Fuzzy Logic, Sharp Results?
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Txe study by Shiomi et al. (1) used fuzzy reasoning to
improve interpretation of liver/spleen scintigrams. Al-
though fuzzy reasoning was invented in the United States
(2), it has, until recently, received rather scant attention in
this country. Indeed, the theory has been largely ignored if
not outright rejected as intellectually unsound (3). Re-
cently, however, fuzzy logic has had an extremely different
reception in Japan, where it quickly became a mainstream
theory and was theory became and was utilized in every-
thing from the design of efficient subway systems, steady-
shot camcorders, one-button washing machines to large
scientific (LIFE) and biomedical projects. It has also found
a place in the development of medical diagnostic algo-
rithms. The travails of fuzzy reasoning, its battle for ac-
ceptance and the fate of its proponents, is one of the best
examples of paradigm shift in science and a graphic illus-
tration of the scientific revolution as suggested by Kuhn
).

The fundamental premise of fuzzy reasoning is that dis-
tinctions between values in different categories in the real
world are not crisp. For example, if the normal range for
creatine kinase in a laboratory test for acute myocardial
infarction is 110 to 180 U, the value of 181 U would con-
ventionally be regarded as a positive test, while a value of
179 U would be considered a negative. It is not unusual to
hear discussions in which a patient is considered to be
“ruled in”” or “ruled out” based on trivial differences in
numbers that happen to fall on different sides of the sharp
fence. The situation becomes even more difficult when
image interpretation is involved. Qualitative assessment of
nuclear scans or other radiological images is open to a
number of biases, including the knowledge and interpreta-
tion of clinical history, variations in the use of diagnostic
criteria, differences in the perception of abnormalities, im-
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age quality and characteristics of display systems, as well
as many others (5-9). Thus, a recent study of mammogram
interpretation documented vast differences in the reading
of diagnostic abnormalities among experienced radiologists
and demonstrated significant differences in perception and
interpretation of identical images (10). Although quantifi-
cation has been introduced in a number of nuclear proce-
dures, its impact on diagnostic reasoning has not been
evaluated. As with most laboratory testing, quantitative
analysis of thallium scintigrams, for example, relies on
sharp distinctions between ‘‘normal’ and ‘‘abnormal,”
thus becoming subject to the same limitations as all other
“‘sharp”’ diagnostic modalities.

DEGREE OF MEMBERSHIP

Fuzzy reasoning introduces a notion of degree of mem-
bership expressed as a number in the interval from 0 to 1 to
remedy problems associated with sharply described data-
sets. Thus, a laboratory value slightly exceeding the ‘‘nor-
mal” range might be considered as a 0.9 member of the
“‘normal’ set, while a number twice the limit might be
considered a 0.3 member. One of the key criticisms of
fuzzy reasoning is the arbitrary nature of assigning the
degree of membership. Indeed, no theory allows one to say
whether, using our example, CK of 250 U is a 0.6 member
of the normal set or 0.3 member. Such fuzzy assignments,
however, are the daily fare in clinical medicine and physi-
cians become remarkably good at guessing membership
functions. Most importantly, however, the exact assign-
ments of membership values do not matter much in fuzzy
reasoning.

DIAGNOSTIC CLINICAL REASONING

To date, most diagnostic clinical reasoning has been
modeled on Bayesian analysis, in which estimates of pos-
terior probabilities are based on the prevalence of events
and prior probability. Fuzzy reasoning, however, provides
a much more intuitive way of handling imprecise data, and
modeling diagnostic reasoning using fuzzy reasoning may
provide a much closer approximation of clinical reality.
Most physicians would say ““this result is somewhat ab-
normal’’ rather than “‘this result has a 30% probability of
being correct.” The article by Shiomi et al. (1) on fuzzy
sets in liver spleen scanning presents just such a way of
structuring clinical judgment. A paradigm which has been
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useful for diagnostic testing in the past is that patients fall
into distinct diagnostic categories. While such sharp dis-
tinctions between different syndromes have aided in devel-
oping modern academic medicine greatly, they have also
tended to generate unrealistic expectations of accuracy in
diagnostic testing. Now that nuclear medicine tests are
being used increasingly to aid in selecting therapy and not
just in identifying a diagnosis, it makes less sense to con-
sider rigid disease categories. Fuzzy reasoning modeling
may also provide a better description of the patient’s dis-
ease state and perhaps integrate the art of medicine with its
science.

METHODOLOGICAL STRENGTHS AND LIMITATIONS

The strength of the Shiomi et al. method (1) is that
various features of the liver/spleen scintigram, e.g., spleno-
megaly, are represented as fuzzy sets, which provide a
realistic model for these features. For example, a border-
line enlarged spleen may just as likely be a member of the
set of normal spleens as the set of enlarged spleens. Allow-
ing it to be partially in both sets provides a good model for
the real clinical situation. Shiomi et al. used several vari-
ables from the liver/spleen scintigram in the diagnosis of
chronic liver disease. This method could be extended to
include features of other laboratory or imaging tests, or
even history and physical findings in a diagnostic algo-
rithm. Inclusion of other variables would extend this sys-
tem’s utility as a medical decision aid. There are, however,
several weaknesses in this methodology (). The most
significant is the lack of an unambiguous diagnostic gold
standard. Shiomi et al. compared the fuzzy reasoning di-
agnosis to a scoring system which used the same five input
variables on a three-point scale. Because the fuzzy reason-
ing system had more information than the three-point scale
scoring system, it is not surprising that it had better accu-
racy. It would be more interesting to see comparisons to
final clinical diagnosis, anatomical correlation between the
two approaches, and, most importantly, to clinical decision
making. One of the greatest challenges in the use of fuzzy
reasoning lies in selecting proper membership functions.
The authors state that they tried several different member-
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ship functions and fuzzy rules and found that the functions
and rules provided in the article gave the best performance,
but they do not describe this process. Methods for estab-
lishing these functions and rules are critical to allow the
extension of this fuzzy reasoning system to include other
variables and to allow other investigators to reproduce and
extend this work.

CONCLUSION

Shiomi et al.’s study shows an interesting use of fuzzy
reasoning that expands previous attempts of the use of
fuzzy sets in this area (11). Further development of fuzzy
reasoning, perhaps in combination with a neural network
(12), may greatly expand the diagnostic utility of nuclear
medicine testing.
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