZ in plasma, free ligandand ligand
bound to receptor sites) and fiveparameters.The parametersk1
andk2areassociatedwiththeexchangesbetweentheplasmaand
thefreeligandcompartment,B@ representstheconcentrationof
receptorsavailableforbinding,k.,,,,andk.,,@arethe associationand
dissociationrate constants, respectively,and VRis the volumeof
reactionthataccountsfortissueinhomogeneity(12).Theparam
eters, lc@@and VR,however,cannotbe estimatedseparately,and
only the ratioâ€˜@OJâ€•R@Sidentifiable.Consequently,only the ap
parentequilibriumdissociation constant K.@VR@ be estimated,
iÃ§being definedas the ratio@ The parameter Fv repre
sents the fractionof bloodpresentin the tissuevolumeandis
assumed to be 0.04 in this study. This model does not include

FIGURE 1. Three-compar@entIlgand-reCeptOrmodel. (Fop)
Radioligandkinetics (quantitiesdenotedwfth a star superscript).
(Bottom)Same modelfor the unlabeledllgand.All ligandtransfer
probabilitIesbetweencompartmentsare linearexceptthe bIndk@I9
probability,whdi dependson the bimOlecUlarassociationratecon
stant (k@, on the localfree llgandconcentration(M,(t@N@,)and on
the localconcentrationof free receptorsites[B@ - M@(t)- Mb(t)J.
The PET experimentaldata correspondto the sum of the labeled
ligandin the free and boundcompartmentsand fractionF@of the
bloodcompartmentassumedto be equalto 0.04.

nonspecificFMZbinding,whichcanbe consideredas negligiblein
vivo (13). Moreover, if a weak nonspecific binding exists, it is
combinedwiththefreeligandcompartment(14,15).

The multi-injectionprotocolsincludeinjectionof unlabeled
ligand (with orwithout simultaneouslabeled ligand injection). The
kinetics of the unlabeled ligand affect the local concentration of
free receptorsites and must thereforebe taken into account.The
unlabeled and labeled ligand kinetics are assumed to be similar,
therefore,the modelcontainstwo partswiththe samestructure
andthesameparameters.Theplasmaconcentrationof theumne
tabolized unlabeled ligand has been simulated from the curve
correspondingto the labeledligand.Parameteridentificationand
simulations of labeled and unlabeled ligand kinetics have been
performed using the equation system corresponding to the model
diagram of Figure 1 (9).

Experimental Protocol
Theparametricimagingtechniquewas testedon experimental

data obtained from three healthy male volunteers using a three
injectionprotocol:tracerinjection,unlabeledFMZinjectionand
coinjectionoflabeledandunlabeledFMZ.FMZwaslabeledwith
â€œC,usingthemethylationprocessdescribedby MaziÃ¨reet al.
(16). At the start of the experiment, about 15 mCi of [â€œC]FMZ
wereintravenouslyinjectedovera 1-misperiod.Thecorrespond
ingdosesof radioactivetracerwere7.0, 5.7 and11.2p.g,respec
tively. At 39 min, an intravenous injection of 0.01 mg/kg of unla
beled ligandwas administered(displacementinjection).At 69
mm, a mixture of labeled (â€”9mCi at the injection time) and
unlabeled FMZ in the same syringe (coinjection) was injected.
Theinjecteddoseswere14.2,33.3and38.4 zg,respectively,for
[â€˜1C]FMZand 1.4, 6.5 and 7.5 mg, respectively, for FMZ. At time
0, the specific activity of [11C]FMZwas 683, 649 and 462 mCi!
pmole, respectively.The total experimentlasted about 120mm.

PET Measurementsand ModI Input Function
ThePETstudieswereperformedon an ECAT953Bpositron

tomograph, a brain imaging system capable of acquiring 31 con
tinuousslices simultaneously(17). Axial resolutionis 5 mm
(FWHM), and spatial transverse resolution on the reconstructed
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imageswith the Harmingfilteris 8.4 mm. After each injectionof
labeled FMZ, 50 sequential PET scans of increasing duration
(from30 sec to 5 mm)werereconstructed.

