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To develop an automated image interpretation system of planar
cardiac 2°'T1 dipyridamole stress/redistribution scintigrams, the
authors used artificial neural networks that associate pattems of
segmental myocardial thallium uptake with a diagnostic assess-
ment about the presence, severity and localization of significant
coronary artery disease. Methods: Artificial neural networks
were trained and evaluated using the results from segmental
thallium analysis and either expert readings in 159 cases or
coronary angiography in a subgroup of 81 patients. Resuits:
Based on receiver operating characteristics analysis, the sensi-
tivity for the detection of significant coronary artery disease at a
specificity of 90% was 51% compared with angiography and
72% compared with the human expert. For severity and local-
ization of disease, two vascular territories assigned to the vas-
cular bed of the left anterior descending (LAD) artery and to the
territory subtended by the left circumfiex artery and the right
coronary artery together (CX/RCA) were included in the analy-
sis. Conclusion: Artificial neural networks may be useful to
develop automated computer-based image interpretation sys-
tems of 2°'T1 perfusion scintigrams. However, utilization of large
training datasets appears to be a prerequisite to achieve ade-
quate diagnostic performance.
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Bmar 20'T)-dipyridamole stress/redistribution perfusion
scintigraphy is frequently used in the evaluation of patients
with suspected or proven coronary artery disease (CAD)
(1-3). Clinical applications include the detection of signif-
icant CAD and the assessment of its severity and localiza-
tion. In addition, valuable prognostic information for pa-
tient management can also be obtained from planar
thallium scintigrams (4,5).
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Although visual interpretation of raw images was ini-
tially used for image analysis, semiquantitative methods,
including circumferential profile analysis with the possibil-
ity of comparing patient data to a reference normal data-
base, were subsequently introduced to decrease intra- and
interobserver variability and improve the diagnostic accu-
racy of planar thallium imaging (6-9).

In recent years, research in artificial intelligence has
developed computer methods that permit the building of
automated diagnostic systems with the capability of knowl-
edge representation and machine learning (10). Rule-based
expert systems and artificial neural networks have emerged
as powerful tools to construct computer programs that
attempt to solve problems that traditionally required hu-
man expertise. Compared with rule-based systems, artifi-
cial neural networks offer the advantage of intrinsic incre-
mental knowledge acquisition with the capability of
learning from case examples and thus appear to be partic-
ularly suited for image analysis and interpretation.

Several earlier studies have utilized artificial intelligence
techniques in an attempt to advance from computer-based
image processing to computer-based image interpretation
and have created computer programs for an automated
interpretation of 2°'T1 scintigrams (11-15). However, al-
though these initial approaches appeared promising, their
clinical utility and diagnostic accuracy remained undeter-
mined.

The purpose of the present study was to (1) develop
artificial neural networks that automatically detect the
presence of CAD and assess its severity and localization
based on the segmental analysis of planar thallium stress/
redistribution scintigrams and (2) evaluate their diagnostic
accuracy in comparison with coronary angiography and
human expert interpretation.

METHODS
Study Population

The study population was compiled by a retrospective database
search and included 159 patients (120 males and 39 females; age
56 = 9 yr mean * s.d.; range 33-74 yr) who had undergone planar
dipyridamole stress/redistribution 2°' T scintigraphy at the cardio-
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vascular nuclear medicine laboratory of this department. Forty-
four (28%) patients had suffered at least one prior transmural
myocardial infarction.

In a subgroup of 81 patients, coronary angiography was per-
formed using the Judkins technique within 6 mo of the thallium
study to confirm or exclude significant CAD and to assist in
patient management. The clinical course of patients between an-
giography and thallium scintigraphy was uneventful. In particular,
there was no indication of an intercedent myocardial infarction or
any other sign of progressive coronary artery disease.

