Designed like no other radioaerosol system...anywhere.

1 Safety. Any time you’re dealing with radioactive material, safety comes first. That’s why the Aero/Vent shield gives us the highest safety standard of any radioaerosol inhalation system available.

2 Portability. The Aero/Vent weighs only 12 pounds. That, combined with its one-handle design, makes the Aero/Vent a breeze to transport.

3 Optional cabinet. A popular accessory for the Aero/Vent is a mobile cabinet which contains an adjustable arm to position the shield (for both upright and supine positions), a leaded decay bin and an oxygen tank holder.

4 The Safety/Shield. Only the Aero/Vent features the SAFETY/SHIELD™ Mouthpiece—which incorporates a cover that seals the mouthpiece before and after patient use. This minimizes potential radiation spread and contamination for both the patient and the technologist.

5 Easy patient breathing. The Aero/Vent’s unique “no valve” design allows virtually unrestricted patient breathing.

6 Efficiency. The Aero/Vent’s high efficiency rate reduces breathing time for most patients to 2-5 minutes.

7 Particle size. Particle size of .3 micron (MMAD) produces images of unsurpassed quality.

8 Customer Support. The Aero/Vent is manufactured by Medi/Nuclear, a company dedicated to producing first-class radioaerosol systems. If you ever have any questions or comments, just give us a call.

The Aero/Vent is available through:
MPI/Amersham Healthcare (800-633-4123)
Syncor International (800-999-9098)
Medi/Nuclear Corporation (818-960-9822)
The All-New Digital PRISM™ XP Series Systems

Picker's all-new PRISM XP Series systems are ready to meet your healthcare challenges.

• SUPERIOR DIGITAL IMAGE QUALITY
 Our new PRISM XP systems feature microprocessor-controlled detector and PMT electronics that not only provide superior image quality, but also ensure extended image stability and reliability.

• ADVANCED CLINICAL APPLICATIONS
 The new, compact, and ultra-fast Odyssey™ VP computer is based on the leading RISC workstation technology and application software. Combined with our window-based, graphical user interface, complex procedures are only a mouse click away.

• PRODUCTIVITY GAINS
 Our Telapath Resource Hub is just a phone call away and ready to provide you with the right technical assistance to keep your department at peak performance. One phone call to our Applications and Service Support Specialists helps you solve problems fast. We can even log on to your system remotely by phone to evaluate images and run diagnostic programs to pinpoint potential problems. All this to save you time.

For the complete story on the new PRISM XP Series, call 1-800-323-0550.
"ARE MY Sr-89 CALIBRATIONS CORRECT?" — is the Question

WITH CAPINTEC — IS THE ANSWER

Eliminate the guesswork and potential errors from your Sr-89 and P-32 beta measurements

Capintec's Newest Member in our Excellent Family of Dose Calibrators **beta C** offers:

- Fast Reading of Pure β's used in the control of Bone Pain
- Geometry independence using Syringes or Vials
- Easy and Accurate Beta Counting
- Automatic Impurity Identification
- Non-Destructive Counting
- Highest Accuracy through the use of a NaI crystal detector

The Capintec **beta C** adds a new dimension to radionuclide measurement. Engineered specifically for pure beta emitters such as P-32 and Sr-89, the **beta C** takes the guesswork and errors out of your beta assays.

Through the creative use of a special NaI crystal detector, geometry and gamma contamination problems are eliminated. The **beta C** allows dose measurement in vials and syringes with equal precision and ease.

The **beta C** accepts calibration factors for over 20 radionuclides plus the ability to store source data with automatic decay correction, making daily tests effortless.

With an optional printer, hard copy print-outs of all information is displayed on screen including an energy histogram, if required. The **beta C** with printer provides patient records and daily test information to satisfy existing and future regulatory requirements.

AS A LEADER IN ENERGY MEASUREMENT DEVICES, CAPINTEC'S GOAL IS TO MEET YOUR DEMANDS WITH THE LATEST, HIGHEST QUALITY, COST-EFFECTIVE SOLUTIONS...
XPert™
Make an expert decision

Elscint
XPert Aided Diagnosis

A built-in knowledge-base and advanced algorithms empower XPert to analyze data intelligently, infusing its processing modules with NM technical expertise. Propelled by superscalar micro-computing power, XPert helps you expand the frontiers of nuclear imaging.

XPert's Toolbox includes interactive graphical tools for high precision lesion delineation. And smart image structure interpretation totally automates SPECT reconstruction, homing in on target tissues, without operator intervention.

An XPert Display of Power

A multi-processor array of Intel Pentium and RISC number crunchers energizes XPert with 122 Mflops / 150 MIPS for 30 msec/slice SPECT reconstruction speed. A 30 Mpixel/sec graphic engine with 1280x1024 display reveals lesions with remarkable sharpness. Advanced clinical macro-programming expands XPert's diagnostic power with the vast repertoire of CLIP programs, developed by thousands of Apex users over the last decade.

XPert Link, Universal Connectivity

XPert is a great communicator. Reaching out beyond its total link with Elscint imagers, it networks equally well with others. And XPert provides a transparent digital connection to fine-resolution laser multi-imagers and color printers. Superior PACS capabilities yield optimal equipment-use, boosting departmental productivity and cutting equipment costs.

XPert™

Knowledge is power... the power of the expert.

Elscint/U.S.A.: (201) 342-2020, 1-800-ELSCINT.
Elscint/Belgium: (2) 720.92.48 Elscint/Brazil: (11) 869-4644 Elscint/Canada: (416) 474-1229 Elscint/Central & Eastern Europe, Austria: (1) 9855-681
Elscint/France: (1) 48-57-08-18 Elscint/Germany: (01) 22-7070 Elscint/Hong Kong: (5) 292231 Elscint/Israel: (04) 310310 Elscint/Italy: (2) 39320603
The perfect form for Cardiolite

In myocardial perfusion imaging, his form may produce images that are considered technically inadequate because of soft-tissue attenuation.

That's where Cardiolite comes through, especially for female and large-chested or obese male patients. The higher photon energy (140 keV) provides greater anatomical detail that can enhance interpretive confidence—and may reduce false-positives and equivocal cases.

Cardiolite also offers the unique advantage of direct measurement of both myocardial perfusion and ventricular function from one study.

