
Although visual interpretation of raw images was ini
tially used for image analysis, semiquantitative methods,
includingcircumferentialprofileanalysis with the possibil
ity of comparing patient data to a reference normal data
base, were subsequently introduced to decrease intra- and
interobserver variability and improve the diagnostic accu
racy of planar thallium imaging (6â€”9).

In recent years, research in artificial intelligence has
developed computer methods that permit the building of
automateddiagnosticsystemswiththecapabilityof knowl
edge representation and machine learning (10). Rule-based
expert systems and artificial neural networks have emerged
as powerful tools to construct computer programs that
attemptto solve problemsthattraditionallyrequiredhu
man expertise. Comparedwith rule-based systems, artill
cial neural networks offer the advantage of intrinsic incre
mental knowledge acquisition with the capability of
learning from case examples and thus appear to be partic

ularly suited for image analysis and interpretation.
Several earlier studies have utilized artificial intelligence

techniques in an attempt to advance from computer-based
imageprocessingto computer-basedimageinterpretation
and have created computer programs for an automated
interpretation of @Â°â€˜Tlscintigrams (11â€”15).However, al
though these initial approaches appeared promising, their
clinical utility and diagnostic accuracy remained undeter
mined.

The purpose of the present study was to (1) develop
artificial neural networks that automatically detect the
presence of CAD and assess its severity and localization
based on the segmental analysis of planar thallium stress/
redistributionscintigramsand(2)evaluatetheirdiagnostic
accuracy in comparison with coronary angiography and
human expert interpretation.

METhODS

SWdy Po@
Thestudypopulationwascompiledbyaretrospectivedatabase

search and included 159 patients (120 males and 39 females; age
56 Â±9 yr mean Â±s.d.; range33â€”74yr)who hadundergoneplanar
dipyridamole stress/redistribution @â€˜11scintigraphy at the cardio

Todevelopanautomatedimageinterpretationsystemofplanar
cardiac 20111dipyrldamolestress/redistiibutionsdn@grams,the
authors used artificialneural networksthat assodate patterns of
segmental myocardialthalliumuptake wftha diagnosticassess
ment about the presence, sevedty and localizationof nignificant
eoronary artery disease. Methods: Artifidalneural networks
were tralned and evaluated uning the resufts from segmental
thalliumanalysis and either expert readings in 159 cases or
coronaiy angiogr@@hyin a subgroup of 81 patients. Results:
Based on rece@eroperatingcharactaristicsanalysis, the sens@
tivityforthe detectionof significantcoronaryartery disease at a
specificityof 90% was 51% compared with anglography and
72%comparedwiththe humanexpert.Forseverityand local
Izationof disease, two vascular territoriesassigned to the vas
euler bed of the leftanteriordescending (LAD)artery and to the
terrftoiysubtended by the left circumflexartery and the right
coronary artery together (CX/Rc@A)were includedin the analy
sis. Conclusion: Artificialneural networks may be useful to
develop automated computer-based image interpretationsys
tame of201@flperfâ€•@@iscintigrams.However,utilizationof large
training datasets @pearsto be a prerequisite to achieve ads
quate diagnosticperformance.

Key Words: myocardialsdntigraphy thaJlium-201; dipyridam
ole;artificialneuralnetworks;receiveroperatingchar@erIstIcs
an@
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anar @Â°â€˜Tl-dipyridamolestress/redistribution perfusion
scintigraphy is frequently used in the evaluation of patients
with suspected or proven coronary artery disease (CAD)
(1â€”3).Clinicalapplicationsincludethedetectionof signif
icant CAD and the assessment of its severity and localiza
tion. In addition, valuable prognostic informationfor pa
tient managementcan also be obtained from planar
thaffium scintigrams (4,5).
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*F@y4@ Integer values as In this example were used as an input
pattern for the artlfldal neural networks.
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vascular nuclear medicine laboratoiy of this department. Forty
four (28%) patients had suffered at least one prior transmural
myocardialinfarction.