Angiograms were reviewed by experienced staff cardiologists
who were not specifically blinded to the thallium results. In 67 of
81 patients, angiography revealed significant CAD, defined as 50%
or more luminal diameter narrowing in at least one major epicar-
dial coronary artery. To facilitate a comparison between the se-
verity of CAD, defined by angiography and by thallium scintigra-
phy, the total myocardial perfusion bed was divided into two
vascular territories. One territory was assigned to the vascular
bed of the left anterior descending (LAD) artery; the other terri-
tory was assigned to the vascular bed subtended by the circumflex
artery (CX) and the right coronary artery (RCA). This particular
distinction was adopted for two reasons. First, planar thallium
scintigraphy, in contrast to SPECT imaging, has been shown to
have a low sensitivity for the detection of disease in the individual
vascular territories of the CX and RCA (16). Second, the origin of
the posterior descending artery and the posterolateral arterial
branches varies between the CX and the RCA, so that the amount
of myocardial tissue supplied by either vessel is variable. Thus,
for the purpose of the present study, the severity of CAD was
classified into single- or multiple-territory disease.

According to this classification, 34 (42%) patients had evidence
of significant CAD in only one territory (21 LAD and 13 CX and/or
RCA). In 33 (41%) patients, both territories were affected. In 14
(17%) patients, coronary angiography did not reveal significant
CAD. Patients who had previously undergone angioplasty or cor-
onary artery bypass surgery were excluded from the angiography
subgroup of our study.

Thallium Image Acquisition and Analysis

Patients were injected with dipyridamole (0.67 mg/kg) over a
period of 4 min. If the heart rate response to pharmacologic stress
was insufficient to increase the resting heart rate by at least 10%,
an isometric hand-grip exercise was performed. Following the
application of the vasodilating agent, 74 to 111 MBq (2-3 mCi) of
20171 was injected intravenously, and multiple-view images were
acquired for 8 min in three standard projections (anterior, left
anterior oblique [LAO] 45° and LAO 70°) with a planar gamma
camera (Apex 215, LEAP collimator, Elscint Co., Boston, MA).
The same image projections were then repeated after 3 to 4 hr with
the patient at rest. A sample set of images is depicted in Figure 1.

Quantitative segmental thallium analysis was performed based
on circumferential profile analysis using a commercially available
computer program (CTLSEG, Elscint Co.). Briefly, after back-
ground substraction and smoothing, circumferential profiles of
maximal count activity were generated with the use of radii
spaced apart by 6°. The profiles were aligned with the apex at 180°
according to operator specification. Normalized segmental values
were then computed for five 60° segments in each view. The sixth
60° segment was considered the valve segment and omitted from
further analysis. For each segment, a washout index was com-
puted. In total, a single dataset consisted of 45 integer numbers
that reflected the relative segmental thallium uptake at stress and
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FIGURE 1. Sample set of planar thallium dipyridamole stress/
redistribution images with three standard views obtained in a patient
evaluated for CAD. Perfusion scintigraphy shows significant redis-
tribution in the anterior wall.

after redistribution and the relative segmental washout in five
myocardial segments in each of the three standard views. A sam-
ple dataset of the segmental thallium analysis for the thallium
study depicted in Figure 1 is given in Table 1. These values of
segmental thallium uptake and washout served as the input data-
set for image interpretation by artificial neural networks.

All thallium studies (n = 159) were graded independently for
the presence, severity and localization of coronary artery disease
by one experienced human observer (H.S.) who used scoring
schemes with nominal scale gradations. For binary yes/no deci-
sions, a grading of equivocal was possible, but these cases were
not used for training and evaluation of neural networks. For the

TABLE 1

Sample Report of Segmental Values for Myocardial Thallium
Uptake and Washout Obtained from the Images Depicted in

Figure 1*

Scintigraphic Myocardial Segments
Views Stage Ant-Lat  Apex Inf
Ant Stress 96 94 74 83 73

