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This study evaluates intersubject variability on regional glucose
metabolic values in a group of 50 healthy right-handed males
between 20 and 40 yr of age. Methods: Brain glucose metab-
olism was measured using PET and 2-deoxy-2['®F}fiuoro-D-
glucose under resting conditions and was separately assessed
for subjects in their twenties (n = 34) and those in their thirties
(n = 16). Results: Regional brain metabolic values showed
significant intersubject variability with coefficients of variation
(CV) that ranged between 11.1% to 15.2% (twenties) and 7.2%
to 12.6% (thirties). Relative measures (regional/global) were less
variable than absolute measures and the CV ranged between
4.1% to 8.3% (twenties) and 3.9% to 10% (thirties). Whereas
global brain metabolic rate for subjects in their twenties was not
significantly different from that of subjects in their thirties, the
metabolic rate in left frontal regions was significantly lower in the
older subjects. Conclusion: The correlations between age and
absolute and relative metabolism in the left frontal region were
r=0.438, p < 0.002and r = 0.447, p < 0.001, respectively. This
study shows significant intersubject variability for regional brain
metabolic values in normal controls and documents age-related
decreases in frontal metabolism that occur even in relatively

young adults.
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T:xe assessment of cerebral glucose metabolism with
PET using the glucose analogue 2-deoxy-2['®F]fluoro-D-
glucose (**FDG) has been shown to be an indicator of
regional neuronal function in the brain. Fluorine-18-FDG
PET has been used to evaluate changes in neuronal func-
tion due to neurological, psychiatric and oncological disor-
ders. Studies have also been done to assess the effect of
cognitive, perceptual and motor tasks and pharmacological
challenges on '8FDG PET (1,2).
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The increasing utilization of PET and 'FDG to assess
normal brain function and its disruption in neuropsychiat-
ric disorders brings us to evaluate normal variability of
these measurements within a homogenous group of sub-
jects. Studies evaluating intrasubject variation for test-
retest measures of brain glucose metabolism without inter-
ventions report less than 10% variation for absolute
measures (3-6) and less than 1% for normalized values
(relative measures).

In contrast to the low intrasubject variability, previous
studies have consistently reported large intersubject vari-
ability for absolute and relative measures of glucose met-
abolic rate in normal subjects at rest (4-7). Some of this
variability may be accounted for by handedness (8,9), gen-
der (8, 10-12), mental status of the subject during the scan
(13), brain volume and cortical atrophy (I1,14) and age
(15). Of special interest has been the documentation of
age-related changes in brain metabolism. The data from
different laboratories is conflicting and complicated by
small sample sizes and the use of scanners with different
spatial resolutions (15-20). Most studies document age-
related changes that are most prominent after 50 yr of age
and predominantly localized in frontal cortical areas
(21,22). However, the effects of age on young adults has
not been evaluated.

The purpose of this study is to assess intersubject vari-
ability in a group of healthy right-handed male subjects
with similar socioeconomical and educational backgrounds
between 20 and 40 yr of age, and to assess the effects of age
on brain glucose metabolism within this age range. This
study also reviewed metabolic values in normal controls
reported by various PET centers (Table 1) to assess the
intersubject and intercenter range of variability. The re-
sults from the current study were compared with those
reviewed.

MATERIALS AND METHODS
Subjects

Fifty right-handed, healthy male subjects were recruited for the
study. Thirty-four subjects were in their twenties (20-29 yr) and
sixteen subjects were in their thirties (30-39 yr). These subjects
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were students and/or employees of our institutions and had re-
ceived at least 12 yr of education. Each subject received a com-
plete physical, neurological and psychiatric examinations and a
series of laboratory tests (hematological profile, blood chemistry,
urinalysis and urine toxicology) as part of their evaluation. Sub-
jects with a history of neurological, psychiatric, metabolic, endo-
crinologic disease, alcoholism, drug abuse or head injury were
excluded from the investigation. Subjects were asked if they were
right- or left-handed; only right-handed individuals were included.
Any over-the-counter medications were discontinued in all sub-
jects at least 7 days prior to the PET study. The studies of younger
and older subjects were performed interleaved over a 3-yr period.