In a subgroupof 81 patients,coronaiyangiographywas per
formed using the Judkins technique within 6 mo of the thallium
study to confirm or exclude significant CAD and to assist in
patient management. The clinical course of patients between an
giography and thallium scintigraphywas uneventful. In particular,
therewas no indicationof an intercedentmyocardialinfarctionor
any other sign of progressive coronaiy artery disease.

Angiograms were reviewed by experienced staff cardiologists
who were not specifically blinded to the thallium results. In 67 of
81patients, angiographyrevealedsignificantCAD, definedas 50%
ormoreluminaldiameternarrowingin at leastone majorepicar
dial coronaiy artery. To facilitate a comparison between the se
verityof CAD,definedby angiographyandby thalliumscintigra
phy, the total myocardialperfusionbed was dividedinto two
vascular territories. One territory was assigned to the vascular
bed of the left anterior descending (LAD) artety; the other tern
tot)! was assigned to the vascular bed subtended by the circumflex
artery (CX) and the right coronaiy artery (RCA). This particular
distinction was adopted for two reasons. First, planar thallium
scintigraphy, in contrast to SPECF imaging, has been shown to
havea lowsensitivityforthedetectionof diseaseintheindividual
vascularterritoriesofthe CXandRCA(16).Second,theoriginof
the posterior descending artery and the posterolateral arterial
branchesvaries between the CX andthe RCA, so thatthe amount
of myocardialtissuesuppliedby eithervessel is variable.Thus,
for the purpose of the present study, the severity of CAD was
classified into single- or multiple-territoiydisease.

According to this classification, 34 (42%) patients had evidence
ofsigniiIcantCAD inonly one territory(21LAD and 13CX and/or
RCA). In 33 (41%)patients, both territorieswere affected. In 14
(17%)patients, coronaiy angiographydid not reveal significant
CAD. Patients who had previously undergone angioplasty or cor
onaxyarteiy bypasssurgeiywere excludedfromthe angiography
subgroup of our study.

Thallium Image Acquisition and Analysis
Patients were injected with dipyridamole (0.67 mg/kg) over a

periodof 4mm.If the heart rate responseto pharmacologicstress
was insufficient to increase the resting heart rate by at least 10%,
an isometric hand-gripexercise was performed. Following the
applicationof the vasodilatingagent,74to 111MBq(2â€”3mCi)of
201Tlwas injected intravenously, and multiple-view images were
acquired for 8 mm in three standard projections (anterior, left
anterioroblique[LAO]45Â°andLAO70Â°)witha planargamma
camera (Apex 215, LEAP collimator, Elscint Co., Boston, MA).
Thesameimageprojectionswerethenrepeatedafter3to4hrwith
thepatientatrest.A sampleset of imagesis depictedinFigure1.

Quantitative segmental thallium analysis was performed based
on circumferentialprofileanalysisusinga commerciallyavailable
computer program (CFLSEG, Elscint Co.). Briefly, after back
groundsubstractionand smoothing,circumferentialprofilesof
maximal count activity were generated with the use of radii
spaced apart by 6Â°.The proffleswere aligned with the apex at 180Â°
accordingtooperatorspecification.Normalizedsegmentalvalues
werethencomputedforfive60Â°segmentsineachview.Thesixth
60Â°segmentwasconsideredthevalvesegmentandomittedfrom
further analysis. For each segment, a washout index was com
puted.In total,a singledatasetconsistedof 45 integernumbers
thatreflectedtherelativesegmentalthalliumuptakeatstressand

Anterior LA045 LAO7O

Stress

Redistribution

FIGURE 1. Sample set of planar thalliumdipyrkiamolestress/
redistribution images with three standard views obtained in a patient
evaluated for CAD. Perfusion scintigraphy shows significant redis
tribution in the anterior wall.

after redistribution and the relative segmental washout in five
myocardialsegmentsin each of the three standardviews.A sam
plc datasetof the segmentalthalliumanalysisfor the thallium
study depicted in Figure 1 is given in Table 1. These values of
segmental thallium uptake and washout served as the input data
set for image interpretation by artificial neural networks.