Redistribution 94 86 79 86 79

Washout 59 61 54 57 54

Post-Lat  Apex Septum

LAO 45 Stress 49 67 87 88 54
Redistribution 7% 77 86 98 71

Washout 54 65 n 67 60

Post-Inf  Apex Ant-Sept

LAO 70 Stress 63 95 83 38 25
Redistribution 90 98 76 53 53

Washout 55 69 73 58 36

*Forty-five integer values as in this example were used as an input
pattern for the artificial neural networks.
views: Ant = anterior; LAO 45 = left anterior oblique
45° LAO 70 = left anterior oblique 70°.
Myocardial segments: Ant-Lat = anterolateral; Ant-Sept = anterosep-
tal; Post-Lat = posterolateral; Post = posterior; Inf = inferior; Apex =
apical.
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presence of significant CAD, 53 (33%) studies were graded as
normal; 88 (56%), as abnormal; and 18 (11%), as equivocal. For
severity of disease, 46 (29%) studies were classified as single-
territory disease; 58 (36%), as double-territory disease; and 55
(35%), as normal. For localization of disease, the territory as-
signed to the LAD artery was read as normal in 66 (42%) studies,
as abnormal in 75 (47%) and as equivocal in 18 (11%). The terri-
tory assigned to the left CX and RCA was called normal in 59
(37%), abnormal in 78 (49%) and equivocal in 22 (14%) cases. In
one case, both territories were graded as equivocal.

Artificial Neural Networks

Applications of artificial neural networks have been described
and reviewed in detail elsewhere (17-19). Briefly, artificial neural
networks consist of simple computing units that are connected in
a specific network topology, commonly a three-layered structure,
i.e., an input layer, an output layer and a hidden layer that medi-
ates all connections between the input and output units. Input
patterns are encoded as activation patterns of the input units; the
state of the output units is decoded into an output pattern. For
each unit, a nonlinear transfer function computes from its input
values a unique and usually binary output value encoded as O or 1.
Weight factors that are associated with each interunit connection
are multiplied with output values to yield scaled input values for
the connected units.

Atrtificial neural networks for pattern recognition can be devel-
oped utilizing heuristic rules and learning algorithms that operate
on training sets of characteristic case examples. First, the topol-
ogy and the hierarchy of the network have to be specified based
on the problem specification and on adequate coding schemes of
input and output patterns. Frequently, empiric strategies have to
be applied to assign units to each network layer because algo-
rithms that would precisely predict the optimal network configu-
ration based on a specific problem specification are, in general,
not available. Then, numeric weight factors are determined for
each unit-to-unit connection by an iterative learning algorithm.
After random initialization of the weight matrix, the first input
pattern of the training set is processed by the network to generate
the associated output pattern. The difference between the ob-
served and the expected output pattern is used to adjust the
weight matrix appropriately utilizing the backpropagation algo-
rithm (17). Additional iterations for the same pair of input-output
patterns continue until the network correctly derives the expected
output pattern. Sequentially, all remaining patterns of the training
set undergo the same procedure. To ascertain adequate diagnostic
performance of the network also for patterns that are not specif-
ically included in the training set, the training set should include a
representative sample of cases from the entire problem domain.

Specific Network Design. Artificial neural networks used in the
present study consisted of 45 input units, 15 hidden units, and 1 or
2 output units to determine the presence, severity and localization
of CAD. Each of the 45 input units was assigned to a correspond-
ing input value of the segmental thallium analysis. Although the
number of the input and output units was determined by the
structure of the input and output patterns, the number of hidden
units was chosen empirically as 15, an intermediate level between
- the number of input and output units. Initial tests in which the
number of hidden units was varied indicated that the performance
of the network was insensitive to small variations in the number of
hidden units. A schematic diagram of the adopted network topol-
ogy for the detection of CAD is given in Figure 2. Different
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output unit

output pattern: 0 ... no CAD
1...CAD

segmental thallium values
(input pattern, see Table 1)

FIGURE 2. Schematic diagram of an artificial neural network de-
signed to associate segmental values of myocardial thallium uptake
and washout as input pattemn with an output pattern conceming the
presence of significant CAD.

network instances were developed to predict the results from
either angiography or human image interpretation.

From the entire database, subsets of cases were selected as
training sets; the remaining cases were used to evaluate the per-
formance of the network. Although a large training set would be
desirable to improve network performance, cases that are as-
signed to the training dataset cannot be used to evaluate the
diagnostic accuracy of the network. Therefore, the fraction of
cases that was included in the training data set was chosen em-
pirically as 20% to 30% so that an adequate number of cases could
be assigned to the training set and the evaluation set. To ensure an
adequate case representation within training sets and at the same
time achieve statistical independence between sets, the case dis-
tribution in the training sets was constrained to reflect proportion-
ally the distribution of cases in the entire database with the addi-
tional requirement of a minimal overlap between training sets.
Table 2 summarizes the distribution of patterns selected for the
training sets.