Seventy arterialblood samples (â€”0.3mmeach) were collected
fromthe radialartery.The time intervalbetweeneach sample
varied from 5 sec, during the 2 mm following each injection of
labeled FMZ, to 10 mmn,when the change in the blood radioac
tivity concentration slowed down. After rapid blood centrifuga
tion, the plasma â€˜1Cradioactivitywas measured using a gamma
counting system. The time-activity curves were then corrected for
physical decay of 11Cactivity, and the plasma radioactivitycon
centrations were transformed in FMZ time-concentration curves
using the correspondingspecific radioactivityof [â€œC]FMZ.The
percentageof nonmetabolized[11C]FMZin plasmawas measured
at five different moments (2, 5, 10, 20, 39 min) by thin-layer
chromatography (18) and described by the curve

f(t)=A+(100â€”A)e@,

wheret is the timeexpressedinminutes.Themeancoefficients,
(A = 31 Â±13,B = 0.12Â±0.01),werecloselyapproximatedto the
results obtained by Debruynes et al. (19).

ParametrIc ImagIng
For parametricimagingusingthe multi-injectionapproach,a

sampling procedure for each sequential scan is necessary to ac
cess radioligandconcentration versus time in all regions of the
brainslice. These ROIs are composed of a set of 4 (2 x 2) or 12
(3 x 4) pixels.

The 4- and 12-pixel sampling procedures were used to build
parametermaps and study correlations of the differentparame
ters. These sampling procedures created files with all kinetic
curves andinformationnecessary for the identificationprocedure.
To avoidbiaseson thebrainboundaries,onlyROIswherepixels
were in the brain tissue were considered,using a threshold
method. The model parameterswere identifiedthrougha minimi
zation of a weighted least squarescost functionusinga Marquardt
algorithm(20). On a SparcStation 10 M30 (Sun Micro Systems,
Mountain View, CA), calculation time for each slice lasted from
20 hr (for the 12-pixelsampling,which led to about 320ROIs)to
60 hr (for the 4-pixelsampling,which led to about 1000ROIs),
correspondingto a fit of four parametersfrom a 120-mmexperi
ment. The fittingprocedures provided a file of estimated param
eters from which maps were built.

The firstpartof ourexperimentdata,equivalentto thatof a
single-tracer injection study, was used to test simplified methods
(distributionvolume approachand delayed activity maps). Pars
metric images thus were obtained using the two-parameter,two
compartmentmodel (4) and 4-pixelsampling.The two parame
ters, denoted by k1 and k, were identified by the Marquardt
minimizationmethodwith a vascular fraction, Fv, assumed to be
equal to 0.04, and the unmetabolized FMZ concentration in
plasma as the inputfunction. Images of parameterk1and of k1/k@
(the apparent distribution volume denoted by DVâ€•)were con
structed. Early and delayed activity images were reconstructed
duringthe first 3 min and between 24 and 39 min, respectively,
after injection of high-specific activity FMZ.

RESULTS 0

Parameter Identification
Fitting the five-parameterthree-compartmentmodel to

time-concentrationcurves from our experimentalprotocol

provided estimates for kinetic rate constants and receptor
densities with acceptable standarderrors, even in low re
ceptor density areas (9). These studies, however, were
performed with a limited number of large ROIs.

Parametric imaging requires small ROIs to obtain images
with good resolution. Some of these regions have a low
concentrationof receptor sites, and the bindingparameters
were difficult to estimate. Therefore, difficulties in fitting
the five parametersof the model due to the noise level of
small and receptor-poor regions were not surprising ini
tially. We then investigated the possibility of improving
parametric estimation by reducing the number of parame
ters. Previous results showed that the dissociation rate
constant k0ffis independent of receptor concentration and
can be considered a constant independent of the ROIs (9).
Therefore, for each subject, the parametersk.@were fixed
to the value estimated from a fitting procedure of the
whole-brain region time-activity curve.

