EDITORIAL

Functional Studies in Substance Abuse: Imaging and Beyond

Substance abuse continues to be
one of the compelling public
health problems of our times. The
medical and social consequences pro-
vide a powerful incentive for attempt-
ing to understand the neurochemical
basis and sequelae of substance
abuse, particularly cocaine abuse. The
last decade has seen an explosion of
basic neuroscience research in this re-
gard. Radiopharmaceutical tools have
proven indispensable in advancing our
basic knowledge of the mechanisms of
cocaine’s effects and consequences,
and emission computed tomographic
imaging has afforded great strides for-
ward in this effort. Such imaging has
provided information about specific
cocaine receptor sites in the brain, ef-
fects of chronic cocaine abuse, as well
as effects of potential treatment strat-
egies. Additionally, developments in
this field have important clinical appli-
cations beyond substance abuse.

Cocaine and Dopamine

Since cocaine is a highly addictive
drug, determining the neurochemical
basis for its addictive potential is fun-
damental to understanding and poten-
tially treating cocaine dependence.
Several years ago, it was proposed
that the neurotransmitter dopamine
plays a critical role. Cocaine blocks
the dopamine transporter, a presynap-
tic binding site on dopaminergic neu-
rons responsible for dopamine re-
uptake, which may mediate the
reinforcing properties of cocaine (I-
3). Depletion of brain dopamine in
chronic cocaine abuse may be equally
important in producing drug craving
and dependence (4). PET studies in
humans have shown reduced striatal
postsynaptic dopamine receptor bind-
ing (5) and reduced striatal presynap-
tic dopamine precursor uptake (6) in
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chronic cocaine abusers. In addition,
there is PET evidence of preferential
striatal uptake of cocaine, associated
with the dopamine reuptake site in
normal humans and baboons (7).

Cocaine Abuse and imaging

Clinical investigation regarding co-
caine abuse has focused on well
known medical and neurological se-
quelae. Anatomic imaging has been
useful mainly in instances of acute
neurological events such as cerebral
infarction or hemorrhage (8). Func-
tional imaging, on the other hand, has
provided new insights into the chronic
and acute effects of cocaine on brain
systems. Volkow and colleagues were
the first to demonstrate alterations in
cerebral perfusion (9), glucose metab-
olism (Z0) and dopamine receptor
function (5) in chronic cocaine abus-
ing men. Since then, small focal ab-
normalities in cerebral perfusion have
been demonstrated using SPECT in
cocaine-dependent men (11,12), but
not in women (13), who improve with
buprenorphine drug addiction treat-
ment (14,15). In addition, both PET
(16) and SPECT (I7) studies have
shown global hypometabolism and re-
gional hypoperfusion immediately fol-
lowing acute administration of co-
caine. In general, perfusion and
metabolic abnormalities are seen in
dopaminergic projection areas (9, 10,
12, 13).

Cocaine Receptors and imaging
Other investigations have focused
on the neuroanatomical localization
and pharmacological specificity of co-
caine binding in the brain and how this
relates to addiction. In this issue of the
Journal, Volkow et al. (18) address an
interesting issue with regard to the na-
ture of central targets that mediate co-
caine’s behavioral effects: namely,
whether cocaine recognition sites,
which have been shown to exist as
both high and low affinity binding
sites* in vitro (2, 19-22), can be differ-

entiated pharmacologically in vivo.
Defining the nature of these sites may
be an important step in understanding
cocaine’s behavioral effects because:
(1) the low affinity site approaches full
occupancy only at behaviorally rele-
vant cocaine concentrations and (2) its
density determined in vitro is typically
several times larger than that of the
high affinity recognition site, and at
full occupancy its effects should pre-
dominate.

Volkow et al. used PET to examine
cocaine recognition sites in the ba-
boon brain. A fixed concentration of
C-cocaine and two different concen-
trations of unlabeled cocaine (a subp-
harmacological and a pharmacologi-
cally relevant dose) were used to
determine the distribution and phar-
macological specificity of !'C-cocaine
binding. The basic assumption with
this methodology is that subpharma-
cological doses are expected to high-
light high affinity sites, while pharma-
cological dose studies are expected to
highlight predominantly low affinity
sites. At subpharmacological doses,
Volkow et al. provided evidence for
selective accumulation of 'C-cocaine
in striatum but not clearly in other
brain regions. This selective accumu-
lation was inhibited by cocaine and
selective dopamine uptake inhibitors.
In studies conducted at the pharmaco-
logical cocaine dose, however, selec-
tive 'C-cocaine accumulation in brain
was not demonstrated and a more ho-
mogeneous pattern of uptake was
seen. Additionally, unlike subpharma-
cological dose studies, pretreatment
with dopamine reuptake inhibitors, in-
cluding cocaine, had no measurable
effect on striatal accumulation of la-
beled cocaine. This suggests that ra-
diotracer accumulation at the pharma-

*Data from in vitro studies suggest that
cocaine recognition sites exist as either a single
tein entity with two affinity states or as two protein
entities with differing affinities. For clarity, we
these sites/states as sites.
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cological dose was unrelated to
cocaine recognition sites.

