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The standard approach for evaluating FDG-PET kinetic studies

is based upon an assumption that tissue within a representative
region of interest (ROI) is relatively homogeneous in terms of
FDG kinetics. In neoplasms and other disease states, tissue
within an ROI may be grossly heterogeneous, due to adjacent
Â¡nfarctedtissue and other causes. We have developed a method
employing two ROIs (one over the tumor and another over a
"reference region") to deal with this level of heterogeneity.

Methods: The method is based on the regular FDG model but
consists of six variable parameters (6P model) which uses the
kinetics in the reference region to account for the normal tissue
within the tumor ROI, so that the kinetic data only associated with
the tumor can be estimated. Monte Carlo simulations and hu
man PET FDG studies were used to analyze the performance of
the 6P model. Results: The narrower 95% confidence intervals
of parameter estimates, which centered at the true tumor rate
constants, and the smaller correlation matrix of the 6P model
showed the better performance of the 6P model compared to the
standard "homogeneous" four-parameter FDG model. Com

puter simulations further showed that the 6P model can accu
rately estimate the microparameters (rate constants: K? (ml/min/
g), k| (min"1), k| (min"1), kj (min~1)) and the macroparameter

(K (ml/min/g)) of tumor cells regardless of the percent weight of
tumor cells in the lesions. Conclusions: The new method can
produce more reliable and accurate estimates of tumor glucose
metabolic rates with dynamic PET FDG studies.
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.El
' studies with 2-[18F]fluoro-2-deoxy-D-glucose (FDG)

are of potential utility for metabolically characterizing tu
mors based on kinetic characteristics and for quantifying
changes in tumor metabolism before, during and after
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treatment. The enhanced aerobic glycolysis of malignant
cells was first noted by Warburg (1,2). The elevated glu
cose utilization may be due to some combination of the
increased rate of glucose transport through the cell mem
brane, the decreased rate of dephosphorylation and the
enhanced activity of hexokinase (3). With an appropriate
model and proper data processing, FDG-PET kinetic stud

ies of neoplasms can produce numerical estimates of the
rate constants of FDG in its capillary transport, phosphor-

ylation and dephosphorylation.
The model currently used to analyze FDG kinetic stud

ies of tumors is the three-compartment model originally
developed by Sokoloff et al. for autoradiographic deoxy-

glucose studies in rat brain (3K model) (4). Phelps and
Huang adapted the model and include a fourth rate con
stant to account for dephosphorylation of FDG-6-PO4 in
FDG-PET studies (4K model) (5,6). These models were

originally designed for a localized region of tissue that is
homogeneous with respect to the rate of blood flow, the
transport of glucose, and the glucose and FDG concentra
tions in tissue. Neoplasms are, however, quite heteroge
neous on the cellular level, and may also be macroscopi-

calty heterogeneous (e.g., admixture of different cell
populations, such as stromal and tumor cells). As tumors
grow, the relative distribution of vascular structures,
stroma and necrotic tissue add complexity to the tumor
FDG kinetics. Schmidt, Sokoloff et al. have previously
shown that tissue heterogeneity in ROIs in brain FDG-PET

studies can have significant effects on FDG model param
eter values (7). The direct application of these "homoge
neous" models (3K and 4K models) to the tumor kinetic

studies can produce misleading results.
While the effect of tissue heterogeneity has been inves

tigated for PET measurements of cerebral blood flow with
15Omethods, and of glucose metabolic rate with [18F]FDG

methods (7-72), an evaluation of tissue heterogeneity ef

fect in tumor FDG studies has not been reported. Due to
the lack of an appropriate model which can accurately
estimate the complex kinetics in tumors, most of the FDG-
PET studies in non-CNS tumors are evaluated nonkineti-

caliy using indices such as a standard uptake value (SUV)
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TABLE 1
Estimation Errors of MRglc Calculated 45 Minutes Following a Pulse of FDG in Different Simulated Heterogeneous Tissue* Using

the 4K Model

RateconstantsMRStudyno.