To check that this simplificationdoes not affect the re
suits, we compared the estimates obtained with the four
and the five-parametermodels in receptor-poorand recep
tor-richregions. Table 1 shows the parameterestimates for
four ROIs and the standard errors calculated using the
covariancematrix. In receptor-richregions,the fitting pro
cedure provides similar estimates, regardless of the model
used, with better standarderrors. For the four-parameter
model, however, the standard error on parameter kOJVR
was reduced by a factor of â€”10.The main parameters
(B@ andKdVR)remainunchangedby this simplification,
with variations smaller than 1%.In receptor-poor regions,
the fittingprocedurewith the five-parametermodel results
in unacceptable standarderrorsfor parameterskOJVRand
k0ff (e.g., in Table 1: 0.207 Â±0.411 and 0.112 Â±0.204
ml/[pmole ruin], 1.41 Â±503 and 0.64 Â±0.75 min', respec
tively). The use of the four-parameter model (k.@fixed),
dramatically reduces the standard errors on !cJ,JVR(0.108
Â±0.024 and 0.131 Â±0.041 ml/[pmole minj)without altering
the order of magnitudeof the other values.

The decrease in the numberof pixels in the small ROIs
increases noise in the time-concentration curves. Conse
quently, a balance between these two factors (sampling
and noise) must be found. Parameterestimates have been
studied in receptor-poor and receptor-rich regions with
4-pixel and 12-pixel sampling. Four-pixel sampling pro
duces noisier experimental data and, consequently, a
higher standard error for each parameter is expected. The
estimated parameters with 4-pixel sampling (means and
standard errors) appear to be similar to those with 12-pixel
sampling, despite increasing noise. Studies using ROIs
with a smaller number of pixels (1 or 2 pixels) led to
unacceptable results due to a significantamount of noise.

The diagramin Figure2 represents the numberof 4-pixel
ROIs as a function of the relative standard errors for the
B@ parameter.The standarderrorswere calculated with
a covariance matrix. The relative standard errors are less
than 20%in about 75%of the ROIs. In a small numberof
ROIs (less than 1%),this errorestimate is large (more than
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TABLE I
MOdelParametersof the FMZKineticsEstimatedfromFourRegionsof Interestw@ithe Ave-Parameter,Three-Compartment

Modelandthe Four-Parameter,Three-CompartmentModel

B@ @moleftn@ 71.5Â±5.9 71.3Â±3.5 54.0Â±4.1 54.9Â±3.2 21.6Â±7.4 22.2Â±4.9 15.1 Â±7.0 15.8Â±5.9

k1(mln')

k2(m1n1)

0.30Â±0.02 0.34Â±0.02 0.27Â±0.01 0.27Â±0.01 0.15Â±0.02 0.16Â±0.02 0.13Â±0.02 0.14Â±0.02

0.51Â±0.04 0.55Â±0.04 0.49Â±0.05 0.50Â±0.04 0.27Â±0.04 0.26Â±0.03 0.31Â±0.05 0.32Â±0.05

koMR(@WP'nÂ°@ 0.075Â±0.043 0.066Â±0.004 0.081 Â±0.042 0.080Â±0.003 0.207Â±0.411 0.108Â±0.024 0.112Â±0.204 0.131 Â±0.041
mm])

1(01(miur1) 0.88 Â±0.52 0.756' 0.74 Â±0.47 0.756 1.41 Â±5.03 0.756 0.64 Â±0.75 0.756'

KdV@@ (pnde/nl) 11.7 Â±1.3 11.5 Â±0.7 9.1 Â±0.7 9.4 Â±0.4 6.8 Â±1.6 7.0 Â±1.5 5.7 Â±4.2 5.8 Â±1.8

â€¢Ste@@&derrorscorrespondingto the parameterestimatescalculatedby usingthe covarlancematrix.
**Kd=ko@4@@n.

â€˜Fbedparameter.
tCo@ regk@ns.
tCerebeflarre@ons.

60%) but only because the large residual distance between
noisy experimental data and the simulated curves, the fit
ting result and the order of magnitude of the parameter
values appearvalid. The same results were found for the
K.@VRparameter.

BraIn Maps of Model Parameters
From the three-injection protocol data, all model param

eters (k0ffbeing fixed) were estimated and parametricim
ages of receptor density (B@,,,Jand three kinetic parame
ters (k1, k2, lc,,,,/V@,Jwere built. The K.JVR image was

computed by dividing the dissociation rate constant (lc@@)
by the â€˜@OIT/VRimage.