So the next time you're faced with imaging female and large-chested or obese male patients, use Cardiolite and reduce soft-tissue attenuation.

Cardiolite
Kit for the preparation of Technetium Tc99m Sestamibi

To reduce soft-tissue attenuation
Cardiolite comes through

Stress testing should be performed only under the supervision of a qualified physician in a laboratory equipped with appropriate resuscitation and support apparatus. There have been infrequent reports of signs and symptoms consistent with seizure and severe hypersensitivity after administration of Tc99m Sestamibi.

Please see brief summary of prescribing information on adjacent page. © 1994, DuPont Pharma
Cardiolite®
Kit for the preparation of Technetium Tc99m Sestamibi

For Diagnostic Use

DESCRIPTION: Each 5ml vial contains a sterile, non-pyrogenic, lyophilized mixture of:
Technetium (99m) pertechnetate (2 molybdenum isotopic purity) Copper (II) tetracarbomerite - 1.0mg
Sodium Citrate Dihydrate - 2.6mg
L-Cysteine Hydrochloride Monohydrate - 1.6mg
Mannitol - 10mg
Stannous Chloride, Dihydrate, minimum (SnCl2•2H2O) - 0.025mg
Stannous Chloride, Dihydrate, maximum (SnCl2•2H2O) - 0.006mg

Prior to lyophilization the pH is 5.3-5.9. The contents of the vial are lyophilized and stored under nitrogen.

This drug is administered by intravenous injection for diagnostic use after reconstitution with sterile, non-pyrogenic, oxygen-free Sodium Pertechnetate Tc99m. The pH of the reconstituted product is 5.0 (5.0-6.0). No bacteriostatic agent is present.

The precise structure of the technetium complex is Tc99m(MBII)4 where MBII is 2-methoxy isobutyl isonitrile.

INDICATIONS AND USAGE: CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi is a myocardial perfusion agent that is useful in the evaluation of ischemic heart disease. CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi is useful in distinguishing normal from abnormal myocardium and in the localization of the abnormality, in patients with suspected myocardial infarction, ischemic heart disease or coronary artery disease. Evaluation of ischemic heart disease or coronary artery disease is accomplished using rest and stress techniques.

CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi is also useful in the evaluation of myocardial perfusion using the first pass technique.

Rest-exercise imaging with Tc99m Sestamibi in conjunction with other diagnostic information may be used to evaluate ischemic heart disease and its localization.

In clinical trials, using a template consisting of the anterior wall, inferior-posterior wall and isolated apex, technetium Tc99m in wall or inferior postero wall patients with suspected angina pectoris or coronary artery disease was shown. Disease localization isolated to the apex has not been established. Tc99m Sestamibi has not been studied or evaluated in other radiolabeled nuclides.

It is usually not possible to differentiate recent from old myocardial infarction or to differentiate recent myocardial infarction from ischemia.

CONTRAINDICATIONS: None known.

WARNINGS: In studying patients in whom cardiac disease is known or suspected, care should be taken to assure accurate monitoring and treatment in accordance with acceptable clinical procedures. Infract, death has occurred in 1 to 24 hours after Tc99m Sestamibi use and is usually accompanied with exercise stress testing (See Precautions).

PRECAUTIONS:

GENERAL

The contents of the vials are intended only for use in the preparation of Technetium Tc99m Sestamibi and are not to be administered directly to the patient without first undergoing the preparatory procedure.

Radioactive drugs must be handled with care and appropriate safety measures should be used to minimize radiation exposure to clinical personnel. Also, care should be taken to maintain radiation protection for the patient consistent with proper patient management.

Contents of the kit before preparation are not radioactive. However, after the Sodium Pertechnetate Tc99m Injection is administered, adequate shielding of the final preparation must be maintained.

The components of the kit are sterile and non-pyrogenic. A kit should be used only if the vial has been unopened and the container is undamaged.

The components of the kit are sterile and non-pyrogenic. A kit should be used only if the vial has been unopened and the container is undamaged.

Stress testing should be performed only under the supervision of a qualified patient in a laboratory equipped with appropriate resuscitation and support apparatus.

The most frequent exercise stress test endpoints, which resulted in termination of the test during controlled Tc99m Sestamibi studies (two-thirds were cardiac patients) were:

- Fatigue
- Dyspnea
- Chest Pain
- ST-depression
- Arrhythmia

Cardiogenic, Myocardial, Impairment of Fertility

In comparison with most other diagnostic technetium labeled radiopharmaceuticals, the radiation dose to the ovaries (1.5rad(40/900) at rest, 1.2 rad(90/900) at exercise) is high. Minimal exposure (ALARA) is necessary in women of childbearing capability. (See Dosimetry subsection in DOSAGE AND ADMINISTRATION section).

The active intermediate, [Cu(MBII)BF4], was evaluated for genotoxic potential in a battery of tests. No genotoxicity was observed in the Ames, CHO/HPTP and sister chromatid exchange tests (all in vitro). At cytotoxic concentrations (~200μg/ml), an increase in cells with chromosome aberrations was observed in the in vitro human lymphocyte assay. [Cu(MBII)BF4] did not show genotoxic effects in the mouse micronucleus test or a dose which caused systemic and bone marrow toxicity (9mg/kg > 400 radiosensitive cells).

Pregnancy Category C

Animal reproduction and teratogenicity studies have not been conducted with Technetium Tc99m Sestamibi. It is not known whether Technetium Tc99m Sestamibi can cause fetal harm when administered to a pregnant woman or can affect reproductive capacity. There have been no studies in pregnant women. Technetium Tc99m Sestamibi should be given to a pregnant woman only if clearly needed.

Nursing Mothers

Technetium Tc99m Pertechnetate is excreted in human milk during lactation. It is not known whether Technetium Tc99m Sestamibi is excreted in human milk. Therefore, formula feedings should be substituted for breast feedings.

Pediatric Use

Safety and effectiveness in children below the age of 18 have not been established.