These results are consistent with
two main possibilities: either low af-
finity sites do not exist in vivo, or low
affinity sites exist but were simply not
detected under these experimental
conditions. Volkow et al. favor the lat-
ter explanation, and attribute their in-
ability to characterize the low affinity
site in part to the poor sensitivity of
PET. While this may have played a
role, the resultant low specific activity
used in pharmacological dose studies
may also have been a significant limi-
tation. Recent findings by Madras and
Kaufman, who conducted ex vivo au-
toradiographic studies with high spe-
cific activity [*H]cocaine, provide ev-
idence for selective accumulation of
behaviorally relevant cocaine doses in
striatum, hippocampus, amygdala, lo-
cus coeruleus, and other regions in
nonhuman primates (23). Use of a
higher specific activity of 'C-cocaine
in PET studies may provide more fa-
vorable results. Dosimetric concerns,
however, may preclude higher spe-
cific activity studies in vivo.

Other assumptions merit consider-
ation as well. Are assumptions regard-
ing specific binding using the cerebel-
lum as a standard valid, especially at
high cocaine doses? Can in vitro bind-
ing data be extrapolated to in vivo
conditions? In this regard, in vitro
binding studies conducted at physio-
logic temperature suggest that differ-
ences may exist between in vitro and
in vivo affinities of cocaine congeners
at striatal cocaine recognition sites
(24). Perhaps just as important, does
excess synaptic dopamine or other
monoamines, induced by high synap-
tic concentrations of cocaine in phar-
macological dose studies, compete
with 'C-cocaine, thereby reducing ra-
diotracer binding at cocaine recogni-
tion sites, as the authors suggest?
Such interactions have been observed
in PET measurements of dopamine re-
ceptor occupancy following amphet-
amine or methylphenidate administra-
tion (25,26), and may significantly
limit studies employing low affinity
compounds such as cocaine. Resolu-
tion of the distribution and pharmaco-

logical specificity of striatal cocaine
recognition sites in vivo may require
the use of radiolabeled compounds of
higher affinity for cocaine recognition
sites than cocaine itself.

Cocaine Congeners

Much effort has been devoted to-
wards the development of high affinity
cocaine congeners for radiotracer
studies of cocaine recognition sites.
One fluorinated congener with excep-
tionally low levels of nonspecific bind-
ing and high potency at striatal co-
caine recognition sites is WIN 35,428
or CFT (21). It was shown to be se-
lective for dopamine-rich brain re-
gions (27-29) and for the dopamine
transporter (30), and its in vivo distri-
bution closely parallels that of cocaine
(23). PET imaging studies have dem-
onstrated its usefulness in vivo
(31,32). Additionally, an iodinated
congener useful as a SPECT or PET
probe, RTI-55 (or B-CIT), has been
shown to be more potent than WIN
35,428 at the dopamine transporter,
but essentially equipotent at the dopa-
mine and serotonin transporters
(33,34). It is important to note that
these high affinity cocaine congeners
bind, like cocaine, to high and low
affinity sites, and as such, may be par-
ticularly useful in characterizing both
types of sites. One recently developed
compound, difluoropine, maintains an
over 320-fold selectivity for the dopa-
mine versus the serotonin transporter
(35). Such developments may facili-
tate pharmacodynamic characteriza-
tion in vivo.
Beyond Cocaine

These issues are of concern to the
field of substance abuse research. Ra-
diolabeled forms of cocaine and re-
lated congeners have been applied as
diagnostic probes to monitor neuro-
logical processes associated with
monoamine nerve terminal changes.
Carbon-11-labeled cocaine was re-
cently utilized to detect an age-related
decline in striatal accumulation, a pat-
tern which may reflect reduced dopa-
mine nerve terminal density (36).
More selective and higher affinity co-
caine congeners may be superior to
cocaine for examining age-dependent
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or disease-dependent processes asso-
ciated with dopamine nerve terminal
loss because their accumulation pat-
terns primarily reflect dopamine nerve
terminal distribution and are less sus-
ceptible to perturbation by endoge-
nous substances such as dopamine.
Tritium-WIN 35,428 has been shown
in vitro to detect the full extent of do-
pamine terminal loss postmortem in
Parkinson’s disease striatum (37).
Subsequent in vivo studies using
['CIWIN 35,428 (38) as well as
[*®IJRTI-55 (39) have demonstrated
dopamine nerve terminal loss in the
nonhuman primate model of Parkin-
son’s disease. Recent studies with
both PET and SPECT have confirmed
similar findings in humans with Par-
kinson’s disease (40,41 ). Cocaine con-
geners may also have utility in PET or
SPECT evaluation of treatment effi-
cacy in Parkinson’s disease, including
the efficacy of fetal tissue transplanta-
tion procedures (42). Additionally,
they may prove useful in the detection
or diagnosis of other neurological (43)
or psychobiological disorders (44,45).

CONCLUSION

Cocaine use and abuse is associated
with immediate and long-term func-
tional brain changes and abnormalities
that can be directly observed with a
variety of imaging modalities not
available just a decade ago. PET and
SPECT imaging facilitate in vivo in-
vestigation of the mechanisms under-
lying functional and structural changes
associated with cocaine use, including
pharmacological studies of receptor
function. The study by Volkow and col-
leagues clearly illustrates some of the
difficulties and limitations of the current
methods and technology, particularly
for examining low affinity recognition
sites, and we should not be disap-
pointed with these results. Use of pro-
tocols with higher radiotracer specific
activities or higher affinity cocaine con-
geners may enhance our ability to per-
form difficult pharmacological charac-
terization studies in vivo. The
knowledge acquired in these pur-
suits can be expected to be valuable
in the development of clinical tools
for diagnosis and for monitoring
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therapeutic intervention in addictive
and other neurologic disorders.
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