Source1

Ratbrainf2

Humanbrain*3

Melanoma94

Melanoma85

Livermetastasis116

Liver metastasis1Gray

matterWhite
matterGray
matterWhite
matterTumorLiverTumor

1Tumor
2TumoriTumor

2Tumor
3Tumor

4KÃŽ(ml/min/g)0.3400.0850.0920.0530.2430.8640.2500.0340.2760.1320.3480.060k|(min"1)0.5400.1350.2100.1220.7800.9810.7770.0490.4700.2280.5910.107ka*(min-1)0.0800.0200.0750.0530.1010.0050.1300.0380.0870.0350.1130.009KÃŽ(min-1)0.0000.0000.0000.0000.0000.0160.0150.0000.0000.0060.0000.006v*

error(%)273.41.0205228

*For each simulation study, heterogeneous tissue total activity curve was simulated using 50% of each component and a plasma input function

from a human subject.
tRate constants from Schmidt et al. (7)
*Rate constants from Hawkins et al. ( )
''Unpublished data from our laboratory; liver, mean values from 10 volunteers; tumor, mean values from 25 melanoma studies; tumor 1, mean +

1 s.d. tumor 2: mean - 1 s.d.
'Rate constants from Okazumi et al. ( 15): tumor 1: mean + 1 s.d. tumor 2: mean - 1 s.d.; tumor 3: mean + 2 s.d. tumor 4: mean - 2 s.d.
"Estimated MRglc in each simulated heterogeneous tissue was calculated using the microparameters estimated by 4k model and the operational

equation derived by Phelps et al. (5). Constant Cp and LC were assumed. True mass weighted MR^ were calculated as MR = 2? O.SMR,,where
MR, = Cp/LC(K*k*yk*, + k*! â€¢% error = ((estimated MR - true MR)Arue MR)Â«100%.

or a differential uptake ratio (DUR) (13,14). Although use
ful, these semiquantitative methods do not account for the
kinetics of FDG transport, phosphorylation and dephos-

phorylation.
The potential utility of analyzing FDG model micropa

rameters (K*, kÂ£,k*, and kj in the 4K model) in liver

tumors has been demonstrated in the literature (.75). This
study also suggested that metabolic characteristics of spe
cific organ systems must be considered when analyzing
tumor FDG kinetics. A previous study in our laboratory
suggested that a three-compartment model with a vascular

volume parameter fits the liver kinetics data well (16). The
purpose of the current study is to refine the "homoge
neous" compartmental model for FDG-PET kinetic stud

ies in liver mÃ©tastases and to improve the quantitative
precision of tumor FDG studies by including the tissue
heterogeneity effects. We developed a new method (2
ROIs, 6P FDG model) which incorporates the information
in the normal liver tissue and provides the kinetic data
uniquely contributed by the tumor cells in the lesions, and
we have evaluated the accuracy and precision of both 4K
and 6P models using data from computer simulations and
tumor FDG-PET studies.

MATERIALS AND METHODS

Two ROIs and 6P FDG Model Description
In a previous study in our laboratory, we used the "homoge

neous" 4K model to evaluate the heterogeneity effects in some

heterogeneous tissues simulations (77). We found that if the dif
ferences in the rate constants between different cell groups are
small, then the 4K model can accurately estimate the glucose
metabolic rate, a rate approximately equal to the mass-weighted

average metabolic rate of the different cell populations in the same
ROI (Table 1). Based on these results, we grouped the different
cells in a tumor ROI into two major cell populations. One is the
tumor cell population, the other is the "reference" cell popula

tion, which contains normal cells. Each population is assumed to
have a homogenous compartment behavior and has its own char
acteristic rate constants (K* (ml/min/g), kj (min~ '), k* (min" '), k^
(min"1)) for tumor cells and (K* (ml/min/g), kÂ£(min"1), k*
(min"1), kj (min"1)) for reference cells. The percent weights of

the two cell populations within the ROI are wt and w2, respec
tively (where W! + w2 = 1). The inclusion of a fifth parameter in

the 4K model improved the FDG tumor studies in our laboratory
(18,19). Therefore the present method includes a vascular com
partment with volume v, (% vol, or ml/100 g) (Fig. 1A).

A second ROI is drawn over a reference tissue, which contains
only the normal cell population and is assumed to have the same
characteristic rate constants (K*, kÂ£,k*, and kj) as the normal cell

population in the tumor ROI. The vascular compartment with
volume v2 is also included to account for the vascular space in the
reference ROI (Figure IB). Since this new method uses two ROIs
and the parameter estimation procedure involves six parameters
(see description of model equations), we refer to this new method
as the 2 ROIs, 6 P model ("6P model").