ADVERSE REACTIONS: During clinical trials, approximately 8% of patients experienced a transient parasomnia and/or taste perversion (metallic/taste sweet) immediately after the injection of Technetium Tc99m Sestamibi. A few cases of transient headache, flushing, edema, injection site inflammation, dysgeusia, nausea, vomiting, pruritus, rash, urticaria, dry mouth, fever, dizziness, fatigue, dyspnea, and hypotension also have been attributed to administration of the agent. Cases of angioedema, fever, and death have occurred (see Warnings and Precautions). The following adverse reactions have rarely been reported: signs and symptoms consistent with seizure occurring shortly after administration of the agent, transient arhythmia in a 1-2 hour period, and severe hypersensitivity, which was characterized by dyspnea, hypotension, bradycardia, asthma and vomiting within two hours after a second injection of Technetium Tc99m Sestamibi.

DOSAGE AND ADMINISTRATION: The dose suggested range for IV. administration in a single dose of 370-1110MBq (10-30mCi)

The dose administered should be the lowest required to provide an adequate study consistent with ALARA principles (see also PRECAUTIONS).

When used in the diagnosis of myocardial infarction, imaging should be completed within four hours after administration.

The patient dose should be measured by a suitable radioactivity calibration system immediately prior to patient administration. Radiochemical purity should be checked prior to patient administration.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit.

Store at 15-25°C before and after reconstitution.

Table 4. Radiation Absorbed Doses from Tc99m Sestamibi

<table>
<thead>
<tr>
<th>Organ</th>
<th>2.0 hour void</th>
<th>4.8 hour void</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mGy</td>
<td>mGy</td>
</tr>
<tr>
<td>30mCi</td>
<td>1110MBq</td>
<td>1110MBq</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Gallbladder Wall</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Upper Large Intestinal Wall</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Lower Large Intestinal Wall</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Heart Wall</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Kidney</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Liver</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Large Intestine</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Bone Surfaces</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Ovaries</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Testes</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Red Marrow</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Urinary Bladder Wall</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total Body</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

RADIATION DOSIMETRY: The radiation dose to organs and tissues of an average patient (78kg) in 1110MBq (30mCi) of Technetium Tc99m Sestamibi injected intravenously are shown in Table 4.

HOW SUPPLIED: Du Pont Radiopharmaceuticals’ CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi is supplied as a 5ml vial in kits of two (2), five (5) or thirty (30) vials, sterile and non-pyrogenic.

Prior to lyophilization the pH is 5.3-5.9. The contents of the vials are lyophilized and stored under nitrogen. Store at 15-25°C before and after reconstitution. Technetium Tc99m Sestamibi contains no packaging materials included in each package. It contains one (1) package insert, six (6) vial field labels and six (6) radiation warning labels. Included in each five (5) vial kit are one (1) package insert, six (6) vial field labels and six (6) radiation warning labels. Included in each thirty (30) vial kit are one (1) package insert, thirty (30) vial field labels and thirty (30) radiation warning labels.

The U.S. Nuclear Regulatory Commission has approved this reagent kit for distribution to pharmacies licensed to use byproduct pharmaceutical pursuant to section 35.11 and section 35.200 of Title 10 CFR Part 35.

Marketed by Du Pont Radiopharmaceutical Division
The Du Pont Merck Pharmaceutical Co.
631 Trickle Road
Billerica, Massachusetts, USA 01822

35121-1094

Printed in U.S.A.

Circle Reader Service No. 34
This program is designed for nuclear medicine physicians, radiologists, technologists and referring physicians. It is intended to educate participants about the clinical utility of SPECT brain imaging with agents such as Ceretec® and Neurolite®.

Objectives include:
- Development of interpretation skills for brain images.
- Appreciation of clinical applications of SPECT brain imaging.
- Knowledge of image acquisition and reconstruction.
- Appreciation of factors that influence image quality.
- Knowledge of quality control techniques for SPECT.

SPONSORSHIP:
This program is sponsored by the Medical College of Wisconsin.

TUITION:
The tuition fee of $650 includes the course syllabus, handouts, breaks, breakfasts, lunches, and other amenities involved in making this a pleasant learning experience. Maximum enrollments have been established. Cancellations prior to the course will be refunded, less a $30 administrative fee.

CREDIT:
The Medical College of Wisconsin is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians.

Accordingly, the Medical College of Wisconsin designates this continuing medical education activity as meeting the criteria for 13.00 hours in Category 1 toward the Physician’s Recognition Award of the American Medical Association.

Nuclear Medicine Technologists who attend the SPECT Brain Imaging Clinical Fellowship are eligible for 1.0 VOICE credit.

Register me for the following dates: (Please indicate a second choice)
- November 14-15, 1994
- March 13-14, 1995
- January 23-24, 1995
- September 11-12, 1995
- November 13-14, 1995

I will need reservations for Sunday and Monday night _________
Or Monday night only ________________

I will need a __________________ single / __________________ double room.

A check in the amount of $650 should accompany this registration form and be made payable to the Medical College of Wisconsin. Telephone registrations must be confirmed by check within 10 days.

Name __
Address ___
City/State/Zip ____________________________
Office Phone ____________________________

☐ work address ☐ home address

Registrations and payment should be sent to:
LisaAnn Trembeth
SPECT Brain Imaging Fellowship Coordinator
Nuclear Medicine Division
Medical College of Wisconsin
8700 W. Wisconsin Avenue,
Milwaukee, WI 53226 • (414) 777-3756

The 1995 Scientific Program Committee, Scientific Exhibits Subcommittee and the Scientific & Teaching Sessions Committee solicit the submission of abstracts from members and nonmembers of The Society of Nuclear Medicine for the 42nd Annual Meeting in Minneapolis, MN. Accepted Scientific Paper and Scientific Exhibit abstracts will be published in a special supplement to the May issue of the Journal of Nuclear Medicine and accepted Technologist Section abstracts will be published in the June issue of the Journal of Nuclear Medicine Technology. Original contributions on a variety of topics related to nuclear medicine will be considered, including:
- Instrumentation and Data Analysis
- Radioassay
- Radiopharmaceutical Chemistry
- Dosimetry/Radiobiology
- Nuclear Magnetic Resonance Chemistry
- Clinical Science Applications:
 - Bone/Joint
 - Cardiovascular (clinical, basic, and PET)
 - Endocrine
 - Gastroenterology
 - Neurosciences: Basic, Neurology and Psychiatry
 - Pediatrics
 - Pulmonary
 - Renal/Electrolyte/Hypertension
 - Hematology/Infectious Disease
 - Oncology Diagnosis (antibody)
 - Oncology Diagnosis (non-antibody)
 - Oncology/Therapy

Authors seeking publication for the full text of their papers are strongly encouraged to submit their work for immediate review to JNM and for the technologist section, to JNMT.

