
macrometabolic rate constant K@into the tissue-bound
compartment (K@= K,k@/[k2+ k3] in the three-compart
ment transportmodel) and apparentblood space activity.
The applicationof this method with the â€˜8F-fluorodeoxy
glucose (FDG) tracer was studied in this investigation.

Currently, there are three methods that generate para
metric images of K@for FDG: (1) the three-compartment
model technique (1â€”3);(2) the autoradiographic technique
(1â€”5);and (3) the graphical analysis technique (6, 7). The
three-compartment model and the graphical analysis tech
nique can generate images of K@and the apparent blood
space; the autoradiographic technique can generate K@.
The autoradiographictechnique is the easiest to implement
because of its mathematic simplicity, but â€œnormaltissueâ€•
rate constants, K1, k2 and k3, which have to be assumed for
all tissue, may not be valid, e.g., for tumors whose rate
constants may be substantially different from those of nor
mal tissue. The three-compartmentmodel requires many
time-serialimages and is demandingcomputationally,with
hours ofnonlinear-regression curve fittingto derive a set of
parametricimages.

The graphicalanalysis method uses a much less demand
ing linear-regression curve-fitting procedure for each pixel
(computationtime on the authors' work station is about 3
min for 21 128 x 128 image slices). All three methods
require continuous sampling of blood, be@nningimmedi
ately postinjection, until the end of the imaging period. In
a typical FDG study, there may be 25 or more blood
samples to collect, spin, weigh, count and input into a
computer, tasks that requiretrainedstaff. Automatic blood
sampling systems can alleviate some of the chores, but
these systems aregenerallycustom built (8,9), waste blood
and have difficultyperformingplasma separations. Hence,
parametricimages are not routinelygenerated in busy din
ical environments.

The purpose of this study was to develop a clinically
practical modeling technique to acquire parametric images
of the tracer macrometabolic rate constant K@and blood
space activity. The goal was to simplify the blood sampling
and computationalrequirementsso that, without requiring
additionalstaff, the images of K@and blood pool could be
generated immediately after the completion of raw image
reconstruction.

AsSPECT imaginghasbecomemorequantitativew@ithead
ventof the attenuationcorrection,SPECTparametricimaging
can become a reality it the data acquisition and the numeric
reducbonprocedurescan be simplified.Methods:A method
that is clinically practical for acquiring quantitative parametric
images of unidirectionalmetabolic rate constantsand apparent
blood space is proposed. Its application to PET imaging wfth
FDG was investigated. This procedure requires a short postin
jectionwaitingperiod,threesequentialimagingscansandone
blood sample (1 ml) during each scan, obviating the require
ments of continuousblood sampling,â€œassumedâ€•rate constants
(autoradiographicmethod)and d@Ã±cuftnonlinearregression
computations.The effectof the early-phaseblood inputfunction
is computed directly from the image. The clinical procedure is
completed1 hr after FDGinjection.The computationtimefor
generating 21 metabolic rate image slices and blood space
slicesis negligible(30 sec afterimagereconstruction).Prelimi
nary human studies on brain, heart, liver and tumor were per
formed. Resufts: The methodwas tested on seven normalsub
jects. The resultsshowed that the ra@dlychangingearly-phase
blood input can be derived from the raw image and that the
metabolic rate images of this method agreed with the results
from the graphicalanalysis method,usingcontinuoussampling,
and virith published data from three-compartment models.
Conclusion: This study is dinically more practicaland compu
talionally simpler as a method to acquire parametric images of
themetabolicrateconstant,K@andtheapparentbloodspaceVd
for unidirectionaltracers. Applying this simple quantitativepars
metric imaging method to routine dinical studies may improve
theaccuracyof routineclinicalevaluations.

Key Words: PET; SPECT; modeling;metabolism

J NucIMed 1994;35:1206-1212

he ability to generate quantitative parametric images
with SPEC].' and PET using physiologic modeling tech
niques is desirable but not always clinically practical. A
simple technique is proposed that generates images of the
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The proposed method was based on the concept of mass bal
ance of unidirectional (trapped) tracers, which is also the basis for
the graphicalanalysis technique (6,7). In graphicalanalysis, the
tissue activity (normalized for a constant blood-tracer input) is
plotted against the integrated blood-tracer input function (also
normalized for a constant input). The slope of the normalized
uptakeis the tracermacrometabolicrateconstant K@of the tissue
bound space, and the intercept,Vd, is related to the blooddistri
bution space and vascular volume. Because there are only two
unknowns(K@andVd), the minimalnumberoftime-activity image
sets required to solve for K@and Vd in the graphic method is two.