Model Equations
According to the 6P model described above, the total amount

of tracer in tumor tissue ROI, C*umor(t), is equal to the sum of
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RGURE 1. Schematic diagram of 2 ROI, 6P FDG model. Two
ROIs are (A) the tumor tissue ROI and (B) reference tissue ROI. In
tumor tissue ROI, two cell populations, tumor cells and reference
cells, are assumed. Each occupy w, and w2 of percent mass weight.
CÂ£(t)represents the FDG concentration in the arterial plasma, C*(t)

and CÂ£,(t)represent the tissue concentrations of FDG and FDG-6-

PO4, respectively. Kf, k|, k|, Kj and tC, k|, kj, kÂ¿,are the first order
rate constants describing the directional transport between compart
ments. In each ROI, a vascular compartment is included, v,, v2 are
the vascular space volumes in tumor and reference tissue, respec
tively.

tracer concentrations in the tumor cell population (C*umorcel|(t)),
the reference cell population (C*efcel,(t)), and the tissue blood

radioactivity. The replacement of the tissue blood radioactivity
with the plasma radioactivity (C*(t))was validated by Phelps et al.

(5). Thus

CSunord) = WjC^o, Â«â€ž(t)+ WÃ„ eeuW + V,C*(t), Eq. 1

where w, and w2 are the percent mass weights of the tumor and
reference cell population, respectively, and vÂ¡is the vascular
compartment volume. The total amount of tracer in the reference
tissue ROI is equal to the sum of tracers in the reference cells and
in the vascular compartment:

CUD = Cet ceu(t)+ v2C;(t). Eq. 2

Combining Equations 1 and 2 and rearranging, one has

) + W2Ot) + (Vl - W2V2)Cp-(t). Eq. 3

Based on the regular FDG model, the rates of change in concen
trations of FDG (C*!(t)) and FDG-6-P (C^t)) in the tumor cells

can be expressed as:

- C*,(t) =

d

dt

- (k2*+

= k3*Ce*,(t)-

+ kÃ®C;,(t), Eq. 4

Eq. 5

Equations 4 and 5 can be solved in terms of C*(t):

K*

Â«2

j - a,)e - <"'+ (a2 - k*)e ' tt2']Â®C*p(t),

Eq. 6

C,Â« = [(e -â€¢*-Â«-<"')](g)C;(t), Eq. 7
Ã›f7 â€”Ã»^l

where Â®denotes the mathematical operation of convolution and

al = [k* + k* + k* - ^(kj + k3 + kj)2 - 4k2liÃ®>2,Eq. 8

Â«2= [k| + k* -t-k* + v/(k2+ k| + kj)2 - 4k*kÃ®]/2.Eq. 9

Since the total amount of tracer in tumor cells, C*uinorceU(t),is
equal to the sum of C*,(t) and C^i(t).

CLnorceu(t) = Ce*1(t)+ C*1,(t). Eq. 10

Substituting C*,(t) and C^(t) from Equations 6 and 7,

Equation 10 becomes:

^-tumor cellw

- k3*- k4*)e Eq.

Since w, + w2 = 1, combing Equations 3 and 11 and replacing
w, = 1 - w2, the total amount of tracer in tumor tissue ROI is:

(1 -
k4* - a,)e

(a2 - k3*- k4*)e

+ (v, - w2v2)C;(t) Eq. 12

Equation 12 is the relationship used in this study for determin
ing the rate constants, the vascular volume, and the percent mass
weight of the tumor cell population. The time-activity curve ob
tained from the reference tissue ROI is used directly for C*ef(t)in

Equation 12, which is fitted to the time-activity curve from the
tumor tissue ROI with a least-squared nonlinear regression rou
tine (20). The six parameters estimated in the regression proce
dure are: P! = (1 - w2)KÃŽ;p2 = k*; p3 = k*; p4 = kj; p5 = v, -

W2v2;and p6 = w2.
After these six parameters are estimated, the following parame
ters can be calculated:

Ã•= P,/d-p6),

wi = 1 - p5

Eq. 13

Eq. 14

The tumor metabolic rate of glucose (MRg,,.,Â¿tmole/min/g)can
then be calculated with the following equation:

= K(Cp/LC),

where the macroparameter K (ml/min/g):

K = KÃ®k*/(k2*/k3*),

Eq. 15

Eq. 16

Cp is the plasma glucose concentration and LC is the lumped
constant (5). If one assumes that LC in a given tumor cell popu
lation does not change over time, then the macroparameter K in
Equation 16 can be used to estimate changes in the glucose met
abolic rate in tumor cells. Therefore, with a dynamic FDG-PET
imagingsequence, all the microparameters (K*, k2, k* and k4), the

macroparameter (K), which describe the tumor cell population
FDG kinetics, and the percent mass weight of tumor cell popula
tion (w,) in the tumor tissue ROI can be estimated by using the 2
ROIs, 6P FDG model.

