- Bilezikian JP. Hypercalcemic states. Their differential diagnosis and acute management. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press; 1992:493-521.
- Nussbaum SR, Warrelll RP, Rude R, et al. Dose response study of alendronate sodium for the treatment of cancer associated hypercalcemia. J Clin Oncol 1993;11:1618–1623.
- Conrad KA, Lee SM. Clodronate kinetics and dynamics. Clin Pharmacol Ther 1981;30:114-120.

Martin Pecherstorfer Wilhelminenspital Vienna, Austria

## Radiochemical Purity of Technetium-99m-HMPAO Depends on Specific Activity

TO THE EDITOR: Radiochemical purity (RCP) quality control is routinely carried out before administering <sup>99m</sup>Tc-HMPAO. After following kit instructions for labeling (1), we observed a low RCP related to the use of pertechnetate eluates obtained approximately 24 hr after the previous elution (generator in-growth 24 hr). We suspected that the technetium used was not of sufficient quality due to radiolysis or an excess of <sup>99</sup>Tc (i.e., low-specific activity <sup>99m</sup>Tc), so we decided to use only the second eluates obtained within 1-4 hr after the previous elution (generator in-growth 1-4 hr).

Quality control of RCP was carried out using the method of extraction with chloroform by Ballinguer (2). The correlation obtained from a study carried out previously in our laboratory when this method was compared with the chromatographic method of Neirinkx (3) was:

y (Chromatographic Method) =  $0.909 \times (Extraction Method)$ 

where r = 0.986,  $p < 10^{-6}$ , and n = 27.

Labeling carried out with technetium obtained with a generator in-growth 24 hr (22.6  $\pm$  2.6) gave:

$$RCP = 85.2\% \pm 16.4\%$$
 (n = 42). Eq. 2

In 15 preparations, the RCP was <90% and in 10 preparations <80% (Table 1). The results were analyzed for the effect of total amount of radioactivity. No statistical significant difference in RCP was found between both groups.

Labeling with technetium obtained with a generator in-growth 1-4 hr  $(2.5 \pm 0.7)$  gave:

$$RCP = 93.9\% \pm 1.6\%$$
 (n = 181). Eq. 3

Only one preparation resulted in a RCP <90%. Table 2 shows various preparations according to the radioactivity used for labeling.

TABLE 1
RCP for Two Pertechnetate Eluates

| Activity<br>(MBq) | Generator<br>in-growth<br>(hr) | RCP %       | n  |
|-------------------|--------------------------------|-------------|----|
| 1087 ± 159        | 23.9 ± 2.1                     | 83.3 ± 18.4 | 22 |
| 2723 ± 533        | 22.6 ± 2.5                     | 87.3 ± 13.7 | 20 |

TABLE 2
Various Pertechnetate Preparations

| Activity<br>(MBq) | RCP %            | n  |
|-------------------|------------------|----|
| 1591 ± 222        | 92.0% ± 1.4      | 5  |
| 2216 ± 44         | 93.6% ± 1.5      | 94 |
| 2941 ± 78         | 94.3% ± 1.4      | 77 |
| 3626 ± 148        | $94.0\% \pm 1.8$ | 5  |

To obtain high RCP with <sup>99m</sup>Tc-HMPAO, an elution obtained a few hours after the previous elution (within 1-4 hr) should be used. This permits an increase of radioactivity labeling to at least 3000 MBq. Furthermore, this would represent a considerable economic saving since it would result in several doses from a single vial.

## **REFERENCES**

- 1. HMPAO package insert. Amersham UK.
- Ballinguer JR, Reid RH, Gulenchyn KY. Radiochemical purity of (99mTc) HMPAO [Letter]. J Nucl Med 1988;29:572-573.
- Neirinkx RD, Cannig IR, Piper IM, et al. Technetium-99m d,l-HMPAO: A new radiopharmaceutical for SPECT imaging of regional cerebral perfusion. J Nucl Med 1987;28:191-202.

Carlos Piera
Antonia Martínez
Isabel Ramírez
CETIR, Centre Mèdic
Hospital Clínic i Provincial
Barcelona, Spain

## Renal Clearance of Technetium-99m-MAG3: Normal Values

TO THE EDITOR: We are frequently asked about normal values for <sup>99m</sup>Tc-MAG3 clearance. Technetium-99m-MAG3 has become the renal agent of choice in many clinical contexts. Its clearance, easily calculated from a single timed blood sample, can be used directly as a measure of renal function and can also be converted to effective renal plasma flow (ERPF) by applying a correction factor (1).

When  $^{99m}$ Tc-MAG3 clearance ( $C_{MAG3}$ ) is converted to ERPF (or  $C_{PAH}$ ), conventional normal values for ERPF can be employed, such as the normal values obtained at this center from OIH clearance ( $C_{OIH}$ ) in a series of normal transplant donors (2). Since renal donors have such extensive presurgical evaluation, they constitute a normal reference population in which renal disease has been truly ruled out.

We now have accumulated enough experience with <sup>99m</sup>Tc-MAG3 in transplant donors to report normal values measured directly with <sup>99m</sup>Tc-MAG3 rather than with OIH. Data from 200 donors were reviewed (86 male, 114 female, ranging in age from 20 to 66 yr). C<sub>MAG3</sub> was calculated from a single 45-min blood sample by two methods (3-5) and ERPF was estimated by a third method (6). Normal values are reported for each method.

At our clinic, ERPF has been measured routinely for many years with the Tauxe one-sample method using  $^{131}$ I-OIH. The Tauxe ERPF formula yields values about 10% higher than true  $C_{OIH}$  (1), compensating for the difference between  $C_{OIH}$  and  $C_{PAH}$  (7). When we switched from OIH to  $^{99m}$ Tc-MAG3, we