Inthisproposedmethod,threetime-seriesimagesareacquired
(instead of two) because the initial blood input function A(t) is
going to be solved from the raw images directly. Solving for A(t)
directly from the raw images eliminates frequent blood sampling
in the initial period, which is essential if a procedure is to be
clinically practical.

After a short waiting period during which the total blood space

equilibrateswith blood and with a knowledge of the raw image
pixeldata at timest2,t3and t4,Equations1,2 and3 forcomputing
K@andVd canbe derivedfrom the massbalanceof unidirectional
tracers (the variables are depicted in Fig. 1) as

(t2

T2â€”K@@ A(u)du â€”A2Vd O@ Eq. 1
Jo

(t2 (t3
T3â€”K@@ A(u)du+@ A(u)du â€”A3Vd=0, Eq.2

Jo Jt2

ft2 (t3
T4 K@@ A(u)du +@ A(u)du+@ A(u)du â€”A,Vd

Jo Jt2 Jt3
Eq.3

where 12, T3andT4arethe tissue activitiesduringscans A, B and
C andA2,A3andA4arethebloodactivitiesattimest2,t3andt4.
The blood integralscan be written in terms of the variables, dc,,
dc2 and dc3, where

(t2
dc1 =@ A(u) du,

Jo

(t3
dc2 =@ A(u) du,

Jt2

t@t4
dc3 =@ A(u) du.

Jt,

By substitution,Equations1 to 3 canbe expressedas

T2 K@[dc,]â€”A2Vd

T3â€”K@[dc1+ dc@]â€”A3Vd=0,

T4â€”K@[dc1+ dc@+ dc3]â€”A@Vd=0.

In this threetime-scanstrategy,the threetimeintegrals(dc,,
dc@and dc3), not the detailed time dependence of the blood input
function, are important.Because blood is sampledat a late phase

I-

14>1

Ca

I-

13

A4

t2 t3 t4
timeEq.4

FiGURE 1. Illustrationof the mathematicsymbolsused:T2,T3
and14areaveragetissueactivitiesinscanA,BandC,respectively.

r@ 5 A2, A@and A, are the arteriailZedvenous blood activitiesat the
@â€˜i. midpoint of scan A, B and C, respectively. The integral of the blood

curvefrom injectiontime to time t@,(midtimeof scan A) is repre
sented by dc1. The blood integrals from t@to t@,(midtime of scan B)

Eq 6 and from t3 tot4 (n@dtimeofscan C) are rePresented b@'dc@and dc@
- respectively.

Eq. 7 at which the blood activityvaries slowly, dc, and dc@can be easily
calculatedby either linearor second-orderpolynomialinterpola

Eq. 8 tion of the three blood samples, A2, A, and A,. A linear interpo
lationis used in this study. The initialrapidlychangingblood input

Eq. 9 function that normally needs to be sampled most frequently is not
measured in this method because only its integral (dc,) is mani
fested in the model and the integraldc, is treatedas an unknown
to be solved in this method. The three unknowns(dc1,K@andVd)
in Equations 7, 8 and 9 can be expressed for each pixel as
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imaged object over the entire set of transverse images. Second,
for each pixel, the blood input dc1 can be computed, using the
preliminary pixel K@and Vd values from the first step, by the
following equations (from Equations 7, 8 and 9)

dc1(i, j, t2)= [(T2â€”A2Vd)fK@], Eq. 13

dc1(i, j, t3)= [(T3â€”A3Vd)fKJâ€”dc@, Eq. 14

dc1(i, j, t4)= [(T4â€”A@Vd)/K@]â€”dc@â€”dc3, Eq. 15

where i andj are the x andy location indices of the chosen pixel.
From Equations 13 to 15, it is obvious that, first, if there are
measurementerrorsin the tissue andblood, the errorsin comput
ing the blood input dc1(i, j, t) will be high if K@is near zero (i.e.,
division by zero). The impositionof a lower threshold, K@(chest)
more than 0.002 and K@(brin)more than 0.008/mm, allows the
computation to avoid this numerically sensitive region. These

thresholds are empiricallydeterminedfrom normalsubjects with
continuousbloodsamplingsuch that the deriveddc1matchedthe
dc1 measuredfrom continuous blood samplingdata. Second, the
condition,Vdgreaterthan0, is used because negativeblood space
values are physically incorrect, which may indicate bad data
points. Hence, only pixels thatsatisfy these two constraintsof Vd
and K@are used to calculate the mean dc1. Solving Equation 13,
for each chosen pixel (i, j), the local pixel (dc1(i,j)) is obtained.