Quantitation of Tumor FDG Uptake â€¢Wu et al. 299



Computer Simulations
The time-activity curve of each compartment in the homoge

neous tumor cells (C'^t) and C^t)) and reference cells (C*2(t)

and C^2(t)) were generated using the regular FDG model (i.e., the
"homogeneous" 4K.model (5)). C*](t) and C^(t) were generated
using Equations 6 and 7. C*2(t)and C'^U) were generated using

the following equations:

Ce*2(t)-
Â«22- Â«12

â€¢[(kÃ®-a12)e-

;(t), Eq. 17

K?k7' .
! 1
Â«22- Â«12

'-e-"*)]Â®^), Eq. 18

= Ce*2(t)+ C^(t) + v2c;(t),

where a,2 and a22 are defined as Equations 8 and 9 but with the
rate constants replaced by the corresponding ones for the normal
cell population. The rate constants used to simulate the tumor and
reference tissue time-activity curves were the average values ob

tained from a melanoma study conducted in our laboratory (Table
1, study no. 3). A patient's plasma time-activity curve (C*(t))

following a bolus intravenous injection of FDG was used as the
input function in the simulations.

The time course (0-50 min) of the total activity in the reference

tissue ROI (C;ef(t))> and that of the total activity in the hypothet
ical tumor tissue ROI (C'^no^t)) that contained different percent

weights of tumor and liver cell populations (w, and w2, respec
tively) were simulated as:

Eq. 19

+ v,c;(t),

Eq. 20

where v , and v , are the vascular volumes in tumor and reference
tissues, respectively. Each simulated time-activity curve was in
tegrated over 18 time intervals with mid-scan times, T = 0.1, 0.3,

0.6, 0.9, 1.5, 2.5, 3.5, 4.5, 6, 8.5, 12.5, 17.5, 22.5, 27.5, 37.5, 42.5
and 47.5 rain, which corresponded approximately to the PET
scanning sequence used in routine tumor FDG studies in our
laboratory.

Monte Carlo Simulation
The performance of parameter estimation by the 6P model was

analyzed by Monte Carlo simulations. Poisson noise (comparable
to the level in real PET studies) was also included in the simula
tions. (The noise levels in the last 30 min of tumor tissue, liver
tissue and plasma time-activity curves were 3.2%, 3.7% and 4.5%,

respectively.) Using the equations and rate constants mentioned
earlier, 500 realizations of the tumor tissue total activity curves
(C'umorW) were simulated, each containing 70% tumor cells (w, =

0.7) and 30% normal liver cells (w2 = 0.3), with 10% of plasma
activity (C*(t)) (v, = 0.1) added to each curve. Additionally, 500

realizations of the reference tissue total activity curve (C^Xt))
were simulated, each containing 100% of normal cells, with 25%
of plasma activity (v2 = 0.25) added to each curve. Both 4K and

6P models were then applied to each of the 500 simulations. The
4K model in this study referred to the three-compartment FDG

model by Phelps et al. (5), a blood volume term was included
(same model configuration as Figure IB, except with rate con
stants equal to K*, k2, k* and kj). While the 6P model required

both tumor and reference tissue time-activity curves, the 4K
model used only the tumor tissue time-activity curve. All data

simulations and parameter estimations were performed on a VAX
STATION 4000 (Digital Equipment Corp., Maynard, MA) using a
nonlinear regression routine written in BLD software (20).

To evaluate the heterogeneity effects on parameter estimates, a
different set of simulations were generated using both the 4K and
the 6P models. Nine tumor tissue time-activity curves were sim

ulated, each containing 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80% and 90% of tumor cells (Wj = 0.1,0.2, 0.3,0.4,0.5, 0.6,0.7,
0.8 and 0.9, w2 = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1,
correspondingly), with 10% of plasma activity (Y! = 0.1). The

reference tissue total activity curve was simulated with 100% of
normal cells and 25% of plasma activity (v2 = 0.25). One realiza
tion of each time-activity curve was simulated. Poisson noise was

added in each simulation curve so that the noise levels in the last
30 min of tumor and liver tissue TACs were 3.0% ~ 4.0% and

3.7%, respectively.