There are two abstract forms for the annual meeting. The Scientific Paper abstract form and the Scientific Exhibits abstract form is only available by calling or writing to:

Society of Nuclear Medicine
Att: Abstracts
1850 Samuel Morse Drive
Reston, VA 22090-5316
Tel: (703)708-9000 • FAX: (703)708-9015

DEADLINE FOR RECEIPT OF ABSTRACTS FOR SCIENTIFIC PAPERS IS WEDNESDAY, JANUARY 4, 1995.

DEADLINE FOR RECEIPT OF ABSTRACTS FOR SCIENTIFIC EXHIBITS IS WEDNESDAY, JANUARY 4, 1995.
Introducing

A New Way to Image Neuroendocrine Tumors
Somatostatin Receptor Imaging for Neuroendocrine Tumors

Somatostatin is an endogenous neuropeptide that acts as a regulator of growth hormone secretion. Neuroendocrine tumors contain a high density of somatostatin receptors. OctreoScan®, a radiolabeled form of the somatostatin analog octreotide, shares the same binding site as naturally occurring somatostatin, which makes it a sensitive indicator for somatostatin receptor-bearing neuroendocrine tumors. Since the concentration of receptors on tumors may vary, the sensitivity of OctreoScan® may vary among tumor types.

Enhances Neuroendocrine Tumor Localization

Neuroendocrine tumors generally are small and slow-growing in nature, which can make localization difficult. Functional imaging with OctreoScan® frequently is sensitive enough to enable localization of small primary tumors or metastases. In a multicenter study, OctreoScan® results were consistent with the final diagnosis in 86.4% of patients (267/309).* OctreoScan imaging results produced a change in patient management in 31.1% of cases (64/206).*

*Source: Data on file, Mallinckrodt Medical, Inc.
Patient Management Benefits

OctreoScan® whole-body imaging enables rapid localization of the primary neuroendocrine tumor and sites of metastatic spread. OctreoScan® imaging also provides tumor localization and characterization information that can help determine the extent of a patient's disease accurately, which may obviate the need for additional invasive procedures such as biopsy or angiography.

OctreoScan® imaging may enable clinicians to modify a patient's diagnostic work-up and initiate appropriate measures (resection, octreotide therapy) at an early stage of the disease process. OctreoScan® also can be used for patient follow-up to monitor the effects of surgery, radiotherapy, or chemotherapy.

Clinical Impact of OctreoScan® Imaging

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yielded information about localizations not known before</td>
<td>27.9%</td>
<td>57/204</td>
</tr>
<tr>
<td>Demonstrated uptake in lesions known to exist, but not verified as neuroendocrine tumors</td>
<td>28.2%</td>
<td>55/195</td>
</tr>
<tr>
<td>Localized neuroendocrine tumors in patients with clinical and hormonal evidence of tumor but no prior localizations</td>
<td>37.5%</td>
<td>21/56</td>
</tr>
</tbody>
</table>

Special Considerations

Adverse effects observed in clinical trials (at a frequency of <1%) included dizziness, fever, flush, headache, hypotension, changes in liver enzymes, joint pain, nausea, sweating and weakness. Pentetreotide is an analog of octreotide, which has been shown to produce severe hypoglycemia in insulinoma patients. In patients suspected of having an insulinoma, an IV solution containing glucose should be administered before and during OctreoScan® administration. Patients should be well hydrated prior to OctreoScan® administration to enhance renal clearance and reduce the radiation dose to the bladder and other target organs. Use in patients with impaired renal function should be carefully considered.

The sensitivity of OctreoScan® scintigraphy may be reduced in patients concurrently receiving therapeutic doses of octreotide acetate. Consideration should be given to suspending octreotide therapy before OctreoScan® administration and monitoring the patient for signs of withdrawal.

Please consult the following page for a brief summary of prescribing information.
Brief Summary of Prescribing Information

Description
OctreoScan® is a kit for the preparation of indium-111 pentetreotide, a diagnostic radiopharmaceutical. It is a kit consisting of two components:

1. A 10-ml OctreoScan Reaction Vial which contains a lyophilized mixture of 10 g of pentetreotide.

Indium-111 pentetreotide is prepared by combining the two kit components.

Indications and Usage
Indium-111 pentetreotide is an agent for the scintigraphic localization of primary and metastatic neuroendocrine tumors bearing somatostatin receptors.

Contraindications
None known.

Warnings
DO NOT ADMINISTER IN TOTAL PARENTERAL NUTRITION (TPN) ADJUNCTS OR INJECT INTO TPV INTRAVENOUS ADMINISTRATION LINES; IN THESE SITUATIONS, A COMPLEX GLOUCOSYDIOCTEOL CONJUGATE MAY FORM.

The sensitivity of indium-111 pentetreotide to drugs or manoeuvres of the gastrointestinal tract is not known. Therefore, indium-111 pentetreotide should not be administered to a patient unless the gastrointestinal function is impaired.

Precautions

1. Therapy with pentetreotide can produce severe hypoglycaemia in patients with insulinaemia. Since pentetreotide is an analog of octreotide, an intravenous line is recommended in any patient suspected of having an insulinaemia. An intravenous solution containing glucose should be administered just before and during administration of indium-111 pentetreotide.

2. The contents of the two vials supplied with the kit are intended only for use in the preparation of indium-111 pentetreotide and are NOT to be administered separately to the patient.

3. Since indium-111 pentetreotide is eliminated primarily by renal excretion, use in patients with impaired renal function should be carefully considered.

4. To help reduce the radiation dose to the thyroid, kidneys, bladder, and other target organs, patients should be well hydrated before the administration of indium-111 pentetreotide. They should increase fluid intake and void frequencies for 1 week after administration of this drug. In addition, if it is recommended that patients be given a mild laxative (e.g., bisacodyl or lactulose) before and after administration of indium-111 pentetreotide (see Dosage and Administration section).