For example, Figure 3 shows the parametricimages of
B@, K.@VR,k1, k2in the brainof a normalvolunteer. The
images represent one tomographic slice passing through

B K@VR
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andestimatedbythethree-injectionprotocol.Thetomographicslice
passesthroughthe basal ganglia,the thalamusand the frontal,
temporaland ocdpital cortices.Four-pixelsamplingallows good
definftlonforeachparametricimage.

FiGURE 2. Dlagramrepresentingthe numberof 4-pixelROlsas
a functionof the correspondingrelativestandarderrorson B@.
These resultscorrespondto the parametricimagesobtainedwith
ourthree-injectionprotocolshowninFigure3.
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the basal ganglia, thalamus and the frontal, temporal and
occipital cortices. The B@ values reveal a relatively ho
mogeneous pattern across the major gray matter struc
tures, with lower values observed in white matter, result
ing in good structuraldefinitionof the B@ image (Fig. 3,
top left). The k2map appears to correlatewith the k1map,
which represents the [â€œC]FMZtransport rate (Fig. 3, bot
tom right). Large variations (range 4 to 14 pmole!ml) are
observed in the K@JVRmap (Fig. 3, top right).

Correlations between Parameters
Parametricimages provide several estimated values that

correspond to the large volume of ROIs, thus allowing
study of the correlations between the model parameters. In
a recent study using large ROIs in several subjects, linear
correlation was shown between receptor density (B@)
and the apparent equilibrium dissociation rate constant

@ (10). This correlation clearly appears again in Fig
ure4A, which represents the plot of K@JVR(computedusing
a fixed k0ffand estimated k@JV@and the estimated B@
values across all regions of the slice represented in
Figure 3. The solid straight line corresponds to the linear
correlation given by the equation:

1QVR=Cl+C@B@,

which seems to be significant (r = 0.83). Figure 4B shows
the relationship between@ and 1Ã§JVR.Since k@ is
assumed to be a constant (0.756 min1 in this example)
independent of the ROIs, k@.jVRis directly related to
Kd@'R, and thus the analytical relationship between the

association rate constant (k.jV@) and receptor density
(B@) can be deduced fromthe previous correlationshown
in Figure4A between K.JVRand B@. The following equa
tion is then obtained:

k0@@ k0ff
V@(C1+C@B@J

This curve, plotted in Figure 4B (solid line), correlates
effectively with the estimated values (r = 0.79).

The k1:k2ratio is often considered as a constant mdc
pendent of the ROIs; these two parametersare assumed to
depend on blood flow (4,21,22). We studied the k1:k2ratio
as a function of B@ values (Table 2). This result does not
show any correlation between the two parameters (r =
0.01) and indicates a variability independent of the B@
value (k1/k2= 0.555 Â±0.056).

Table 2 gives the detailed data for all three experiments,
while Figures 1â€”7refer only to experiment 3.

Actlvfty Maps and 1@o-CompartmentApproaches
Several authors have proposed using delayed activity

images as an index of receptor density and early activity
images as an index of ligand transport rate (23â€”25).
Figure 5 shows a delayed activity image (top left) corre
sponding to the activity measured with PET between 24
and 39 min after tracer injection, and an early activity

A
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r = 0.83

KV =3.@+0.l14BdR

40 60 80 100

r =0.79

k@/V@=0.756/(3.43+0.114B@,)

0@07

0

B' (pmol!ml)
ax,

FIGURE 4. EStimatedvaluesof K@VR(A)andof kJVR (B)as a
functionof the B@ estimates.The opencirclesare estimatedpa
rametervaluesobtainedfromall regionsofthe samebrainslice(Fig.
3).ThesolidlineinFigure4Arepresentsthelinearcorrelation(r =
0.83). The nonlinear curve presented in Figure 4B Is deduced from
this previouscorrelationandthe k@,1,value (0.756mur1).