All thallium studies (n = 159) were graded independently for
thepresence,severityandlocalizationof coronaiyarterydisease
by one experiencedhumanobserver(H.S.) who used scoring
schemeswithnominalscalegradations.Forbinaryyes/nodcci
sions, a gradingof equivocal was possible, but these cases were
notusedfortrainingandevaluationof neuralnetworks.Forthe

TABLE I
Sample Reportof Segmental Values for MyocardialThallium
Uptakeand Washout Obtainedfromthe Images Depictedin

Figure 1*

9694 74
9486 79
5961 54

8373
8679
57 54

S@ss
RedIStribUtiOn
Washout

LAO45 Stress
RedIStribUtiOn
Washout

LAO70 Stress
RedIStribUtiOn
Washout

6395 83
9098 76
5588 73

3825
5353
5836
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presence of significantCAD, 53 (33%)studies were graded as
normal; 88 (56%), as abnormal; and 18 (11%), as equivocal. For
severity of disease, 46 (29%) studies were classified as single
territory disease; 58 (36%), as double-territory disease; and 55
(35%), as normal. For localization of disease, the territory as
si@ to the LAD artery was read as normal in 66 (42%) studies,
as abnormalin 75 (47%)andas equivocalin 18(11%).Thetern
toly assigned to the left CX and RCA was called normal in 59
(37%),abnormalin 78 (49%)andequivocalin 22(14%)cases.In
one case, bothterritoriesweregradedas equivocal.

Artificial Neural Networks
Applications of artificial neural networks have been described

and reviewed in detail elsewhere (17-19). Briefly, artificial neural
networksconsistof simplecomputingunitsthatareconnectedin
a specificnetworktopology,commonlya three-layeredstructure,
i.e., an input layer, an output layer and a hiddenlayer that mcdi
ates all connectionsbetween the input and output units. Input
patterns are encoded as activation patterns of the input units; the
stateof the outputunitsis decodedinto an outputpattern.For
each unit, a nonlinear transfer function computes from its input
values a unique and usually binary output value encoded as 0 or 1.
Weightfactors that are associatedwith each interunitconnection
are multiplied with output values to yield scaled input values for
theconnectedunits.

Artificial neural networks for pattern recognition can be devel
oped utilizing heuristic rules and learning algorithms that operate
on trainingsetsof characteristiccaseexamples.First, thetopol
053V and the hierarchy of the network have to be specified based

on theproblemspecificationandon adequatecodingschemesof
inputandoutputpatterns.Frequently,empiricstrategieshaveto
be applied to assign units to each network layer because algo
rithms that would precisely predict the optimal network configu
ration based on a specific problem specification are, in general,
not available.Then,numericweightfactorsare determinedfor
each unit-to-mit connection by an iterative learning algorithm.
After random initialization of the weight matrix, the first input
pattern of the training set is processed by the network to generate
the associatedoutputpattern.The differencebetweenthe ob
served and the expected output pattern is used to adjust the
weight matrix approptiatsly utilizingthe backpropagationalgo
rithm (17). Additional iterations for the same pair of input-output
patternscontinueuntilthe networkcorrectlyderivesthe expected
outputpattern. Sequentially,all remainingpatternsof the training
set undergo the same procedure. To ascertain adequate diagnostic
performance of the network also for patterns that are not specif
icallyincludedin the trainingset, the trainingset shouldincludea
representative sample of cases from the entire problem domain.