5. Indium-111 pentetreotide should be tested for labeling yield of radioactivity prior to administration. The product must be used within six hours of preparation.

6. Components of the kit are sterile and nonpyrogenic. To maintain sterility, it is essential that directions are followed carefully. Aseptic technique must be used during the preparation and administration of indium-111 pentetreotide.

7. Pentetreotide and the natural somatostatin hormone may be associated with cholestasis, presumably by altering the composition and possibly by decreasing motility of the gallbladder. A single dose of indium-111 pentetreotide is not expected to cause cholestasis.

8. As with any other radioactive material, appropriate shielding should be used to avoid unnecessary radiation exposure to the patient, occupational workers, and other persons.

Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radiopharmaceuticals.

Pharmacotherapeutic

NEUROENDOCRINE TUMORS

Carcinogens, Mutagenesis, Impairment of Fertility
Studies have not been performed with indium-111 pentetreotide to evaluate carcinogenic potential or effects on fertility. Pentetreotide was evaluated for mutagenic potential in an in vitro mouse lymphoma forward mutation assay and in an in vivo mouse micronucleus assay, evidence of mutagenicity was not found.

Pregnancy Category C
Animal reproduction studies have not been conducted with indium-111 pentetreotide. It is not known whether indium-111 pentetreotide can cause fetal harm when administered to a pregnant woman or can affect reproductive capacity. Therefore, indium-111 pentetreotide should not be administered to a pregnant woman unless the potential benefit justifies the potential risk to the fetus.

Nursing Mothers
It is not known whether the drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when indium-111 pentetreotide is administered to a nursing woman.

Pediatric Use
Safety and effectiveness in children have not been established.

Adverse Reactions
The following adverse effects were observed in clinical trials at a frequency of less than 1% of 586 patients: dizziness, fever, flush, headache, hypotension, changes in liver enzymes, joint pain, nausea, sweating, and weakness. These adverse effects were transient. Also in clinical trials, there was one reported case of isostrenodan and one case of decreased hematocrit and hemoglobin.

Pentetreotide is derived from octreotide which is used as a therapeutic agent to control symptoms from certain tumors. The maximum dose for indium-111 pentetreotide is approximately 200 to 2000 times less than for octreotide and is subtherapeutic. The following adverse reactions have been associated with octreotide in 3% to 10% of patients: nausea, injection site pain, diarrhea, abdominal pain, confusion, gastritis, vomiting, pain hypertension, and hypercalcemia. These reactions have been reported with the use of octreotide.

DOSAGE AND ADMINISTRATION

Before administration, a patient should be well hydrated. After administration, the patient must be encouraged to drink fluids liberally. Elimination of extra fluid intake will help reduce the radiation dose by flushing out unbound, labelled pentetreotide by glomerular filtration. It is also recommended that a mild laxative (e.g., bisacodyl or lactulose) be given to the patient starting the evening before the radioactive drug is administered, and continuing for 48 hours. Ample fluid intake is necessary during this period as a support both to renal excretion and the bowel-clearing process. In a patient with an insulinaemia, bowel-clearing should be undertaken only after consultation with an endocrinologist.

The recommended intravenous dose for planar imaging is 111 MBq (3.0 mCi) of indium-111 pentetreotide prepared from an OctreoScan kit. The recommended intravenous dose for SPECT imaging is 222 MBq (6.0 mCi) of indium-111 pentetreotide.

The dose should be confirmed by a suitably calibrated radioactivity monitoring chamber immediately before administration. As with all intravenously administered products, OctreoScan should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Preparations containing particulate matter or discoloration should not be administered. They should be disposed of in a safe manner, in compliance with applicable regulations.

Aseptic techniques and effective shielding should be employed in withdrawing doses for administration to patients. Waterproof gloves should be worn during the administration procedure.

Do not administer OctreoScan in TPN solutions or through the same intravenous line.

Radiation Dosimetry

The estimated radiation dose to the average adult (70 kg) from intravenous administration of 111 MBq (3 mCi) and 222 MBq (6.0 mCi) are presented below. These estimates were calculated by Oak Ridge Associated Universities using the data published by Kenning et al.

<table>
<thead>
<tr>
<th>PKNENT</th>
<th>PLANAR</th>
<th>SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>54.16</td>
<td>5.42</td>
</tr>
<tr>
<td>Liver</td>
<td>12.15</td>
<td>1.22</td>
</tr>
<tr>
<td>Spleen</td>
<td>73.86</td>
<td>7.39</td>
</tr>
<tr>
<td>Urus</td>
<td>8.34</td>
<td>0.63</td>
</tr>
<tr>
<td>Ovaries</td>
<td>4.89</td>
<td>0.49</td>
</tr>
<tr>
<td>Testes</td>
<td>2.90</td>
<td>0.29</td>
</tr>
<tr>
<td>Bladder</td>
<td>3.46</td>
<td>0.36</td>
</tr>
<tr>
<td>B Bowman</td>
<td>5.67</td>
<td>0.57</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>4.78</td>
<td>0.48</td>
</tr>
<tr>
<td>Upper Large Intestine</td>
<td>5.80</td>
<td>0.58</td>
</tr>
<tr>
<td>Lower Large Intestine</td>
<td>7.73</td>
<td>0.77</td>
</tr>
<tr>
<td>Adrenal</td>
<td>7.55</td>
<td>0.76</td>
</tr>
<tr>
<td>Thyroid</td>
<td>7.43</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Effective Dose Equivalent

5.13

1. Values listed include a correction for a maximum of 0.1% indium-111 radiocontaminant at calibration.

3. Assumed 4.8 hour voiding interval and International Commission on Radiological Protection (ICRP) 30 model for the gastrointestinal tract calculations.

4. Estimated according to ICRP Publication 53.

How Supplied
The OctreoScan Kit NDC 0019-0005, is supplied with the following components:

1. A 10-ml OctreoScan Reaction Vial which contains a hypothesized mixture of:
 - 10 g pentetreotide (N-(dihydroxyethylene-N,N,N',N"-tetraacetic acid-H\(^{6}\)-acetyl-D-phenylanilaminoL-h-N-amidinol-H,N-amidinol-D-phenylanilamino-L-h-N-amidinol (2 - 7 diafluoro), also known as octreotide DTPA), 2.0 mg gentic acid (2-5-dihydroxybenzoic acid).
 - 4.5 mg indium chloride, anhydrous.
 - 0.03 mg citric acid, anhydrous, and
 - 0.10 mg nien.