Delayed Activity

I
FiGURE 5. DelayedandeariyactMtyimages(firstcolumn)ofthe
apparent distnbutionvolume and k1 from the two-compartment
model(secondcolumn)andof B@ andk1fromthethree-compart
mentmodel(thirdcolumn).It representsthe sameslicein Figure3.
Theflrst rowshowsthreeindicesofthe reCeptordensitysecondrow
representsthreeindicesoftheligandtransportrate.
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Correlations Exp.I Eq. 2 Exp.3Mean Â±s.dY@KdV@

C1 + C2B@ C1 = 3.19 C2 = 0.122 C1 = 5.38 C2 = 0.084 C1 = 3.43 C2=0.114r
= 0.83 r = 0.77 r = 0.83r = 0.81Â±0.03konNR

@@/(C+ C2 B@1@,) Ice. 0.722 k@ 0.394@ 0.756r

= 0.81 r = 0.70 r = 0.79r=0.77Â±0.05k1/k@
= C3 + c4B:@.@ C3 = 0.411 C4= 0.00066 C3 = 0.630C4 = â€”0.00025C3=0.555C4=0.00042r

= 0.15 r = 0.09 r = 0.01r = 0.06Â±0.06D,@1
C5 + C6DV@, C5 = 2.92 C6 = 26.8 C5 = â€”4.26C6 16.7 C5 4.60 C617.9r

= 0.991 r = 0.989 r = 0.996r = 0.992Â±0.003E@=C@+C8k1
C@=5.66C8=260.5 C@=10.50C= 175.5C@=2.88C8=267.0r

= 0.933 r = 0.907 r = 0.930r = 0.92Â±0.01DV@,t
= C9+ C10B@ C9= 1.18C10= 0.035 C@= 1.78C10= 0.039 C@= 1.88C10=0.033r

= 0.800 r = 0.824 r = 0.691r a0.77Â±0.06=
C3 (1 +@[C1

+ C2B@_.,J) r = 0.811 r = 0.815 r = 0.717r = 0.78Â±0.05DV@'
= C11(1+ Br;..@,J C11= 0.581C12= 5.54 C11= 0.795C12= 7.69 C11= 0.553C12=3.89IC12
+ C13B,;,@,J) C13= 0.143 C13= 0.101 C13=0.105r

= 0.812 r = 0.825 r = 0.722r=0.79Â±0.05No.ofvalues
314 302335â€¢1(0,

fixedto a valueestimatedfroma fittingprocedureof thewhole-brainregiontime-actMtycurve.tD@p
estimatedwitha Iwo-parameter,two-compartmentmodel.@D@f
calculatedwithEquation2.â€˜Dv,.
fittedusinga Marquardtalgorithm.1ActMty

measuredwithPETbetween24and39mliiposthjectlon.**ActMty
measuredwithPETduringthefirst3 mmafterthetracermnjectbn.@Mean

correlaticncoefficient(r) Â±s.d.

TABLE 2
DetalledResuftsof CorrelationsforThreeVolunteers

image (bottom left) corresponding to PET activity mea parametersof the three-compartmentmodel by the follow
sured duringthe first 3 mm after tracer injection.ingequation:Koeppe

et al. (4) have proposed the use of a two-com
partmentmodel, includingtwo parametersthat can be es
timated from a single tracer injection protocol. This con

k, B@k@
DVâ€•= â€”(@+

k2@ kOrJVR)@figuration
adequately describes the kinetic behavior of

[â€œqflum@enilin the human brain. Due to the reduced
numberof parameters, the two parametricimages associ
ated to k1and DVâ€•were obtained easily (see Fig. 5, middle
images).

In Figure 6A, the delayed activities are plotted (normal
ized to the maximum activity) versus the corresponding
DVâ€•estimates obtained by the Koeppe approach. The lin
ear correlation is strong (r = 0.996 for this example, and
r = 0.992 Â±0.003 for the three volunteers; see Table 2).
Similarly, the early activity and k1 estimated with the two
compartment model are compared (Table 2). This correla
tion is significant(r = 0.93) but not as strongas the former.
This is not surprising since the simulations showed that the
binding is rapid and has a significanteffect on PET tracer
concentration even duringthe first 3 min (9).To

test the validity of this equation, the apparentdistri
bution volume was calculated with both methods: First,
this parameterwas computed from the ratio of k1 and k@
estimates obtainedwith the two-compartmentmodel; see
ond, it was estimated using Equation 1 and the parameters
obtained with the three-compartmentmodel. For the bi
compartmentalapproach, only the first 39 min of experi
mentai data were used, which corresponds to the single
tracer injection experiment. The relationship between
these two estimates is shown in Figure 6B. The correlation
coefficient across all regions is 0.989 and the two DVâ€•
estimates are almost identical (DV@,â‚¬@@)= 0.005 + 0.971
DV,OII,P)).