Consent was obtained from each participant after the nature of
experiment was fully explained. The informed consent forms and
protocols were previously approved by the Committee for the
Protection of Human Subjects of New York University, the In-
stitutional Review Boards of Northport Veterans Administration
Medical Center and Human Subjects Research Committee of
Brookhaven National Laboratory, New York.

PET Scanning

Subjects were asked to refrain from smoking, eating or drinking
coffee for at least 4 hr prior to the study. The subjects were placed
in the scanner with their eyes open and their ears unplugged in a
dimly lit room with minimal noise. Two intravenous lines were
inserted and maintained with saline and heparin. Arterialization
was achieved by warming the hand to 48°C using a heating box
designed for this purpose. Arterialized blood was obtained from a
catheter placed in a dorsal vein. The other catheter was in the
antecubital region of the opposite arm for tracer injection.

For each study, the subjects were injected with 5-6 mCi of
2-deoxy-2-{'®F]-fluoro-D-glucose (**FDG). Synthesis of *FDG
was achieved as described by Hamacher et al. (23). The amount
of labeled mannose of the final product was < 2% (purity > 98%).

PET was performed using a Computer Technology Incorpo-
rated (Knoxville, TN) model 931 tomography system (6 X 6 mm
in plane resolution FWHM) which provides 15 contiguous axial
planes of 6.5 mm each. An individualized headholder was used to
position the subjects with the aid of two orthogonal laser beams.
The gantry was placed parallel to the canthomeatal line. After
recording a 5-min blank scan and a 5-min transmission scan for
photon attenuation correction, a 20-min emission scan was ob-
tained beginning 35 min after injection of *FDG. Arterialized
venous blood samples were obtained to measure plasma radioac-
tivity and plasma glucose concentration. Metabolic images were
computed using an extension of Sokoloff and associate’s model
(24-26). The operational equation, lumped constant (L.C. = 0.52)
and rate constants (k1 = 0.095, k2 = 0.125, k3 = 0.069, k4 =
0.0055) were as described previously (27).

image Analysis

Images were analyzed using a template of 115 nonoverlapping
regions of interest (ROIs) as described previously (28). To mini-
mize errors in the metabolic values due to partial volume effects,
small ROIs (average: 0.7 cm® for cortical structures and 1.2 cm®
for the basal ganglia, paracentral lobules, hippocampal gyrus,
orbital-frontal gyri and cerebellum) were used. The absolute size
and orientation of the ROI for a given brain structure were held
constant for all the subjects. Placement of regions was determined
by reference to an atlas of human axial tomography (29). The 115
ROIs were grouped into 13 composite cortical, subcortical and
cerebellar regions which represented the average of ROIs from
different plains corresponding to the same anatomical structure.

1460

TABLE 2
Coefficient of Variation of Absolute and Relative Metabolic
Rates in Subjects in Their Twenties and Thirties

Absolute values Relative values
Region 208 30s 208 30s
Right frontal cortex 13.31 9.23 464 4.39
Left frontal cortex 13.04 9.32 415 4.28
Orbitofrontal gyri 1342 12.61 5.32 8.84
Cingulate gyri 13.67 10.08 523 5.67
Right parietal cortex 13.29 10.36 6.43 5.18
Left parietal cortex 13.20 8.83 4.99 4.14
Right temporal 11.09 722 454 398
cortex

Left temporal cortex 11.15 .M 5.01 5.36
Right occipital cortex 14.23 9.58 720 5.73
Left occipital cortex 15.22 8.40 7.56 5.54
Thalamus 12.52 11.18 6.29 10.01
Basal ganglia 11.15 10.10 5.89 6.77
Cerebellum 12.09 9.46 8.31 6.86

In addition, a measure of whole-brain glucose metabolism was
obtained by averaging the values from the pixels located in the
brain tissue component of the brain images. The outer boundary
of the brain which separates cortex from cerebrospinal fluid was
computed using threshold methodology. All of the pixels within
this outer boundary including gray matter, white matter and ven-
tricles for the 15 slices were averaged.