Before lyophilization, sodium hydroxide or hydrochloric acid may have been added for pH adjustment. The vial contains sterile and nonpyrogenic. No bacteriostatic preservative is present.

2. A 10-ml vial of Indium-111 Chloride Sterile Solution, which contains 1.1 ml of 111 MBq/m (0.3 mCi/mL) Indium-111 chloride as 0.02 N HCl at time of calibration. The vial also contains ferric chloride at a concentration of 2.5 mM, ferric ion, 1.2 mCi/mL. The vials are sterile and nonpyrogenic. No bacteriostatic preservative is present.

In addition, the kit also contains the following items:
- 1) A 25 G x 5/8" needle (B-D, Monoject) used to transfer Indium-111 Chloride Sterile Solution to the OctreoScan Reaction Vial, (2) a pressure sensitive label, and (3) a package insert.

Mallinckrodt Nuclear Medicine
Mallinckrodt Medical, Inc., Mallinckrodt Nuclear Medicine Division
P.O. Box 5840
St. Louis, MO 63134

For orders, product information, and medical assistance, call us toll free at (800) 325-3688.

©1994 Mallinckrodt Medical, Inc.

Mi322496

8/94

Circle Reader Service No. 110
Introducing the newest way to visualize pheochromocytoma and neuroblastoma.

I-131 MIBG
Iobenguane Sulfate I-131 Injection
Diagnostic - For Intravenous Use

Introducing I-131 MIBG, the first functional imaging agent for localization of pheochromocytoma and neuroblastoma. Now you can greatly enhance your capacity to detect these tumors of adrenergic tissues.

When you combine the advantages of whole body imaging with the unique functional specificity of I-131 MIBG, you can localize extra-adrenal and metastatic pheochromocytoma in the preliminary diagnostic work-up. What's more, you can use the high sensitivity and specificity of I-131 MIBG for better management of neuroblastoma patients.

I-131 MIBG gives you a degree of diagnostic confidence simply not possible with non-radionuclide imaging techniques.

See for yourself, Call your local Syncor radiopharmacy

Manufactured in the USA by:

CIS-US, Inc.
10 DeAngelo Drive, Bedford, MA 01730

Distributed by:

Syncor
The Service Difference

Please see brief summary of prescribing information on reverse page.

Circle Reader Service No. 25
I-131 MIBG (Iobenguane Sulfate I-131 Injection)

Diagnostic - For Intraovenous Use

The newest way to visualize pheochromocytoma and neuroblastoma.

Clinical trials the widest have demonstrated I-131 MIBG safe and effective for the localization of pheochromocytoma and neuroblastoma. In a study of 400 cases in the US, investigators found I-131 MIBG scintigraphy to be “the study of choice to indicate the location of suspected pheochromocytoma, giving an overall sensitivity of 87% and an overall specificity of 99%.” Neuroblastoma. Tumor Biology and Therapy, a CRC Press publication states that “in many instances, the I-131 MIBG scan reveals all the [neuroblastoma] tumor deposits delineated by use of the full complement of imaging procedures ordinarily used, and this technique often also reveals other [neuroblastoma] lesions not demonstrated by any other modality.”

For more information: 1-800-221-7554

Manufactured in the USA by:

CIS-US, Inc.

10 De Angelo Drive, Bedford, MA 01730

Distributed by:

Synchrony

Table 4: Estimated Absorbed Radiation Doses: Iobenguane Sulfate I-131

<table>
<thead>
<tr>
<th>Organ</th>
<th>Adult</th>
<th>18 Years</th>
<th>15 Years</th>
<th>10 Years</th>
<th>5 Years</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>card</td>
<td>mSv</td>
<td>mSv</td>
<td>mSv</td>
<td>mSv</td>
<td>mSv</td>
<td>mSv</td>
</tr>
<tr>
<td>Kidney</td>
<td>29.6</td>
<td>2.96</td>
<td>1.85</td>
<td>1.78</td>
<td>2.78</td>
<td>2.6</td>
</tr>
<tr>
<td>Liver</td>
<td>29.2</td>
<td>2.92</td>
<td>1.85</td>
<td>1.96</td>
<td>2.06</td>
<td>2.06</td>
</tr>
<tr>
<td>Spleen</td>
<td>21.8</td>
<td>2.18</td>
<td>1.57</td>
<td>1.57</td>
<td>2.41</td>
<td>2.41</td>
</tr>
<tr>
<td>Heart</td>
<td>14.1</td>
<td>1.41</td>
<td>0.91</td>
<td>1.41</td>
<td>1.41</td>
<td>2.22</td>
</tr>
<tr>
<td>Adrenal Medulla</td>
<td>0.79</td>
<td>0.79</td>
<td>0.54</td>
<td>0.80</td>
<td>0.80</td>
<td>1.07</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>0.52</td>
<td>0.30</td>
<td>0.30</td>
<td>0.43</td>
<td>0.43</td>
<td>0.67</td>
</tr>
<tr>
<td>Pancreas</td>
<td>4.1</td>
<td>0.41</td>
<td>0.24</td>
<td>0.24</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Thyroid</td>
<td>3.3</td>
<td>0.34</td>
<td>0.26</td>
<td>0.26</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Kidneys</td>
<td>3.3</td>
<td>0.30</td>
<td>0.20</td>
<td>0.30</td>
<td>0.31</td>
<td>0.48</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20</td>
<td>0.33</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.27</td>
<td>0.27</td>
<td>0.17</td>
<td>0.28</td>
<td>0.28</td>
<td>0.43</td>
</tr>
<tr>
<td>Testes</td>
<td>0.23</td>
<td>0.23</td>
<td>0.14</td>
<td>0.23</td>
<td>0.23</td>
<td>0.33</td>
</tr>
<tr>
<td>Brain</td>
<td>0.18</td>
<td>0.18</td>
<td>0.11</td>
<td>0.19</td>
<td>0.19</td>
<td>0.31</td>
</tr>
</tbody>
</table>

*ORIE, Radiation Internal Dose Information Center, Radiation Dose Estimates for I-131 MIBG Intraovenous Administration.