An alternative approach to develop and evaluate artificial net-
works with a database of n cases would involve the generation of
n different network instances by partitioning the total number of
cases into a training set of n — 1 cases and an evaluation set of 1
case for all n possible permutations. However, this ‘‘round robin’’
method does not result in the development of one specific network
instance that can be evaluated in a separate evaluation step but
rather generates n different network instances that are statistically
not independent. Moreover, analysis software that would permit
the generation of receiver operating characteristics (ROC) curves,
as indicated later, also for data obtained by this approach was not
available. Therefore, this method was not applied in the present
study.

Network training was conducted based on the backpropagation
algorithm with a learning rate of 0.1, a scaling factor of the mo-
mentum term of 0.9 and a threshold at the output unit of 0.3. The
computer experiments were performed on an Apollo DN3000
UNIX workstation (Hewlett Packard, Palo Alto, CA) using com-
puter software written in C and the network simulation language
VieNet2 for neural network simulation (20).

Analysis of Network Performance. Neural networks were de-
veloped to provide diagnostic information on three different as-
pects of CAD with appropriately designed output patterns. The
presence of significant CAD was associated with a simple binary
output pattern (yes/no). The severity of disease was assessed
based on a classification into three mutually exclusive categories
(normal, single territory or multiple territory), and the localization
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TABLE 2
Case Distribution Between Subsets Used for Training and
Evaluation of Artificial Neural Networks Developed to Interpret
Thallium Data According to Presence, Severity and Location

of Significant CAD*
Training Evaluation Total
Set Set Database
Presence of CAD
Angiography
Normal 5 9 14
Abnomal 15 52 67
Human expert
Normal 15 38 53
Abnomal 15 73 88
Equivocal 18
Severity of CAD
Angiography
Nomal 4 10 14
Single territory 12 22 34
Muttiple territory 12 21 33
Human expert
Nommal 12 43 55
Single territory 10 36 46
Muttiple territory 13 45 58
Location of CAD
Anglography
Nomal 4 10 14
LAD alone 6 15 21
CX/RCA alone 4 9 13
Both territories 6 27 33
Human expert
Nomal 8 33 41
LAD alone 4 9 13
CX/RCA alone 6 1 17
Both teritories 8 41 49
Equivocal 39

*Results from coronary angiography (n = 81) and human expert
readings (n = 159) were used as reference standards.

LAD = vascular teritory subtended by the left anterior descending
artery; CX/RCA = vascular teritory subtended by the left circumfiex and
right coronary artery.

of disease was encoded by two mutually not exclusive binary
decisions for the presence of disease in each of the two vascular
territories (LAD: yes/no, CX/RCA: yes/no). According to the
output patterns for each network topology, different approaches
were used to analyze network performance.

For the detection of CAD, ROC curves (21) were derived for
each of the five network instances by comparing the output data
obtained during network evaluation with the results from angiog-
raphy and with human expert readings. For diagnostic tests that
are designed to differentiate between two different states, such as
normal versus abnormal, but yield as their result a grading on a
scale with more than two grading levels, ROC analysis provides
corresponding values of true positive (sensitivity) and false posi-
tive (1 — specificity) fractions for different levels of a decision
threshold. Accordingly, variations of the threshold value at the
output unit that discriminate between normal and abnormal pat-
terns yielded four pairs of sensitivity/specificity values for each
network instance. These data were used to derive five individual
and one average ROC curve by computer analysis using the com-
puter program ROCFIT (22).
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FIGURE 3. ROC curves obtained from five instances of artificial
neural networks to detect significant CAD with (a) angiography and
(b) the expert human reading as the reference standards. Individual
curves = thin lines; average curves = bold lines.

For the assessment of the severity of CAD, five instances of a
network topology with two output units (O, and O,) were trained
to classify segmental thallium uptake into three patterns: normal
[0 0], single-territory disease [1 0] and multiple-territory disease
[0 1] or [1 1]. Networks were again trained using either results
from coronary angiography or an expert reading as reference
standards. A 3 x 3 classification matrix was obtained for each
network during evaluation, and these matrices were then summed
into a lumped evaluation matrix.