The apparent distribution volume DVâ€•is assumed to be
an index of receptor binding. A comparison between the
apparent distribution volume image (first row, middle)andComparison

between Two- and Three-Compartmentthe B@,, image (firstrow, rightside) is shown inFigureS.Approaches
.The global DVâ€•and B@,, maps have similarproffles,evenSince

the apparentdistributionvolume is related to thethough they do not look strictly equivalent in allbrainbinding
effect, Koeppe et al. (4) suggested that this com regions. The correlation between these two parameterscanbined

parametercan be used as an index of receptor den be studied ROI-by-ROIusing the graphshown in Figure7.sity.
If the system is assumed to be in an equilibrium state,These two approaches, however, result in twodifferentDVâ€•
is related to receptor density (B@,J and to the kineticcorrelations. Withthe two-compartmentapproach,the dis

Eq.1
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using a direct least squares method. The result, DVâ€•=
0.553 [1 + B@J(3.89 + 0.105 B@], represented by a
dotted line in Figure 7, approximates the nonlinear corre
lation previously described (solid line) and corresponds to
a slightly better correlation coefficient (0.722). Similar re
sults were obtained for the other two volunteers (Table 2).

When k1is estimated with the two-compartmentmodel,
it is assumedto be the sameparameterobtainedwith the
three-compartment model (4). Linear correlation between
the two k1 estimates shows a good correlation coefficient
(kl(2.@@)= 0.03 + 0.81kl(@@,), r = 0.93. not shown), but
this correlation is significantly different to the identity re
lation, since the k1values obtained with the two-compart
ment model are 5%â€”15%smaller than the values obtained
with the three-compartmentmodel.

DISCUSSION

ParameterValues
The aim of parametricimagingis to provide all parame

ters with maps combining high definition and valid results.
The former objective requires small ROIs and the latter
requires acceptable standarddeviations. The use of small
ROIswith a weak signal (in receptor-poorregions) leads to
noisy time-concentration curves and difficulties in identi
fying all model parameters. Two solutions are available to
overcome these problems: ifiteringthe time-concentration
curves or decreasing the numberof model parameters.

Eq. 2 A decrease in parameters implies knowing either the
value of some parameters or the correlations between
them. Duringour firstattempt, the k1:k2ratiowas assumed
to be constant, independent of ROIs and estimated with
values of k1 and k2 obtained from the whole-brain region.
This assumption is used by some authors (21,26) and is
justifiedby the independence between k1:k2and the recep

I I I@

1 2 3 4 5 6

DV (3@@@p)(mi/mO

0

FiGURE6. Relationshipbetweenthedelayedactivitymapand
@ (A).Comparisonof the apparentdistributionvolumefromthe

two-compartmentmodel with the correspondingparameterses@
matedbythethree-compartmentmodel(B).Thesolidlinesrepre
sentthe linearrelations.The linearcorrelationconespondingto the
Figure6B (r = 0.989)is very closeto the identityequation(dotted
lines).

tnbution volume is a linear index of the receptor concen
tration only if it is assumed that k1/k2and KJVRare con
stants independent of the ROIs (see Equation 1): the linear
correlation was tested and the coefficient correlation
(0.691) is reasonable (DVâ€•= C@+ C10B@, long-dashed
line in Figure 7, C@= 1.88, C10 = 0.033; Table 2). Data
obtained with the three-compartment approach support
our view of a constant value independentof B@,, for k1/k2
(see Table 2), but KJVR cannot be considered a constant
since we observed a linear relation between KOJVRand
B@ (Fig. 4A). This leads to the following nonlinearrela
tionship:

k1/ B1;@3@\
DVâ€•=l+C+@@).