The grand estimate for dc1 from all the chosen pixels in the
image set is

((dc1))= @:((dci(i, j)))4number of chosen pixels]. Eq. 16

K, (@j(1) 0.05

0.04

0.03

0.02

B 0.01

Vd P1.5

1.2

0.9

0.6

0.3

A B
FiGURE 2. (A)iÃ§andVdimagesusingthedenvedgrandmean
of the initial blood input, dc1. (B) I@and Vd images using the indMd
ual pixeldc1.

dc1 =

(T@A2dc2â€”T@A2dc@â€”T@A2dc3+ A3T2dc@+ A3T2dc@â€”A@T2dc@)

(T4A3 - T4A2 + T@A2- A3T2 - A@T3+ A@T2)

Eq.10

@ - (T@A3 - T4A2 + T@A2 - A3T2 - A@T3 + A@T2)

K1â€”@ _ A2dc3+ A3dc@+ A3dc3â€”A@dc@) â€˜

(T3dc2+ T3dc3â€”T4dc@â€”T2dc@)
Vd= - Eq12

( â€”A2dc3+ A3dc@+ A3dc3â€”A@dc@J

Ideally, if all the known values T2, T3, T4, A2, A3 and A@have
no measurement or statistical errors, Equations 10 to 12 can be
evaluated exactly for each pixel to determine dc1, K@and Vd.
However, because these measuredvalues can have large uncer
tainties, in particularthe tissue uptakes (T2,T3and T4)measured
by PET, the following strategy with appropriateconstraints is
used.

The first parameterto be determined is dc1, the initial blood
activity integral, which is then used for the determinationof K@
and Vd. Assuming all the pixels in the imaged organs have the
same arterial activity over time, all the pixels will have the same
blood activity integraldc1. Every pixel within the imaged object,
therefore, provides an independentestimation of dc1, which can
be determined accurately by taking a mean value of dc1 over
thousands of pixels. The procedure for finding dc1 is as follows.
First, the preliminaiyK@andVdarecomputedwithoutanyknowl
edge of dc1 from Equations 11 and 12 for each pixel within the

FiGURE 3. (A)K@andVdimagesderivedfrom regulargraphical
analysiswithcontinuousvenousbloodsampling(35samples).(B)K@
and Vd imageswith this proposedmethodusingthree late-phase
venousbloodsamples.
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FiGURE 4. A lateralprofilecut on the
brainimagein Figure3 throughthecaudal
nudeus region. Solid line = present method;
dashline= graphicalanalysismethod.
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The metabolic rate K@(x,y) and total blood space image Vd(x,
y) arethenrecomputedfor the entireimageset usingthe grand
estimate ((dc1)):

From Equations 7 and 8,

T3(x y)A2â€”T2(x y)A3
K0(x, y) = ((dci)XA2 A3)@ A2dc@â€˜ 17

((dc1))[T2(x yâ€” T3(x y) + T2(x y)dc@
Vda(X,)â€˜)= Eq. 18

((dc1)XA2 A3)+ A2dc@

FromEquations8 and9,

U20.0
14.0

10.0

I@
Vd I1@

5@Z@-. 1@

I

FiGURE 6. ComparisonofSIN andparametricimages.The K@
imageshowshighercontrastordynamicrangethantheSUVimage.

5. (i4@iÃ§ani Vdfffl5@Sderivedfromregulargraphical
analysiswftticonlinuousvenousbloodsampling(35samples).(B)iÃ§
andVdimageswiththusproposedmethodusingthreevenousblood
samples.

V
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Kj(@J1).