Similarly, five instances of a neural network with two output
units were trained to assess the localization of significant CAD by
differentiating between two vascular territories assigned to the
vascular beds of the LAD and the CX/RCA, as indicated previ-
ously. Diagnostic performance was assessed by generating aver-
age values of positive and negative predictive accuracies for each
vascular territory.

RESULTS

Detection of Significant CAD

Figure 3 displays individual and an average ROC curve
obtained from five different artificial neural networks
trained for the detection of significant CAD with coronary
angiography (Fig. 3a) or human expert readings (Fig. 3b) as
reference standards. The observed variation between dif-
ferent ROC curves attests to the influence that the selec-
tion of training sets may exert on the performance of arti-
ficial neural networks.

The two average ROC curves that describe the average
diagnostic performance of artificial neural networks are
depicted in Figure 4 together with the ROC curve that is
obtained when the expert reading was compared with cor-
onary angiography. At a specificity of 90%, the average
sensitivity of the network was 51% compared with angiog-
raphy and 72% compared with the human expert. In com-
parison, the corresponding sensitivity for the human expert
with angiography as the reference standard was 86%. At a
sensitivity of 90%, the average specificity of the network
was 20% when angiography and 70% when expert readings
were taken as reference standards. In comparison, the
specificity for the detection of CAD of the human expert
was 87% at a sensitivity of 90%. Thus, compared with
angiography, the human expert, who based his assessment
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FIGURE 4. Comparison of ROC curves for the detection of sig-

nificant CAD: human expert versus angiography (thin line), average
neural network versus human expert (broken thick line) and average
neural network versus angiography (solid thick line).

not only on segmental thallium uptake values but also on
the scintigraphic images, demonstrated a better diagnostic
accuracy than did the artificial neural networks.

Assessment of Severity of CAD

Figures 5a and b depict graphic representations of the
3 x 3 crosstabulation matrices that are generated when test
cases are classified by neural networks into patterns re-
flecting normal, single-territory and multiple-territory dis-
ease, which are compared with angiography (Fig. 5a) or
human expert readings (Fig. 5b). The average concordancy
rate derived from five network instances was 40% for an-
giography and 56% for the human expert as reference stan-
dards. When expert readings were compared with angiog-
raphy (Fig. 5c), the concordancy rate was 58%.

For normal cases, as defined by the reference methods,

the networks correctly recognized a normal pattern in 56% -

(angiography) and 69% (human expert). For cases defined
as multiple-territory disease, neural networks were able to
associate an abnormal pattern (single or multiterritory dis-
ease) in 77% (angiography) and 86% (human expert). For
cases with single-territory disease, the networks discerned
an abnormal pattern in 73% (angiography) and 70% (human
expert). Among abnormal cases, the differentiation be-
tween single- and multiple-territory disease was better
when the human expert rather than angiography was taken
as reference standard.

Assessment of Localization of CAD

Figures 6a and b display negative and positive predictive
accuracies obtained from artificial neural networks for the
assessment of localization of CAD in the LAD and the
CX/RCA vascular territories in comparison to angiography
(Fig. 6a) and the human expert reading (Fig. 6b). For both
territories, positive predictive accuracies for the detection
of significant CAD did not vary noticeably between net-
works and ranged from 79% to 86%. For negative predic-
tive accuracies, the values were better when they were
compared with the human expert (70% for the LAD and
68% for the CX/RCA territory) than with angiography (52%
for the LAD and 60% for the CX/RCA territory). Figure 6¢
shows positive and negative predictive accuracies when
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FIGURE 5. Comparison between classifications of CAD into
three patterns concerning the severity of disease: normal, single-
territory disease and multiple-territory disease. (a) Neural network
versus angiography. (b) Neural network versus human expert. (c)
Human expert versus . For artificial neural networks
(ANN), the number of cases (n) refers to the summed results involv-
ing five different network instances.

the human expert was compared with angiography. Al-
though the positive predictive accuracies were comparable
to the values that were obtained from the neural networks,
negative predictive accuracies were higher.

DISCUSSION

This study used artificial neural networks to generate an
automated computer-based assessment concerning the
presence, severity and localization of significant CAD from
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FIGURE 6. Comparison of positive and negative accu-
racies conceming the presence of significant CAD in two vascular
territories subtended by the left anterior descending artery (LAD) and

by the left circumflex and right coronary artery (CX/RCA). (a) Neural
network versus angiography. (b) Neural network versus human ex-

pert. (c) Human expert versus angiography.

relative segmental thallium uptake values of planar dipyr-
idamole stress/redistribution scintigrams. Different net-
work configurations were developed and evaluated against
results from coronary angiography and from the visual
interpretation by an expert reader.