Human PET FDG Studies
Since the 6P model can be readily applied if representative

reference tissue is in the field of view, data from one melanoma
liver mÃ©tastasesand two breast cancer patients were analyzed.
Following intravenous injection of 10 mCi of FDG, dynamic im
ages were obtained with a Siemens/CTI 931/08 tomograph which
simultaneously acquires 15 image planes each 6.95 mm thick in a
10.8-cm axial field of view. The PET studies were performed over

the liver and spleen in the melanoma patients and over the heart
and the superior part of the liver in the breast cancer patients. The
dynamic sequence consisted of twelve 10-sec, four 30-sec, and
fourteen 240-sec scans for a total scan time of â€”60min. Cross-

sectional images were reconstructed into a 128 x 128 pixel matrix
using a Shepp-Logan filter with a cut-off frequency of 0.30
Nyquist frequency, yielding an in-plane spatial resolution of â€”10
mm FWHM. Photon attenuation was corrected with a 20-min
transmission scan using a ^Ge/^Ga external ring source. The
blood samples were taken from a hand vein, heated to 44Â°Cto

arterialize the blood at 5-10-sec intervals over the first 3 min and

at progressively lengthening intervals for the remainder of the
study. For the melanoma study, the reference tissue ROIs were
over the normal liver tissue. For the breast cancer studies, the
contralateral breast (without the lesion) was chosen to define the
reference tissue ROI. Time-activity curves of the tumor and ref

erence tissue regions were then obtained from the dynamic FDG
images. Both 4K and 6P models were applied to estimate the
microparameters and macroparameters of the FDG kinetics.

RESULTS

Simulation
Figure 2A shows one realization of the time-activity

curves generated in Monte Carlo simulations. Figure 2B
shows the time-activity curves obtained from the mela
noma study in a human subject. Note the similarity be
tween the two sets of time-activity curves.

Analysis of Estimation Results
To determine if a successful fit of the data to the model

has been obtained, a number of statistic parameters were
examined. Table 2 summarizes the parameter estimation
results of both 4K and 6P models for the Monte Carlo
simulations. While the 6P model accurately estimated the
tumor cell rate constants (with errors <2.5%), results from
the 4K model were approximately equal to the mass-
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time (min)

RGURE 2. Representative time-activity curves from (A) Monte
Carlo simulations with Poisson noise and (B) a melanoma patient's

FDG-PET study, (open circle) plasma input functions; (solid circle)
time-activity curve of tumor tissue; (open triangle) time-activity curve

of reference tissue.

weighted average of the rate constants of tumor and normal
cells (with errors equal to 3.3%, 3.0%, 38% and 98%,
respectively).

By comparing the coefficients of variation, correlation
matrixes (Table 2), sample distributions and 95% confi
dence interval (Fig. 3) of each parameter estimate, the
performance of the 6P model is superior by all these crite
ria.

Effectsof TissueHeterogeneityin Parameter
Estimation

Figures 4 and 5A show the microparameters (K.*, kj, k*,

and kj) and macroparameter (K, calculated with Equation
16) estimated from hypothetical heterogeneous tissue sim
ulations containing different percent weights of the tumor
cell population. While the 6P model's estimates remained

consistent regardless of the percent weights of the tumor
cell population, the 4K model's estimates varied. Although

the simulations with low percent weight of the tumor cell
population (w, = 0.1,0.2) showed relatively large errors in

the parameter estimates when the 6P model was used, the
errors were mainly due to the large noise-to-signal in these
cases. When noise-free time-activity curves were used, the

accurate parameters were estimated by the 6P model. Fig
ure 5B shows the correlation between true Wi's and those

estimated by the 6P model. The correlation coefficient, r,
was 0.9987.

MelanomaFDGStudies
Figures 6A and 6B show two image planes of a mela

noma patient's FDG-PET study. The kinetic data of one

lesion in each image was analyzed. ROI 1 and ROI 3 were
the regular size ROIs when the 4K model was used (Fig. 6C
and 6D). To test the validity of the 6P model, which as
sumes that tumor tissue contains both tumor and normal
cell populations, ROIs (ROI 2, 4 and 5) larger than the
regular size were also drawn on both images. The large
ROIs were used to assess the sensitivity of the method to
ROI size and reduce the statistical noise in the ROI value.
Table 3 lists the microparameter and macroparameter val
ues of both lesions as estimated by the 4K and 6P models.
The microparameters estimated from the 4K model were
not comparable for the two lesions (using ROIs 1 and 3),
and large residuals were observed. However, the micropa
rameters estimated by the 6P model were more consistent
for the two lesions and for the different ROIs (ROI 2,4 and
5). In addition, the 6P model fitting had smaller residuals.
Although the 6P model did not always provide a significant
improvement in the data fit as compared to the 4K model
(F test (21), for ROI 2 and ROI 5, p < 0.05), the conver
gence of the regression was always better for the 6P model.
The initial values in the regression were also found to be
less crucial when the 6P model was used. Furthermore, as
the ROI size was increased, better statistics (smaller resid
uals) were obtained, whereas the macroparameters, K,
estimated by the 4K model were underestimated due to the
inclusion of normal liver tissue.