.isiui@;@@â€¢.â€˜,

S
â€¢1'-0.13B@i@@@iE

[T4(x, y)A3 â€”T3(x, y)A@]

Kb(x, y) = ((dci)XA3 â€”A1) + dc2(A3 â€”A.@)+ A3dc@â€˜ Eq. 19

Vdb(x, y) =

((dc1))[T3(xyâ€” T4(x y) + dc@jT3(xyâ€” T4(x y) + T3(x y)dc@
((dci)XA3â€”A4)+ dc@(A3â€”A@)+ A3dc3

Eq.20

FromEquations7 and9,

T4(x,y)A2- T2(x,y)A4
K@(x,y) = ((dci)XA2 _ A4) + dc@A2+ dc@A2â€˜ 21

VdC(x,y) =

((dc1))[T2(x yâ€” T4(x y) + dcjf2(x y + dcjF2(x y)

((dc1)XA2_ A@)+ dc@A2+ dc@A2 E@122

Thefinalparametricimagesof K@(x,y) andVd(x,y) arecom
puted from the average as follows.

K@(x,y) = [K5(x, y) + K@(x, y) + K@(x,y)}3, Eq. 23

Vd(x,y) = [Vda(X,y) + V@(x,y) + VdC(x,y)}'3. Eq. 24

RESULTS

This method was tested for FDG PET applications on
six normal brains and two chest studies (heart, liver and
tumor) with 10 mCi of FDG injected. Three serial time
scans (15 min each) were acquired after a waiting period of
10 min. During the six brain studies and one chest study,
continuous blood samples (once every minute for the first
7 min and then every 5 min up to the end of the study) were
obtained so the present method (using three of the blood
samples) could be compared with the findings from the
graphicalanalysis method (using all blood samples). Arte
rialized venous blood sampling was from the hand. The
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FiGURE 8. Breastcancerstudy.

number of pixels selected by the constraints to estimate dc1
was large (> 10,000) for 21 slices. The results of uncon
strainedcomputationswere found to be unacceptable. The
total computation time to generate 21-slice K@and Vd im
ages was about 30 sec on an IBM RS/370 Workstation with
a nonoptimized computer program (Armonk, NY). These
results are shown in Figs. 2 to 8.

A direct computationof dc1(individualpixel dc1without
the averaging described), K@and Vd (Equations 10â€”12)
produced noisy parametric images (Fig. 2B) because of the
large errors in the derived dc1 (individual pixel). With the
proposed method, using the fact that the initial blood inte
gral dc1(x, y) was about the same for all pixels and thus
computing the grand mean ((dc1)), the quality of the para
metric images of K@and Vd was considerably better (Fig.
2A). The measured K@from the parametric images (Fig.
2A) showed that gray matter has a FDG metabolic rate in
the range of 0.03 to 0.04/min and that white matter has
about 0.005 to 0.01/min. These values agreed with pub
lished data (2,3,5,7).

Figure 3 illustrated good agreement between the regular
graphical analysis and the proposed analysis for a PET
FDGbrain study. A profilecuttingacross the brain images
in Figure 3 is shown in Figure 4 to show the comparison
more accurately. The average errors in K@and Vd (present
method relative to the graphicmethod) derived from aver
aging the percentage errors (absolute error) per pixel over
all the pixels in the entire brain is shown in Table 1 for six
brains (K@threshold at 0.008) and a heart study (K@thresh
old at 0.001). The errorsin dc1are also included in Table 1.
These comparisons showed that the proposed method
agreedwith the graphicalmethod well in K@and less well in
Vdandthe derived dc1.Apparently, the derived K@was not
highly sensitive to the errors in the derived blood input dc1;
the errorin Vdhad the same magnitudeas that of dc1. The

@r. three cases (Brains 1, 2 and 3 in Table 1) with the smallest

,â€˜@
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Errors Brain1 Brain2 Brain3Brain 4*Brain 5*BrainS@Heartsdc1

4.6% 5.4%3.2%14.4%20%38%9.7%iÃ§
3.2% 3.6%3.1%4.3%8.0%7.1%1.5%Vd
8.5% 7.3% 11.4%17.4%18%33%15.3%head

movementwasreporteddunngscans.tS@gnff@@@fl
headmovementwasreporteddunngscans.@Ungated

heartstudieswithnormalheartmovements.dc1
= bloodIntegralvariable;iÃ§= macrometabolicrateconstant;Vd= volume of distribution.