Absolute metabolic rates and relative metabolic rates (the re-
gional absolute rate divided by the whole-brain metabolic rate) of
the age groups were evaluated with the Student’s t-test. The
relationship between age and regional brain glucose metabolism
was assessed using Pearson product moment correlation analysis.
We used the Bonferroni correction as cited by Haiz (30) to correct
for multiple comparisons. Bonferroni corrections were calculated
for 13 composite brain regions and a separate correction was
made for the absolute and relative measures. This set the level of
significance to p < 0.004.

RESULTS

Fluorine-18-FDG-PET measures of absolute whole-
brain glucose metabolic rates in the 20-29-yr-old subjects
(n = 34) ranged between 31.7 and 53.5 pmole/100g/min
(mean 39.5 + 4.7 umole/100g/min, CV 12.0%) and in the
30-39-yr-old subjects (n = 16) it ranged between 30.5 and
40.4 pmole/100g/min (mean 35.9 = 2.9 pmole/100g/min,
CV 8.0%). This measure did not differ significantly be-
tween the subjects in the two age groups. Regional abso-
lute measures were more variable than the global measures
with CV ranging from 11.1% to 15.2% in subjects in their
twenties and 7.2% to 12.6% for subjects in their thirties
(Table 2). Relative measures of regional metabolic values
were less variable than absolute measures with CV ranging
from 4.1% to 8.3% in subjects in their twenties and 3.9% to
10% in those in their thirties.

Comparison of ®FDG-PET measures of regional abso-
lute glucose metabolic rates between these groups revealed
significant age-related differences in right and left frontal,
orbitofrontal, cingulate, right and left temporal, right oc-

The Joumnal of Nuclear Medicine ® Vol. 35 ¢ No. 9 * September 1994



701 . Absolute Values

gi:r] rrrt 17m
i

T v T T T

v v v v L] Ll Ll v
RF LF OFG CIU RP LP RT LT ROCLOC TH BG CB

Relative Values

1.0+ T T T T—r—r—r—T T T T T Y —
RF LF OFG CIU RP LP RT LT ROCLOC TH BG CB
Brain Regions

FIGURE 1. Absolute and relative glucose metabolic rates in brain
regions of the 20-29-yr-old (OJ) and 30-39-yr-old (O) groups. Re-
gions with significantly decreased metabolic rate were identified with
* (p < 0.004). RF = right frontal cortex; LF = left frontal cortex; OFG
= orbitofrontal gyri; CIU = cingulate gyrus; RP = right parietal
cortex; LP = left parietal cortex; RT = right temporal cortex; LT = left
temporal cortex; ROC = right occipital cortex; LOC = left occipital
cortex; TH = thalamus; BG = basal ganglia; and CB = cerebellum.

cipital region and basal ganglia values. These measures
were significantly lower in 30-39-yr-old subjects as com-
pared with the same measures in 20-29-yr-old subjects
(Fig. 1). Comparison of relative glucose metabolic rate
measurements indicated lower relative glucose metabolic
rates only in left frontal regions in 30-39-yr-old subjects,
compared with 20-29-yr-old subjects (p < 0.003).

Figure 2 shows the individual absolute and relative met-
abolic values for left frontal regions in both groups. Al-
though the differences were significant, there was consid-
erable overlap between groups. Correlation between age
and absolute and relative metabolic rates of brain regions
demonstrated a significant correlation of age and regional
metabolic rates in left frontal regions (Table 3). To deter-
mine which of the left frontal regions was most affected by
age, we obtained separate correlations for superior, middle
and inferior frontal regions. Glucose metabolic rates in the
left superior region showed the most age-related variability
among the left frontal regions studied (absolute: r = 0.438,
p s 0.002; relative: r = 0.447, p < 0.001) as shown in
Figure 3.