where k1/k2,C1and C@are equal to 0.555, 3.43 and 0.114,
respectively, in our example (Fig. 4A and Table 2). This
equation was plotted (solid line in Fig. 7). The coefficient
correlation (0.717) is better than that obtained with the
linear regression line. Equation 2 also was fitted to data
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tor concentration (Table 2). This constraint does not im
prove results due to numerical difficulties in estimating
binding reaction parameters in receptor-poor regions. In
such regions, instantaneous decrease of the curve slope
(displacement experiment) is not easily detected in recep
tor-poor regions, because of the experimental uncertainties
that may cover up the small level of displacement [see an
example of curves in Delforge et al. (27)]. It is well known,
however, that the parameter k@ determines the slope of
the PET time-concentration curve after the displacement
time and that, conversely, this parameteris mainly identi
fled from this slope (27). Consequently, if this slope is not
clearly visible, the estimate of the dissociation constant
may be meaningless, since this value is usually overesti
mated with a large standarddeviation. We found that this
overestimation is compensated by a similar increase in the
â€˜@OnNRparameter, which in fact leads to a K@JVR estimate

with a correct orderof magnitudebut with a largestandard
deviation.

Spatial sampling of PET images is an important step.
The best solution is a pixel-by-pixel study, but physical
limitationssuch as noise or PET resolution does not allow
this. We did, however, test several samplinggrids. Twelve
pixel samplingwas chosen as a reference model and com
pared to 4-pixel sampling, which provides higherstandard
errors but produces a similar image pattern with better
resolution. Increasing the image sampling (1 and 2 pixels)
provides aberrantvalues. Consequently, a 4-pixel sampling
was selected because it leads to good parametric image
definitionwith reliablevalues.

Finally, even for small ROIs, B3@ and K@JVRwere of the
same order of magnitude as those cited by Delforge et al.
(9). Because of the constraint on parameter k@,ff,standard
errors calculated for each parameter,using the covariance
matrix (Fig. 2), were not much largerthan those found by
Delforge et al. (9) despite small ROl size.

Parametric Imaging
The use of a three-compartment model with a multi

injection protocol allows the study of neuroreceptordistri
bution in the living brain with parametric imaging (B@
and K@JVRimages; see Fig. 3). The decrease in the number
of model parameters by fixing the dissociation rate con
stant (k.@)has clearly solved many problems in the fitting
procedure and the images without causing artifacts. This
multi-injectionmethod is adaptable for brain imaging and
results in nonaberrantvalues, such as the negative ones
obtained, for example, by Blomqvist et al. (8) and
Lammertsmaet al. (26). The calculation time, however, is
a drawback.

Several parameter sets are obtainable with parametric
imaging, which allows the study of the relation between
model parameterson a large numberand range of values.
Somejoint resultswere predictable,such as the correlation
between the equilibriumdissociation constant I(JVR and
the concentration of receptor sites B@, as reported by
Delforge et al. (10). The example shown in Figure 4A

confirms this result on several parameter values and for a
wide range of receptor concentrations. Since the dissocia
tion rate constant (kg,) 15 set up, the linearity between
K.@VRand B@,, corresponds to a nonlinear correlation
between the association rate constant (k.,,JVR)and the
concentration of receptor sites (B@) as shown in Figure
4B. These results agree with those of Delforge et al. (10),
who obtained them without hypothesizing about dissocia
tion rate constants.

Study of Distribution Volume
The multi-injection approach is a complicated method

that is difficultto apply to human studies. Therefore, sim
piermethods applicablein routinepatientexaminationsare
needed. Koeppe et al. (4) have estimated apparentdistri
butionvolume, which is considered an index of the recep
tor density. All simplifiedapproaches, however, are based
on hypotheses thatneed verification. For the two-compart
ment approach, only the first 39 min of experimental data
were used, which corresponds to the single tracerinjection
experiment. This duration is sufficient for reliable estima
tion of k1 and DVâ€•,since the estimates of the two param
eters (values and variances) become stable within 20â€”30
min of data acquisition.

The two-compartment model used in the distribution
volume approachis deduced fromthe usual three-compart
ment model, assuming that all tissue compartments are in
an equilibriumstate and therefore the free and bound ii
gand compartments can be lumped together in a single
tissue compartment.These hypotheses result in the equiv
alence of the k1 parameters in the two models and in
Equation 1 giving the apparent distributionvolume DVâ€•
from the three-compartmentmodel parameters. The cor
relations we obtained (r = 0.989 and 0.93, respectively)
validate this simplifiedmodel. The significantunderestima
tion (from5%to 15%)of k1by the two-compartmentmodel
is probably the consequence of the time (5â€”10mm) neces
sal), for the system to reach equilibrium (9). This explana
tion is supported by the fact that this underestimationap
pears smaller in the receptor-poor regions in which
equilibriumis reached more rapidly.