Spec4ficNetWOTkDeSiRJI.Artificial neural networks used in the
present study consisted of45 input units, 15hidden units, and 1or
2outputunitstodeterminethepresence,severityandlocalization
of CAD.Eachof the45inputunitswasassignedto acorrespond
ing input value of the segmental thallium analysis. AlthOugh the
numberof the inputand outputunitswas determinedby the
structure of the input and output patterns, the numberof hidden
units was chosen empirically as 15, an intermediate level between

@ thenumberof inputandoutputunits.Initialtestsinwhichthe
numberofhidden unitswasvariedindicatedthat the performance
ofthe networkwas insensitiveto smailvariationsin the numberof
hidden units. A schematic diagram of the adopted network topol
ogy for the detection of CAD is given in Figure 2. Different

outputunit outputpattern:0 ... noCAD
I...CAD

Is hiddenunits

45inputunits

36 segmentalthalliumvalues
(inputpattern.t@Tabk I)

â€¢ â€¢ . . â€¢ â€¢ .

96 94 53

FIGURE 2. SchematIcdIagramofan artffidalneuralnetworkde
signed to associate segmental values of mnyocardlalthalkim uptake
and washoUtas @ptdpattern wfthan output pattern concem@g the
presence of algnfficantCAD.

network instances were developed to predict the results from
eitherangiographyor humanimageinterpretation.

From the entire database, subsets of cases were selected as
training sets; the remaining cases were used to evaluate the per
formanceof the network.Althougha largetrainingset wouldbe
desirable to improve network performance, cases that are as
signed to the training dataset cannot be used to evaluate the
diagnostic accuracy of the network. Therefore, the fraction of
cases that was induded in the training data set was chosen em
piricallyas 20%to 30%so that an adequatenumberofcases could
be assignedto the trainingset andthe evaluationset. To ensure an
adequatecase representationwithintrainingsets and at the same
time achieve statistical independence between sets, the case din
tributionin the trainingsetswas constrainedto reflectproportion
ally the distribution of cases in the entire database with the addi
tionalrequirementof a minimaloverlapbetweentrainingsets.
Table 2 summarizesthe distributionof patterns selected for the
trainingsets.

An alternative approach to develop and evaluate artificial net
works with a database of n cases would involve the generation of
n differentnetworkinstancesby partitioningthetotalnumberof
cases into a training set of n â€”1 cases and an evaluation set of 1
case for all n possible permutations. However, this â€œroundrobinâ€•
method does not result in the development ofone specific network
instance that can be evaluated in a separate evaluation step but
rather generates n different network instances that are statistically
not independent.Moreover,analysissoftwarethat wouldpermit
thegenerationofreceiveroperatingcharacteristics(ROC)curves,
as indicatedlater,alsofordataobtainedbythisapproachwasnot
available.Therefore, this methodwas not appliedin the present
study.

Networktrainingwasconductedbasedon the backpropagation
algorithm with a learning rate of 0.1, a scaling factor of the mo
mentumterm of 0.9 and a thresholdat the output unitof 0.3. The
computer experimentswere performed on an Apollo DN3000
UNIX workstation (Hewlett Packard, Palo Alto, CA) using corn
puter software written in C and the network simulation language
VieNet2 for neural network simulation (20).

@ys&cofNetworkPeifo@mance.Neuralnetworkswerede
veloped to provide diagnostic information on three different as
pects of CAD with appropriately designed output patterns. The
presence of significant CAD was associated with a simple binary
output pattern (yes/no). The severity of disease was assessed
based on a classification into three mutually exclusive categories
(normal, single territory or multiple territory), and the localization

2043Neural Networks for Thallium Scintigraphy â€¢Porenta at al.
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TABLE 2
Case Distribution Between Subsets Used for Training and

EvalUatiOn of Artificial Neural Networks Developed to Interpret
ThalliumData Accordingto Presence, Severityand Location

of SignificantCAD* @::
to.4

1.0

0.2

Presence of CAD
An@

NOnT@
Abnormal

Human expert
Normal
Abnormal
EquIvocal

Severityof CAD

Normal
Singleterritory
Multipleterritory

Human expert
Normal
Singieterritory
Mumpieterritory

Locationof CAD

Normal
L@Dalone
CX/RCAalone
Both territories

Human expert
Normal
LADalone
CX/RCA alone
Bothterritories
EquIvocal

â€¢R@ft@fromcoronaryanglography(n = 81) and humanexpert
reedu@igs(n = 159)were used as reference standards.