Brain Glucose Metabolism in Young Males ® Wang et al.
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DISCUSSION

This study documents wide intersubject variability for
global and regional brain metabolic values (values ranging
from 31.7 to 53.5 umole/100g/min in subjects in their twen-
ties and 30.5 to 40.4 umole/100g/min in subjects in their
thirties). Similar intersubject variability has been noticed
by many investigators. The range of the variability in re-
gional brain metabolic values reported by various PET
centers can be seen from the data in Table 1. This table
only includes those studies for which global absolute met-
abolic rates were reported. By inspecting this table, one
also detects a wide range for values of whole-brain meta-
bolic rates across different PET centers which range from

TABLE 3
Correlations Between Age and Absolute and Relative
Metabolic Rates
Absolute values Relative values

Region r p r p
Right frontal cortex 0.347 ns 0.291 ns

Left frontal cortex 0.397 0.004 0.464 0.0007
Orbitofrontal gyri 0.363 ns 0.286 ns
Cingulate gyri 0.353 ns 0.299 ns
Right parietal cortex 0.178 ns 0.178 ns
Left parietal cortex 0.202 ns 0.179 ns
Right temporal 0.378 ns 0.212 ns

cortex
Left temporal cortex 0.378 ns 0.212 ns
Right occipital cortex 0.390 ns 0.329 ns
Left occipital cortex 0.313 ns 0.168 ns
Thalamus 0.163 ns 0.199 ns
Basal ganglia 0.348 ns 0.138 ns
Cerebellum 0.227 ns 0.077 ns
1461
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20 to 68 umole/100g/min. We have reported the frequency
(number of articles) at which different global metabolic
rates are reported (Fig. 4). The most frequently reported
values are between 25 and 40 pmole/100g/min.

Variable Factors

From an inspection of Table 1, one can see that certain
factors can be identified which appear to contribute to the
wide variability in metabolic values.

Spatial Resolution of PET. The PET center reporting the
highest metabolic values (Lawrence Berkeley Laboratory)
is the one that has the PET camera with the best spatial
resolution (FWHM = 2.6 mm). Analysis of values within a
given center performed with cameras with different spatial
resolutions also shows that their values obtained with the
PET cameras with the best spatial resolution are always
higher.

Number of Articles

2024 2529 3034 3539 4044 4549 S0-54 5559 >60

umol/100g/min

FIGURE 4. Distribution of mean absolute global metabolism re-
ported in the articles indicated in Table 1.
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In fact, a study from the National Institute on Aging (31)
evaluated difference in regional metabolic values for seven
subjects tested on two different cameras with different
spatial resolutions and reported higher global metabolic
values when studying the subjects with the higher resolu-
tion instrument (PC1024-7B: FWHM = 6 mm, 46.4 = 5.9
pmole/100g/min) than with the lower resolution instrument
(ECAT II: FWHM = 17 mm, 30.0 + 4.4 umole/100g/min).
In Figure 5, we have shown the mean metabolic values
reported for the various studies in Table 1 as a function of
the spatial resolution of the PET scanner. This figure
shows that studies reporting mean global values of less
than 30 umole/100g/min were done with scanners having
8-17 mm resolution. Whereas studies reporting on values
higher than 54 umole/100g/min were done with scanners
having a 2.6-6 mm resolution.