The diagnostic performance of neural networks was bet-
ter when the results from the human expert reading rather
than those from angiography were taken as the reference
standard. Although coronary angiography is based on mor-
phologic criteria to assess the presence, severity and local-
ization of CAD, myocardial scintigraphy depends on dif-
ferences in the relative myocardial perfusion to assess
CAD and may better reflect the hemodynamic significance
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of luminal obstructions in coronary arteries. Accordingly,
neural networks that are trained to simulate the human
expert are expected to exhibit better diagnostic perfor-
mance than when they are trained to predict angiographic
results. Moreover, angiographic results were available in
only 81 of 159 patients, so that the size of training and
evaluation sets for angiographic results as the reference
method were limited. Especially for the diagnostic task to
differentiate between three patterns of severity of CAD
(normal, single territory and multiple territory), the small
number of training cases for each diagnostic category may
have been insufficient to serve as a representative sample
set. Therefore, differences between training and evaluation
sets, especially concerning the number of included cases,
may also explain why neural networks performed worse
when angiographic results were predicted rather than hu-
man expert readings.

The diagnostic accuracy of thallium scintigraphy de-
pends on the prevalence and severity of CAD in the study
population (3). The inclusion of patients with prior trans-
mural myocardial infarction, as in this study population,
may especially affect the sensitivity and specificity of thal-
lium scintigraphy. To assess the influence of the study
population on diagnostic accuracy, the authors also com-
pared for each diagnostic task the human expert readings
with the results from angiography. It was found that in the
subgroup of 81 patients who underwent angiography, the
human expert performed consistently better than did arti-
ficial neural networks. Although this difference in diagnos-
tic performance may be attributed to the method, it poten-
tially could also imply that the information content of the
45 integer numbers that result from segmental analysis is
considerably less than the information that is present in the
scintigraphic images, which were used by the human ex-
pert to derive his diagnostic classifications. Thus, artificial
neural networks that use entire images as the input pattern
may possibly achieve a better diagnostic performance.

The present study was based on planar thallium scinti-
grams rather than thallium SPECT images. Although
SPECT imaging is considered the state-of-the-art imaging
technique, offering an improved contrast resolution, planar
thallium imaging still is commonly used in clinical routine
because it is technically and financially less demanding and
has a long record of proved clinical utility. However, the
limited ability of planar imaging to discern anatomic seg-
ments may also affect the diagnostic accuracy of auto-
mated image interpretation systems. In a previous study,
Fujita et al. (15) reported that neural networks may be
useful to interpret polar map displays generated from
SPECT images. However, as the evaluation set with 16
cases was small, a comprehensive evaluation regarding the
diagnostic performance of their neural network could not
be conducted. Compared with human observers, the arti-
ficial neural network appeared to perform better than a
resident but worse than experienced radiologists. The re-
sults of Fujita et al. (15) suggest that an automated inter-
pretation of myocardial perfusion scintigrams by neural
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networks may perform better when tomographic rather
than planar images are used because of the improved con-
trast resolution of SPECT images.

An inherent limitation of artificial neural networks is
their associated level of incompetence. For example, net-
works, as presented in this study, generate output patterns
for any set of 45 input numbers regardless of whether these
originate from a thallium scintigraphy or are chosen at
random. In contrast, rule-based expert systems usually
provide no output if they are provided with inadequate or
inconsistent input information. Hybrid systems that com-
bine features from both rule-based systems and artificial
neural networks might overcome the limitations of either
approach.

In conclusion, this study demonstrated that artificial
neural networks offer a novel and promising approach to
develop computer-based systems for an automated inter-
pretation of 2°'Tl scintigrams. However, to achieve a level
of diagnostic accuracy that may be acceptable for clinical
applications, artificial neural networks need to be trained
with sufficiently large sets of training cases. Further studies
are required to delineate more precisely the merits and
limitations of artificial neural networks for an automated
interpretation of myocardial perfusion scintigrams.
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