TABLE I
Average Absolute Errors per Pixel Relative to Graphical Analysis

dc1 and Vd errors coincided with the fact that the subjects
reported no movement (or sleeping) during the studies; the
studies with largerdc1errorscoincided with reportedsub
ject movements during the imaging periods (especially
Brain 5 in Table 1). Hence, the average K@error of this
method relative to the graphicalanalysis methodwas found
to be about 3%â€”4%,except in the cases of large patient
movement. The average Vd errorwas higher at 7%â€”15%.

The heart study is shown in Figure 5. Again the agree
ment between the regulargraphicalmethod (6,7) and the
proposed method was good. If the proposed constraint,
i.e., that all pixels have the same blood integral dc1, was
not used, the computed K@image was noisy, as in the brain
study (Fig. 2B) because the individual pixel dc1 cannot be
computed reliablyas a resultof noise in the uptakeimages.
This constraint of identical dc1 over all pixels improves the
K@image considerably. This dc1constraint is also implicitly
used by other modeling methods using continuous blood
sampling. In the regular graphical analysis (Fig. 5A), the K@
image is also good quality because the blood integral dc1 is
measured directly by frequent blood sampling. The aver
age K@for the myocardium was 0.02/min with 16 hr of
fasting.

DISCUSSION
A method was presented that is clinically practical and

computationallysimple for acquiringparametricimages of
the macrometabolic rate K@of tracers (to bound tissue
spaces) and the apparent blood space Vd. This method
requiresonly three serial scans and three blood samples at
the midpoint of each scan. For a tracer such as FDG,
which has a low extraction fraction, the three blood sam
ples can be taken from the venous side with arterialization
of the venous blood. The whole procedure lasts 1 hr after
the injection of FDG, which is about the same as the
conventional autoradiographicmethod. However, the au
toradiographicmethod requires continuous blood plasma
sampling,which is tedious in a busy clinical environment.
Furthermore,the autoradiographicmethod requiresan as
sumed set of rate constants that should be close to those of
the targettissue to minimizeerror.For tumorapplications,
such an assumption, i.e., using normal tissue rate con
stants for all the tissue in the image, includingtumors, may
induce higher errors in tumors.

Compared with a nonquantitative PET-FDG study, the
only extra overhead of the proposed quanti
tative parametric imaging method was (1) three arter
ialized venous blood samples and (2) about 2â€”3sec of
additional computation per slice, which is acceptable for
routine clinical PET examinations. Preliminaiy results
with FDG indicate that the proposed method may be as
accurate as more elaborate modeling methods, and the
potential that this method can be used routinely in a cmi
cal environment is high. However, patient movement
should be minimized if more accurate blood space @dis
needed. The optimal K@threshold for computing dc1 may
be a function of the quantity and quality of the image data,
which includes organ uptake, image noise, camera quanti
tative accuracy and well counter calibration accuracy.
Otherclinical PET sites and organ sites may have a differ
ent optimal K@threshold, which can be empirically deter
mined locally with preliminarystudies by varying the K@
threshold until the derived dc1 agrees with the true dc1
measured by continuous blood samplingdata in these pre
liminary studies.

The proposed method produces images that are poten
tiallymore usefulthan SUV imagesfor visual and quanti
tative applications(Fig. 6). In the heart study, the myocar
dial K@image had higher contrast from the background
thandid the SUV image(Fig. 6). The lowercontrast
sUv myocardialimagewas causedby highblood-pool
activity in the heart area coupled with low FDG uptake
in the heart (low blood glucose level from prolonged fast
ing). The cardiac K@image improves the image contrast
because it filters out the nearby blood pool (Vd) compo
nent. The liver study (Fig. 7A) showed high SUV values
(SUV > 4.0) for normal hepatictissueeven50min postin
jection, which could potentially obscure tumor detection
(SUV > 3) in the liver. The hepatic K@and Vd images
in Figure 7B and C indicated that all the areas of high
radioactivity seen in the SUV image were from the blood
pool or exchangeable space contributions and were not
metabolic in nature. Hence, smaller, lower activity tumors
may be visualized more easily in the K@image of the liver.
A breast cancer study, with a primarytumor and an axil
lary metastasis, was also performed. The results are shown
in Figure 8.

As in the graphical analysis method (6, 7), the potential
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shortcoming of this method is that the tissue â€œtrapâ€•
compartment may be leaky (k@@ 0), which leads to an
underestimation of K@and an overestimation of Vd. In
such cases, the demanding compartmental nonlinear
curve-fittingmethod to find k1 â€”k4 (2,3) would be more
accurate.
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