LAD= vascular territorysubtended by the leftanteriordescendIng
artery;CX/RCA= vascularteriltorysubtended bythe leftcircumflexand
rightcoronaryartery.

of diseasewas encodedby two mutuallynot exclusivebinary
decisions for the presence of disease in each of the two vascular
territories (LAD: yes/no, CXJRCA:yes/no). According to the
outputpatternsforeachnetworktopology,differentapproaches
were used to analyze network performance.

Forthe detectionof CAD,ROCcurves(21)werederivedfor
eachof thefivenetworkinstancesby comparingtheoutputdata
obtainedduringnetworkevaluationwith the results fromangiog
raphyandwithhumanexpertreadings.Fordiagnostictests that
aredesignedto differentiatebetweentwodifferentstates,suchas
normal versus abnormal, but yield as their result a grading on a
scale with more than two grading levels, ROC analysis provides
corresponding values of true positive (sensitivity) and false posi
tive (1 â€”specificity) fractions for different levels of a decision

threshold.Accordingly,variationsof the thresholdvalueat the
outputunitthatdiscriminatebetweennormalandabnormalpat
terns yielded four pairs of sensitivity/specfficityvalues for each
networkinstance.Thesedatawereusedto derivefiveindividual
andoneaverageROCcurvebycomputeranalysisusingthecom
puterprogramROCFIT(22).
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falsepositiverate
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33
9
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41
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53 FiGURE 3. ROC cuives obtained from five Instances of artificial
88 neural networks to detect algnfficantCADwith (a) angiography and
18 (b)the experthumanreadingas the referencestandards.lndMdual

curves = thin lines; average curves = bold lines.

;@: FortheassessmentoftheseverityofCAD,fiveinstancesofa
33 network topology with two output units (O@and O@)were trained

to classify segmental thalliumuptake into three patterns:normal
55 [0 0], single-territory disease [1 0] and multiple-territory disease
48 [0 1] or [1 1J. Networks were again trained using either results
58 from coronary angiography or an expert reading as reference

standards. A 3 x 3 classificationmatrix was obtained for each
networkduringevaluation,andthesematriceswerethensummed

;;I into a lumped evaluation matrix.
13 Similarly, five instances of a neural network with two output
33 units were trained to assess the localization of significant CAD by

differentiatingbetween two vascular territories assigned to the
41 vascular beds of the LAD and the CX/RCA, as indicated previ
13 ously. Diagnostic performance was assessed by generating aver
17 age values of positive and negative predictive accuracies for each

@ vascularterritory.

RESULTS

Detection of Slgnmcant CAD
Figure 3 displays individual and an average ROC curve

obtained from five different artificial neural networks
trainedfor the detection of significantCAD with coronary
angiography (Fig. 3a) or human expert readings (Fig. 3b) as
reference standards. The observed variation between dif
ferent ROC curves attests to the influence that the selec
tion of trainingsets may exert on the performanceof arti
ficial neural networks.

The two average ROC curves that describe the average
diagnostic performance of artificial neural networks are
depicted in Figure 4 together with the ROC curve that is
obtained when the expert reading was compared with cor
onaiy angiography. At a specificity of 90%, the average
sensitivity of the network was 51% compared with angiog
raphy and 72%comparedwith the human expert. In corn
parison, the corresponding sensitivity for the human expert
with angiography as the reference standard was 86%. At a
sensitivity of 90%, the average specificity of the network
was20%whenangiographyand70%whenexpertreadings
were taken as reference standards. In comparison, the
specificity for the detection of CAD of the human expert
was 87% at a sensitivity of 90%. Thus, compared with
angiography, the human expert, who based his assessment
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FIGURE 4. ComparIsonof ROCcurvesforthe dete@lonof sig
nfficantCAD:human expert versus anglography (thinIkie),average
neural networkversus human expert (brokenthickllne) and average
neuralnetworkversus anglography(solidthickline).

normal single multiple

classification by angiography

(b) networkvs.humanexpert

not only on segmental thalliumuptake values but also on
the scintigraphicimages, demonstrateda better diagnostic
accuracy than did the artificial neural networks.