Age. The effects of aging on brain glucose metabolism
have been studied by several investigators. These studies
have failed to show an effect of aging on whole-brain me-
tabolism (Table 1). In general, studies from the same PET
center reporting on groups of subjects of different ages
scanned on the same instrument do not show differences in
global measures {notice the values from the following
paired studies: Hawkins et al. 1983 (32); Schwartz et al.
1983 (33) versus Horwitz et al. 1987 (34); de Leon et al.
1984 (18); Evans et al. 1986 (35) versus Tyler et al. 1988
(5); Duara et al. 1989 (36) versus Pascal et al. 1991 (37);
and De Volder et al. 1990 (38 39)}. In contrast, studies have
reported a decline in frontal metabolism with age (21,22).
Our data are consistent with these findings and, in addition,
showed that such changes are detected in relatively young
adults. It is also consistent with brain morphological stud-
ies using MRI (40), which documents age-related de-
creases in cortical volume in young adults. Unfortunately
no MR images were obtained for the subjects in this inves-
tigation which precluded the evaluation of the relation be-
tween possible age-related changes in morphology and
changes in metabolism. The functional significance of the
changes in left frontal metabolism with age needs to be
further evaluated. In particular, since neuropsychological
studies have shown a decline in certain cognitive abilities
(e.g., delayed recall memory) in subjects in their thirties
(41,42). Despite the significant differences in left frontal
metabolism between the two groups, most of the 30-yr-old
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subjects had values which overlapped with those of the
20-yr-olds (Fig. 2). This overlap suggests biological vari-
ability in the rate at which age-related changes affect re-
gional brain metabolic activity. Factors contributing to the
rate of decline in frontal metabolism with aging probably
relate to both genetic and environmental factors.

Gender. PET studies of gender effects on brain glucose
metabolism have been controversial. While two studies
showed higher metabolism in women than in men (10,11),
other studies have found no gender differences in brain
metabolism (/243). Human studies have also shown
higher cerebral blood flow rates in females than in males
(8,44,45). The relevance of hormones on brain glucose
metabolism is demonstrated by autoradiographic studies
which show that administration of high doses of estrogen
increase brain glucose metabolism in ovariectomized adult
rats (46) and by studies reporting variation of brain meta-
bolic rates throughout the menstrual cycle with highest
rates occurring during proestrus and metestrus (47).

Study Conditions. The conditions at which the studies
are performed have been shown to affect whole-brain met-
abolic rates. For example, cerebral glucose metabolism is
lower when subjects are scanned with eyes closed and ears
plugged (21.8 + 5.7 pmole/100g/min) than when they are
scanned with only eyes closed (38.3 + 8.5 umole/100g/min)
or ears plugged (26.1 + 4.1 umole/100g/min) (48). Unfor-
tunately, it is difficult to determine from the latter study the
extent to which the variability reflects the conditions of the
scan, since the measures were done in different individu-
als.

Timing of "®FDG Scans. As long as the constraints im-
posed by Sokoloff’s model are met, the timing of data
acquisition should not affect the metabolic values within 60
min. This factor was recently evaluated in a study which
measured metabolic values when scans were performed at
different times after tracer administration. The study
showed no differences in metabolism in scans done be-
tween 30 and 40 min and those between 45 and 55 min (49).
However, after 60 min, dephosphorylation of deoxyglu-
cose-6-phosphate becomes significant and correction for k4
is required (50, 26).

Lumped Constant. Unfortunately, for most studies the
value of the lumped constant utilized was not reported.
The lumped constant probably explains part of the vari-
ability in metabolic values across the different PET cen-
ters. The values typically used for the lumped constant are
either 0.42 (26) or 0.52 (51). This alone can result in a
difference of approximately 25% in calculated glucose me-
tabolism. Furthermore, differences in lumped constant val-
ues with aging have been demonstrated in animal studies
(52) and could confound the comparison across subjects of
different ages.

Whole-Brain Metabolic Rate Calculation. The method
of determining the whole-brain metabolic rate also differs
among centers. Some report average values obtained from
gray matter ROIs, others average gray and white matter

Brain Glucose Metabolism in Young Males ® Wang et al.

ROIs, while some groups average over all brain slices, and
therefore also include cerebrospinal fluid space (Table 1).