The following organs each receive less than 1 rad per procedure:
- bone, small intestine, ileum, large intestine, lung, muscle, red marrow, bone surfaces, skin and thymus.

If 0.5 mCi of Iobenguane Sulfate I-131 is used, the organ burden would be half of the doses listed above. The thyroid gland estimated burden is in the unknown state. When the thyroid gland is blocked with Lugol's solution, uptake is minimal. Peak scans were generally noted at 48 hours post-injection. However, serial scans at 24, 48 and 72 hours post-injection may be needed to optimally define the tumor.

NOW SUPPLIED:
Iobenguane Sulfate I-131 injection is supplied in a 2 mL, glass vial as a sterile, nonpyrogenic solution containing, at calibration time, 65.1 MBq of Iodine 131 (2.3 mCi) of Iobenguane Sulfate I-131 injection. Store the drug at room temperature (20°C - 25°C). Note:
- do not store at refrigerator temperature.

In conformance with USP recommendations, the Iobenguane Sulfate I-131 preparations should not be used after the expiration date stated on the label.

NDC 0455670100

*This radiopharmaceutical is approved U.S. Food & Drug Administration for use in persons known or suspected to have MIBG-positive tumors. See Instructions 36.608.706 at 12 CFR Part 36, effective April 1, 1987, or equivalent American standards issued by an agreeable agency.

March 1984
For unit-dose radiopharmaceutical waste disposal...

Introducing the SECURE™ Safety Insert System.
A Safety First.

Now, when you order unit-dose radiopharmaceuticals from your Syncor pharmacy, you have the advantages of the new SECURE™ Safety Insert System. This innovative system allows for the safe and convenient disposal of your waste.

The system has a plastic insert nested inside the unit-dose shield (lead pig) to provide a protective container for pickup and disposal of your unit-dose radiopharmaceutical waste. It is designed in accordance with OSHA regulations, provides sharps containment at the patient injection site, and frees up hot-lab space.

Another example of The Service Difference™ from Syncor. For more information and questions about availability, contact your Syncor pharmacy.

SECURE™ SAFETY INSERT SYSTEM

Convenience With Uncompromised Safety

Innovative design filed with the U.S. Patent and Trademark Office, patent pending.
SECURE is a trademark of Syncor International Corporation. The Service Difference is a service mark of Syncor International Corporation. © 1994 Syncor International Corporation. All rights reserved.
Male diabetic smoker, 36, with coronary artery disease. Cardiac cath revealed occluded RCA and 95% stenotic proximal LAD. LCX was occluded proximally, but demonstrated collateral filling from the LAD. Stress reinjection 201Tl SPECT images revealed fixed inferior wall defect.

Clinical image courtesy of Vanderbilt University Medical Center, Nashville, TN

Helix total-digital-control detector electronics are automatically tuned for optimal performance at every isotope and energy level, from conventional imaging to 511 keV. Optimized 18F-FDG imaging yields excellent lesion detectability in myocardial perfusion SPECT scans, potentially enhancing the assessment of myocardial viability.

See us the RSNA meeting in Chicago, Aisle # 3305

Circle Reader Service No. 42
The 1995 examination will be given Saturday, June 11, 1995 in Minneapolis, Minnesota, in conjunction with the 42nd Annual Meeting of the Society of Nuclear Medicine.

The examination is written and consists of two parts —

Part One (3.5 hours) assesses knowledge of basic aspects of Nuclear Medicine Science.

Part Two (2.5 hours) examines in depth the knowledge of a predetermined subspecialty area of the candidate’s choice including:

- Nuclear Medicine Physics and Instrumentation
- Nuclear Pharmaceutical Science and Radiochemistry
- Radiation Protection

Completed Applications must be postmarked by March 15, 1995. The examination fee is $450 ($400 refundable if you do not qualify).

For applications and more information, please contact:
Toni Doolittle, Associate Coordinator
American Board of Science in Nuclear Medicine
c/o The Society of Nuclear Medicine
1850 Samuel Morse Drive, Reston, Virginia 22090-5316
Tel: (703) 708-9000, ext. 250 • Fax: (703) 708-9015
Introducing at the RSNA 94

TRIAD XLT
20 Body SPECT

The TRIAD eXtra Large Tomography 20 Body SPECT features 20" axial FOV detectors, the largest in a triple detector SPECT imaging system. The extra large 36" diameter gantry opening and 500 pound patient table capacity expands SPECT imaging to the larger patient population.

The axially mounted detectors allow the Triad XLT 20 Body SPECT to image the entire patient torso in a single acquisition. Trionix's unique TranSPECT, multiple FOV SPECT imaging, combined with the largest axial FOV detectors extend the SPECT FOV length to 80 inches for whole body SPECT. Displaying TranSPECT data using 3-D reprojection provides the ability to rotate and view the entire patient's body from any angle.

The Triad XLT 20 Body SPECT system from Trionix is setting new standards in clinical ease-of-use, throughput, and diagnostic accuracy.

Whisper Quiet operation enhances patient comfort and diagnostic accuracy.

Trionix will be displaying clinical results from Triad XLT20 Body SPECT systems installed at several clinical sites. Visit Trionix Booth No.7371 and see for yourself why the Triad XLT 20 Body SPECT is truly "Next Generation."

TRIONIX
Research Laboratory, Inc.
8037 Bavaria Road, Twinsburg, Ohio 44087
Telephone No. (216) 425-9055
FAX No. (216) 425-9059

Circle Reader Service No. 191
IN A FOG??

using aerosols to determine the patency of the pulmonary airway system? Use a gas (that’s what the airway system is for), and Xenon (127 or 133) are gases which are safe, economical and easy to administer with the XENAMATIC™ 3000.

- Shielded for Xe 127 and Xe 133 (radiation profile available on request).
- World’s only system that allows you to study patients on Ventilators.
- Largest and most efficient Xenon trap with a built-in monitor alarm system.
- Built-in O₂ monitor with digital display and control.
- A rebreathing system that saves Xenon.
- Low breathing resistance so you can study sick patients.
- Semi-automatic operation.
- Remote Control Capability.