BreastCancerFDGStudies
Table 4 lists the microparameters and macroparameters

obtained from two breast cancer FDG-PET studies. The

regular size ROIs which covered the whole lesions were
used. When the percent mass weight of the tumor cells was
large (lesion 1, w, = 0.85), both 4k and 6P models provided

comparable results. However, if the lesion contained less
tumor cells (lesion 2, w1 = 0.19), the macroparameter was

underestimated by the 4K model due to the large fraction
of normal cells. The values of the microparameters esti
mated by the 6P model for the two different breast lesions
from two different patients were similar while they differed
greatly for the 4K model.

DISCUSSION
The use of FDG-PET for qualitative and quantitative

evaluation of tumor metabolism is expanding rapidly (22).
Kinetic evaluations of tissue glucose metabolic rates can
be obtained either from autoradiographic method or mod
eling method (4-6). Because the autoradiographic method

requires a priori population estimates of the model rate
constants which are not yet available for neoplasms out
side of the CNS, it is generally not applicable for these
tumors (23). One of the key assumptions in the deoxyglu-
cose method (3K model, Sokoloff) is the kinetic homoge-
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TABLE 2
Parameter Estimate Summary of Monte Carlo Simulations (n = 500) Using the 4K and 6P FDG Models*

4Kmodelkfefefefe0.4150.8650.0454.6E-40.102sÂ»,)S(fe)S(fe)S(P4)S(fe)0.0680.1330.0040.0020.029CV(p,)CV(fe)CV(fe)CVÃŸJCV(fe)16.415.39.252828.4Pifefefefefe0.1760.7990.1001.3E-50.0310.2916Pmodel*s(P,)s(fe)S(p3>â€¢oyS(Ps)â€¢Â«y0.0230.0630.0071.9E-50.0350.043CV0,)CVtfJCV03)CV(pÂ«)CV(k)CVCpe)13.27.97.015011314.9

Parameter correlationmatrix:

P.
9Â»
Ps
P4

PB

Pi
1
0.97

-0.12
0.28

-0.91

P2
0.97
1
0.06
0.35

-0.83

Ps
-0.12

0.06
1
0.69
0.31

P4

0.28
0.35
0.69
1

-0.20

Ps
-0.91
-0.83

0.31
-0.20

1

Pi

Pa
Pa

P4
Ps

Pa

Pi
1
0.83

-0.82

0.06
0.11

-0.53

P2

0.83
1

-0.48
-0.12
-0.06
-0.24

Â°3

-0.82
-0.48

1
-0.17
-0.14

0.53

PÂ«
0.06

-0.12
-0.17

1
-0.003
-0.06

Ps
0.11

-0.06
-0.14
-0.003

1
-0.86

'True values used in the simulations: p, (K?) = 0.243, pzO^) = 0.780, PafÃ¢)= 0.101 , p4(kj = 0, ps(4K) = 0.1 , ps(6P) = 0.025, p6(6P)

mass-weighted average value: K? = 0.429, kj = 0.840, Â¡3= 0.0722, R} = 0.0048.
'In 6P model, p, = K*(1 - pj. Therefore, Kf was calculated after the fitting: K? = 0.248; s(K?) = 0.028; CV(Kf) = 11.22.

ft = mean; s(p) = standard deviation; CV(p) = coefficient of variation.

Pe
-0.53
-0.24

0.53
-0.06
-0.86

1

0.3; true

neity in tissue. Direct extrapolations of the method to the
heterogeneous tumor systems may lead to confusing and
inconsistent results.

In a recent report on the effects of tissue heterogeneity
on the FDG model, Schmidt et al. demonstrated that the
glucose metabolic rate could be overestimated by the 4K
model due to tissue heterogeneity alone (7). Tissue heter
ogeneity is one of the key issues in tumor studies; thus,
refinements of the FDG model for tumor systems are thus
necessary (23). Although the heterogeneous model (TH
model) proposed by Schmidt et al. is a more realistic rep
resentation of heterogeneous tissue (7), its application in
specific systems, such as tumor systems, needs to be eval
uated. Three major considerations are: (1) the phosphatase
activity (equivalent to kj in 4K model) was found in some
tumor systems (15,22,23); (2) the exponential approxima
tion of effective rate constants k^t), and k*(t) and the
constant ratio assumption of k*(t)/k3(t) may not be valid in

the tumor systems; and (3) the computational burden of
including the heterogeneity effect. In this study, we pro
posed a simple model-based method to address this heter