Assessment of Severity of CAD
Figures 5a and b depict graphic representations of the

3 x 3 crosstabulationmatricesthat are generatedwhen test
cases are classified by neural networks into patterns re
flecting normal, single-territory and multiple-territory dis
ease, which are compared with angiography (Fig. 5a) or
humanexpert readings(Fig. Sb). The averageconcordancy
rate derived from five network instances was 40%for an
giography and 56% for the human expert as reference stan
dards. When expert readings were compared with angiog
raphy (Fig. 5c), the concordancy rate was 58%.

For normalcases, as defined by the reference methods,
the networks correctly recognized a normalpatternin 56%
(angiography) and 69% (human expert). For cases defined
as multiple-territory disease, neural networks were able to
associate an abnormalpattern(single or multiterritoiydis
ease) in 77% (angiography)and 86% (human expert). For
cases with single-territory disease, the networks discerned
an abnormalpatternin 73%(angiography)and70%(human
expert). Among abnormal cases, the differentiation be
tween single- and multiple-territory disease was better
when the humanexpert ratherthanangiographywas taken
as reference standard.

Assessment of Localization of CAD
Figures 6a and b display negative and positive predictive

accuracies obtained from artificialneuralnetworks for the
assessment of localization of CAD in the LAD and the
CX/RCA vascular territories in comparison to angiography
(Fig. 6a) and the humanexpert reading(Fig. 6b). For both
territories,positive predictive accuracies for the detection
of significantCAD did not vary noticeably between net
works and ranged from 79%to 86% For negative predic
tive accuracies, the values were better when they were
compared with the human expert (70%for the LAD and
68%for theCX/R@Aterritory) thanwith angiography(52%
for the LAD and 60%for the CX/RCA territory).Figure6c
shows positive and negative predictive accuracies when

classification by ANN

normal@
single a
multiple U

classificationby expert

(c)expertvs.angiography

normal single multiple

classificationby angiography

FiGURE 5. ComparIsonbetween classifications of CAD Into
three patterns concerning the severity of dISease: normal, singie
territory dieease and mulfiple-teffitorydISease. (a) Neural network
versus anglography. (b) Neural network versus human expert (C)
Human expert versus an@ography. For artificialneural networks
(ANN),the number of cases (n) refers tothe summed results Involv
ing five different network Instances.

the human expert was compared with angiography. Al
though the positive predictive accuracies were comparable
to the values thatwere obtained from the neuralnetworks,
negative predictive accuracies were higher.

DISCUSSION

This study used artificial neural networks to generate an
automated computer-based assessment concerning the
presence, severity and localization of significant CAD from
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of luminalobstructions in coronary arteries. Accordingly,
neural networks that are trained to simulate the human
expert are expected to exhibit better diagnostic perfor
mance than when they are trained to predict angiographic
results. Moreover, angiographic results were available in
only 81 of 159 patients, so that the size of training and
evaluation sets for angiographic results as the reference
method were limited. Especially for the diagnostic task to
differentiate between three patterns of severity of CAD
(normal, single territory and multiple territory), the small
number of training cases for each diagnostic category may
have been insufficient to serve as a representative sample
set. Therefore, differencesbetween trainingandevaluation
sets, especially concerning the numberof included cases,
may also explain why neural networks performed worse
when angiographic results were predicted rather than hu
man expert readings.