Figure 6A shows close correlation between delayed ac
tivity and the distribution volume. This result is also veiy

clear in the images publishedby Frey et al. (6). In fact, this
correlationis easily explained by the theoiy. The distribu
tion volume concept assumes that equilibriumis reached
between the three model compartments. In which case,
use of the model equations duringequilibriumresults in the
following relationship:

1 axn
DA(t) = AC@(t)Fv + 1 +

k2 k@ffVR

= AC@(t)[Fv + DVâ€•], Eq. 3

where DA(t) is the delayed activity, Ais the constant and
Ca(t)15the input function.

The main advantage of the delayed activity method is
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thatblood samplingis not needed. Delayed activity images
provide similar results to distributionvolume images (r =
0.996 in Figure 6A), but the early images are of poorer
quality to estimate k1 (r = 0.93).

An advantage of the DVâ€•images is that they provide
absolute values (because of use of the input function) and
allow intersubject and intergroup comparisons, whereas
delayed images correspond only to relative indices of re
ceptor density. Normalization of these activity images is
possible, for example, by dividingthe count numberby the
injected dose.

The second step is validation of the use of the distribu
tion volume as an index of receptor density. A linear cor
relationbetween DVâ€•and B@ is based on the assumption
that k1/k2and K@JVRare independent of ROIs (Eq. 1). We
used k1:k2ratio as a constant, despite large variability
compared to B@ values (Table 2). We found, however,
that K@JVRis linearly correlated with B@. Substituting
K@VRfrom this correlation into Equation 1 gives DVâ€•and
yields a nonlinear relationship (Eq. 2). This last equation
gives a correlation coefficient only slightly better than that
obtained with the linear relation between B@ and DVâ€•.
The two correlations between DVâ€•and B@ are not con
tradictory if one considers only the usual range of@
values in the human brain (from 5 to 100 pmole/ml). Con
sequently, the linear correlation is acceptable, although
nonlinearity was proven by the experimental results
showed in Figure 4A.

This approximation, however, appears invalid for recep
tor concentrations higher than 100 pmole/ml since the
curve associated with nonlinear correlation tends to a pla
teau at a level given by (k1/k2)(1 + 1/a) (deduced from
Eq. 2). In our example (k1/k2 = 0.555, a = 0.114), this
level (5.42) does not reach a@ value equal to 150
pmole/ml (Fig. 7). This discussion is valid for the two other
examples given in Table 2. The mean correlation coeffi
cients in the three experiments are 0.77 Â±0.06 and 0.78 Â±
0.05 for the linear and nonlinear correlations, respectively
(Table 2).

We do not exclude that, with other molecules or in some
patient studies, the estimated B@ values correspond to
the part of the curve with a low slope. In such a case, a
variation of the B@ value will not significantlymodify the
distributionvolume, and one could no longer consider it a
good index of receptor concentration.

CONCLUSION
This study shows the possibility of obtaining parametric

images correspondingto flumazenil-benzodiazepinemodel
parameters from data acquired after a single-experiment
multi-injection protocol. The complexity of this protocol
(the need of three injections, a 2-hr experiment, blood
samplingand a metabolite study) and the long durationfor
the calculations, make this approach difficult to apply in
routine examination. This method can be considered a
reference protocol to validate other simplifiedapproaches.

We found a close correlationbetween the delayed activ
ity images and the apparent distribution volume images
which was justified by the equilibriumstate between the
three model compartments. Therefore, the delayed FMZ
images can be considered as good an index of benzodiaz
epine receptor concentration as apparentdistributionvol
ume.

The linear relationship between B@ and K.JVRob
served experimentally results in nonlinear correlation be
tween B@,, and DVâ€•.With the range of benzodiazepine
receptor densities observed in human studies, however,
the nonlinearcorrelation coefficient is higherbut does not
differ from the linear one. In spite of a non-negligible vari
ability, we believe that the distribution volume and delayed
activity images approaches are valid with FMZ.

The use of these approaches with other molecules im
plies verifying the equilibrium state between the three
model compartments after tracer injection. Equilibrium
may be unattainable if the binding rate is too large in
comparison to the other rate constants.
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