ogeneity problem. As shown in Table 1, the 4K model
could accurately estimate the mass weighted glucose met
abolic rate of different cells in an ROI if the rate constants
among these cell populations are similar. Therefore, as far
as the total glucose metabolic rate is concerned, it is rea
sonable to group the different tumor cells as a single pop
ulation by assuming that their FDG uptake kinetics are not
too different. Therefore, by including both tumor and nor
mal cell population in the formulation, the 6P model can
account for the tissue heterogeneity effect due to the inclu
sion of background activity in the lesion ROI. This, plus
the inclusion of the percent mass weighting factors (w, and

w2, where w, was replaced with 1 - w2) in the fitting equa

tion (Equation 12), allowed an estimation of the rate con
stants characteristic of the tumor cells alone. The 6P model
assumes that the FDG uptake kinetic of the normal cells in
the tumor region is the same as in the reference region. If
they are not the same, the error caused by the use of the 6P
model should be small as long as they are not too different.
However, if they are drastically different and the background
is closer to the tumor kinetic, the results from the 6P model
should be similar to those from the regular 4K model. More
quantitative evaluation of the effects of using inaccurate ref
erence tissue regions is needed.

Better performance of the 6P model compared to the 4K
model is demonstrated by the 6P model's narrower 95%

confidence regions, which centered at the true tumor cells
rate constants (Fig. 3), and smaller correlation matrix (i.e.,
the largest correlation coefficients of 6P model is 0.86,
compared to the largest correlation coefficient of 0.97 for
the 4K model (Table 2)).

While the values of the microparameters and macropa-

rameters estimated by the 4K model varied when different
proportions of tumor cells were included in the tumor tis
sue, those estimated by the 6P model remained consistent
(Fig. 4). Although parameters estimated by the 6P model
still contained some errors, these errors were mainly due to
the Poisson noise added in the simulation. More accurate
and precise measurements of microparameters are ex
pected to improve the quantification of tumor metabolism
with PET. If a lesion contains a relatively large amount of
normal cells (or cells with kinetics markedly different than
tumor cells), then glucose metabolism estimated with the
4K model will be too low (Fig. 5A). With the 6P model, the
macroparameter of the tumor cell population can be esti-
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FIGURE 3. Sample distributionof esti
mated parameter values (y axis: no. of real
izations,x axis: value of estimates) in Monte
Carlo simulations (dot lines: estimates from
4K model, solid line: estimates from 6P
model). The arrow in each plot points at the
true value of tumor cell.The 95% confidence
regions of parameter estimates are (a) Kf
(4K model: 0.225 ~ 0.540,6P model: 0.202
~ 0.295 ml/min/g) (b) kÂ£(4K model: 0.553 -
1.110,6P model: 0.687 - 0.914 mirr1) (c)
kÃ *(4K model: 0.038 ~ 0.053, 6P model:
0.087 ~ 0.114 min-1) (d) Kj (4K model:
-5.4 x 10~3 ~ 6.4 x 10~3, 6P model:
7.1 x 10~6~1.19x 10-5irwr1)(e)p5(4K

model: 0.064 - 0.176,6P model: -0.045%
~ 0.108% vol) (f) p6 (mass weight of tumor
cells, 6P model: 0.209 ~ 0.375).
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RGURE 4. Microparameters(A) K?, (B)
kÂ£,(C) KÃ®and (D) KJ,estimated from simu
lated heterogeneous tissue time-activity
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model; (solidcircle): 6P model. The horizon
tal solid line in each plot presents the true
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heterogeneous tissue time-activity curves containing different

weights of tumor cells, (open circle): 4K model; (solid circle): 6P
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parameter value, K, of the tumor cells. (B) Correlation of true and
estimated tumor cell weights from simulated heterogeneous tissue
time-activity curves containing different weights of tumor cells.

mated more directly. If one assumes a constant LC and the
plasma glucose concentration is measured, the glucose
metabolic rate of tumor cell population can then be ob
tained. Therefore, an improved differentiation between
normal and malignant tissues should result from the use of
the 6P model.

Another feature of the 6P model is the identifiability of
the percent mass weighting factors (w, and w2). These
weighting factors become unidentifiable only when tumor
and normal cells have very similar rate constants. In this
case, the tissue is close to homogeneous, and the 4K model
is applicable. Our simulations using melanoma and liver
cells rate constants resulted in a good correlation of the
estimated and the true percent weights (r = 0.9987). The

percent mass weight of the tumor cells in the lesion can
potentially provide information on the cell number changes
as the tumor grows in time.