Mental State of the Subjects. It has been demonstrated
that the level of anxiety during the PET procedure can
affect the cerebral blood flow and metabolic value (13).
The extent to which other mental states such as sadness,
happiness and restlessness can affect metabolism needs to
be investigated.

Miscellaneous. There are several other sources of po-
tential intercenter variability:

1. Measured versus calculated attenuation correction:
The measured attenuation correction for each subject
may increase error during repositioning. The calcu-
lated attenuation correction adds a systematic over-
or underestimation factor to the value of the imaged
parameter in each PET slice due to variation of head
size and positioning (53).

2. Method of obtaining the blood time-activity curve:
The use of an arterial catheter tends to provide more
reliable blood sampling in comparison to the use of
arterialized venous blood, especially if the method is
not carefully implemented. However, it has been
shown that arterialized venous blood curves give as
accurate a representation of the glucose metabolic
rate as the rate determined with a true arterial sample
54).

3. Method of defining ROIs: The selection of a ROI can
affect measures as a function of the following vari-
ables: (1) selection of ROI on PET images as opposed
to MR images (55); (2) use of geometric versus irreg-
ular ROIs (56); (3) size of the ROIs (56); (4) use of a
template versus individual tailored ROIs; (5) use of
single versus multiple slices to define a given ROI.

4. Use of caffeine and nicotine: Animal studies, as well
as human imaging studies, have demonstrated that
caffeine and nicotine change cerebral blood flow and
brain glucose metabolism (57-59). The effect of with-
drawal from these substances prior to the study in a
heavy user could bring metabolic changes (60,61). At
Brookhaven National Laboratory, subjects are in-
structed to abstain from using these substances for at
least 4 hr prior to the PET scan. However, instruc-
tions to volunteers differ among centers and could
account for some of the variability.

5. Time of day when studies are performed: The influ-
ences of circadian rhythms on glucose metabolic rate
have been reported (4).

Biological Variablility Among Individuals

Even though several factors have been identified that
contribute to variability, an important contributor to inter-
subject variability is biological variability which could be
affected among others by ethnic, socioeconomic and de-
mographic factors. This variability probably reflects the
particular neurochemical characteristics of the brain of an
individual (49,62). Investigation of that variability is of
importance to identify brain metabolic activity changes
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associated with neurological and psychiatric illness.
Though we have only dealt with brain metabolism variabil-
ity under baseline conditions, it is expected that intersub-
ject variability will be observed in activation studies and
pharmacological challenge studies (with respect to the
magnitude of the response and the pattern of the response).

CONCLUSION

This study shows significant variability in subjects be-
tween 20 and 40 yr of age. Age contributes to this variability
but other factors are probably also involved in the differences
in regional brain glucose metabolism between subjects. Sim-
ilar intersubject variability has previously been reported and
is accentuated when comparisons are made between subjects
tested in different centers. This variability should be taken
into account when constructing databases of brain images
(63) for subjects scanned in different instruments and in dif-
ferent experimental conditions.
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EDITOMAL
What Are the Sources of Error in Measuring and Calculating

Cerebral Metabolic Rates with Fluorine-18-Fluorodeoxyglucose

and PET?

n this issue of the Journal of Nu-
lear Medicine, Wang et al. de-
scribe significant intersubject variabil-
ity of cerebral metabolic rates for
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glucose (CMRgluc) in young normal
males as measured with PET and
8FDG (1). This is an issue of major
concern for both research and clinical
applications of this important imaging
methodology. Sensitivity and specific-
ity of a test is heavily dependent on
the degree of variability and the
amount of overlap in the measured

values between healthy control sub-
jects and patients.

The first method to measure cere-
bral metabolic rate was introduced by
Kety and Schmidt in 1948 and was
used to investigate various neuropsy-
chiatric disorders (2 3). However, it
was soon realized that in subjects with
diseases outside the central nervous
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