The diagnostic accuracy of thaffium scintigraphy de
ponds on the prevalence and severity of CAD in the study
population (3). The inclusion of patients with prior trans
mural myocardial infarction, as in this study population,
may especially affect the sensitivity and specificity of thal
lium scintigraphy. To assess the influence of the study
population on diagnostic accuracy, the authors also com
pared for each diagnostic task the human expert readings
with the results from angiography. It was found that in the
subgroup of 81 patients who underwent angiography, the
human expert performed consistently better than did arti
ficialneuralnetworks.Althoughthisdifferenceindiagnos
tic performancemay be attributedto the method, it poten
tially could also imply that the information content of the
45 integer numbers that result from segmental analysis is
considerably less than the information that is present in the
scintigraphic images, which were used by the human cx
pert to derive his diagnostic classifications. Thus, artificial
neuralnetworks that use entire images as the inputpattern
may possibly achieve a better diagnostic performance.

The present study was based on planarthalliumscinti
grams rather than thallium SPECT images. Although
SPECF imagingis consideredthe state-of-the-artimaging
technique, offering an improved contrast resolution, planar
thaffium imaging still is commonly used in clinical routine
because it is technically and financially less demanding and
has a long record of proved clinical utility. However, the
limited ability of planar imaging to discern anatomic seg
ments may also affect the diagnostic accuracy of auto
mated image interpretationsystems. In a previous study,
Fujita et al. (15) reported that neural networks may be
useful to interpret polar map displays generated from
SPECr images. However, as the evaluation set with 16
cases was small, a comprehensive evaluationregardingthe
diagnostic performance of their neural network could not
be conducted. Compared with human observers, the arti
ficial neural network appeared to perform better than a
resident but worse than experienced radiologists. The re
suits of Fujita et al. (15) suggest that an automated inter
pretation of myocardial perfusion scintigrams by neural

(a)networkvs.angiography

VascularTerritories:

0 LAD
U CX/RCA

VascularTeriltories:

DLAD
U CX/RCA

@,)networkvs.expert

(c) expertvs.angiography

+ pred.acc. - pred. acc.

FIGURE 6. Comparisonof positiveand negativepred@ve secu
racies concerning the presence of signifIcantCAD In two vascular
territoriessubtendedbythe leftanteriordescendingartery(LAD)and
bythe leftcircumflexand rightcoronary artery (CX/RCA4.(a) Neural
networkversus anglography. (b) Neural networkversus human ex
pert (C)Human expert versus anglography.

relative segmental thalliumuptake values of planardipyr
idamole stress/redistribution scintigrams. Different net
work configurationswere developed and evaluated against
results from coronary angiography and from the visual
interpretation by an expert reader.

The diagnosticperformanceof neuralnetworkswas bet
ter when the results from the humanexpert readingrather
than those from angiographywere taken as the reference
standard. Although coronary angiography is based on mor
phologic criteriato assess the presence, severity and local
ization of CAD, myocardial scintigraphy depends on dif
ferences in the relative myocardial perfusion to assess
CAD and may better reflect the hemodynamic significance

2046 The Journal of Nudear Medicine â€¢Vol. 35 â€¢No. 12 â€¢December 1994



networks may perform better when tomographic rather
than planarimages are used because of the improved con
trast resolution of SPEC!' images.

An inherent limitation of artificial neural networks is
their associated level of incompetence. For example, net
works, as presented in this study, generate outputpatterns
for any set of 45 inputnumbersregardlessofwhether these
originate from a thallium scintigraphy or are chosen at
random. In contrast, rule-based expert systems usually
provide no output if they are provided with inadequateor
inconsistent input information.Hybrid systems that com
bine features from both rule-based systems and artificial
neural networks might overcome the limitations of either
approach.

In conclusion, this study demonstrated that artificial
neural networks offer a novel and promising approach to
develop computer-based systems for an automated inter
pretation of 201Tlscintigrams. However, to achieve a level
of diagnostic accuracy that may be acceptable for clinical
applications, artificialneural networks need to be trained
with sufficientlylargesets oftraining cases. Furtherstudies
are required to delineate more precisely the merits and
limitations of artificialneural networks for an automated
interpretationof myocardial perfusion scintigrains.
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