The third feature of the 6P model is its generality and
feasibility. Because the 6P model does not make any as
sumption between the ratio of k2(t)/k*(t), the model can be

applied to heterogeneous tissues regardless of the relation
ship between the rate constants. Except for the require
ment of i second ROI, the computation time of the 6P
model is Miar to that of the 4K model.

Unlike simulation data, various error sources, including
the finite resolution of PET, the various sizes of lesions, the
inaccurate definition of ROIs, and different levels of noise,
can affect the accuracy and reliability of the estimation
results. The microparameters estimated from the mela
noma patients using conventional ROIs and 4K model
were less reliable (Table 3, ROI 1 and ROI 3). The regres
sion results varied with different initial values; however, by
using the 6P model, some of the problems were reduced
with the use of a much larger ROI (e.g., ROI 2 of Fig. 6)
resulting in more reasonable parameter estimates and bet
ter statistics. Although the 6P model did not always pro
vide a significant improvement in the fitting of lesion 2, the
microparameters obtained from the 6P model were more
reasonable and closer to those obtained from lesion 1.
Therefore, the 6P model is less sensitive to the ROI size
and noise, and can thus minimize the partial volume effects
due to the small size of the lesions. Furthermore, as the
ROI size is increased, (comparing the sum of squares of
ROIs 3, 4 and 5 in Table 3), better statistics are expected.
We expected this feature to allow one to evaluate the
glucose utilization rate of tumor cells even as the lesion
changes in size more accurately. Thus, the 6P model can
potentially be used to give more reliable results in follow up
studies.

The 2 ROIs, 6P model was originally designed for liver
melanoma tumor studies. The results obtained from the
breast cancer studies (Table 4) further confirmed that the 2
ROIs, 6P model can be readily applied to tumor systems to
account for tissue heterogeneity when a representative ref
erence tissue ROI is available.

The present method does not take necrotic tissue in the
lesion into account. However, it has been shown that ne-

FIGURE 6. Images of liver mÃ©tastasesfrom a FDG PET mela
noma study. Arrows point to (A) lesion 1 on plane 8 and (B) lesion 2
on plane 12. ROIs 1-5 on (C, D) were the tumor ROIs, the unlabeled

ROIs were the corresponding reference ROIs for 6P model with
same sizes and shapes. ROI size: RO11 (2.3 cm2), ROI 2 (16 cm2),
ROI 3 (6.0 cm2), ROI 4 (7.1 cm2), and ROI 5 (10.3 cm2).
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TABLE 3
Microparameters and Macroparameters Obtained from Melanoma Patient with Liver Metastasis

4KmodelK?

(ml/min/g)k|
(min"1)KÃ­(min-1)KÃŽ

(min-1)K

(ml/min/g)SSLesion

1ROM0.0241E-040.0850.0050.024302ROI

30.3031.3740.1554E-050.03114.8Lesion

2ROI

40.1070.4620.1562E-050.02711.7ROI50.0920.4170.1356E-040.0227.08Kf

(ml/min/g)k|
(min-1)K?
(min-1)KÃŽ
(min-1)K

(ml/min/g)W188Lesion

1ROI

20.0530.1950.2260.0410.0280.6051.86P

modelROI

30.0890.2300.1632E-040.0370.80714.0Lesion

2ROI

40.0670.1620.2450.0120.0400.72210.4ROI50.0560.0680.1270.0120.0360.6175.5

ss = sum of squares.

TABLE 4
Microparameters and Macroparameters Obtained from Breast Cancer Patients

4K model 6P model

Lesioni Lesion 2 Lesioni Lesion 2

K?(ml/min/g)k|
(min"1)K|
(min"1)KÃŽ
(min-1)K

(ml/min/g)880.0500.2190.0780.0020.01310.40.0600.2070.0065E-050.0021.3Kf

(ml/min/g)Kl
(min-1)KÃŽ
(min-1)KÃŽ
(min-1)K

(ml/min/g)w.SS0.0600.2810.0756E-040.0130.8510.00.0590.2680.0350.0000.0040.191.2

ss = sum of squares.

erotic areas do not accumulate FDG (24). The inclusion of
necrotic tissue into ROIs was avoided in the present study.

CONCLUSION

In this study we show that the 2 ROIs and 6P FDG
model can be readily applied to tumor systems to account
for tissue heterogeneity in tumors when a representative
"reference" tissue region is available. Furthermore, the

new method can correct the partial volume effect, is less
sensitive to the tumor and ROI sizes, and allows larger
ROIs be drawn to improve noise statistics. Thus, the new
method can potentially produce more reliable and accurate
estimates of tumor glucose metabolic rates with dynamic
PET-FDG studies.
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