Get out of the FOG-making business, and call today for more information on putting gases where gases belong, with the XENAMATIC.

Also available, Model 2000.

For more information, please call or write,
Circle Reader Service No. 32

DIVERSIFIED DIAGNOSTIC PRODUCTS, INC.
11603 Windfern
Houston, TX 77064
713-955-5323
Never again waste valuable time "learning" patients' body contours. Not for SPECT, not for Whole Body Scanning. Never again be concerned that the patient's slightest movement during the procedure will confuse the system's memorized contour patterns.

Why? Because nothing needs to be memorized. Helix patented OptiTrack feature eliminates these problems.

OptiTrack optronically traces the patient's contours: automatically, on-line, in real time, while scanning.

And OptiTrack always assures optimal detector to patient distance for best image quality.

All you have to do is touch the start key. Sounds simple? It should, because it is.

Helix OptiTrack:
Simplifies setup, improves image quality, saves time and money...

...And it works.

Elscint
The Intelligent Image

In the U.S.A. call: (201) 342-2020, 1-800-ELSCINT

Circle Reader Service No. 42
Positions Available

Faculty
ASSISTANT PROFESSOR (50%) ASSISTANT RESEARCH SCIENTIST (50%), 40 hours/week, 8:00 AM -os 5:00 PM. Salary $50,000/12 mo. Organize and conduct an independent research program in the area of quantitative, model-based cardiac imaging related to positron emission tomography (PET) and single photon emission computed tomography (SPECT). This requires publication of scholarly articles, active solicitation of external funding to support this research and development of new tracer kinetic models and estimation techniques for cardiac perfusion agents. Assist in ongoing research program related to quantitative assessment of cardiac neuronal function using PET and SPECT imaging. Develop models, image reconstruction methods and estimation techniques. Participate in conduction of patient studies, preparation of research proposals, and writing manuscripts. Assist in an ongoing research program directed at quantitative measurement of cardiac perfusion, wall motion and other measures of cardiac function by means of PET and SPECT. Responsibility includes assisting with patient studies, protocol development and manuscript preparation. Participate in developing a research program for quantitative renal blood flow and metabolism by PET using C14-acetate. Teach Nuclear Medicine Post Doctoral Fellows, residents, graduate students in Bioengineering Program, and medical students in the Science in Clinics Program. Applicants must have a B.S. in Bioengineering and at least 2 years research experience as a Post Doctoral Fellow or entry level research faculty position in areas that include quantitative modeling and tracer kinetics, estimation of lower bounds for evaluation of imaging systems and models, software development for computation and display of results, experience with both clinical and animal experimentation, and experience with setting up and acquiring data with nuclear medical imaging instruments. Other special requirements: demonstrated ability to obtain Federal research funding and to publish research results in peer reviewed scientific journals as well as evidence of a national reputation as demonstrated by participation in national research meetings, invitations to serve as a reviewer for scientific journals and other forms of peer recognition. Send resumes and proof of requirements to: Dr. P. Timothy Wade, University of Michigan Medical Center, Division of Nuclear Medicine, 11541 Taubman Tower, Ann Arbor, MI 48109-0028. An equal opportunity employer paid ad.

ASSISTANT PROFESSOR - UCSD Nuclear Medicine Division of Department of Radiology seeks an American Board of Nuclear Medicine BC/BE nuclear medicine physician at the assistant professor level for appointment in July, 1995. Facilities include two hospitals of UCSD and the San Diego VA Medical Center. Responsibilities include clinical care, teaching, and research. Strong commitment to research is preferred. Please apply with CV, copies of 3 publications and letters of three references by Nov. 30, 1994, to David W. Yeung, MD, Chief of Nuclear Medicine Division, UCSD, Medical Center, 200 W. Arbor Drive, San Diego, CA 92103-8758.

Radiologist
RADIOLOGIST/NUCLEAR MEDICINE - 5 person NY/NJ group seeking radiologist with special competency in Nuclear Medicine. Interest in mammography desired but not essential. Young, progressive group located in 400 bed hospital with nearby imaging center. Send CV to: James Heimann, M.D., 5 Franklin Ave., Belleville, NJ 07109; (201) 450-2038, (201) 751-2011

Residency
UNEXPECTED NUCLEAR MEDICINE RESIDENCY opening at the Johns Hopkins Program. Available immediately. First or second year. Call Dr. Ralph Stagner at 410-614-3764. Division of Nuclear Medicine, The Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287.

Physician
NUCLEAR MEDICINE PHYSICIAN/RADIOLOGIST Short term locum required for intermittent coverage in well-established hospital practice in southwestern Ontario. Must be able to perform routine nuclear studies. Cardiac imaging beneficial. Reply to Box #1103, The Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 22090.

NORTHERN CALIFORNIA - The Kaiser Permanente Medical Center in Santa Clara, CA is seeking a BC/BE Nuclear Medicine Physician for a career opportunity with the nation's leading HMO. All aspects of nuclear medicine services are provided to a 250,000 member prepaid patient population. Clinical and administrative experience required. Internal medicine background preferred. Academic opportunities are available. Competitive salary, generous benefits and comprehensive retirement program. For more information, send CV with cover letter to: Diane Butler, The Permanente Medical Group, Inc. Physician Recruitment, Dept. 68, 1814 Franklin, 4th floor, Oakland, CA 94612. EOE.

FULL-TIME position in general nuclear medicine (Includes all cardiac studies but no PET) in well-equipped and well-staffed medium size community hospital in mid-west. Excellent opportunities for clinical research inclined. Send CV to Box #1106, The Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 22090.

NUCLEAR MEDICINE POSITION BC/BE NM Physician on BC/BE in IM needed for expanded hospital-based and private OP facility on the Southeast. Practice is 50% internal medicine clinical duties with emphasis on thyroid diseases and osteoporosis. Routine NM with SPECT and Radionuclide therapy. Qualified candidates send CV to Box #1110, The Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 22090.

RESIDENCY
STANFORD UNIVERSITY SCHOOL OF MEDICINE - NUCLEAR MEDICINE RESIDENCY PROGRAM.

Resident position is available beginning July 1, 1995 for a two year program at Stanford University Medical Center and affiliated Veterans Administration Medical Center. Patients from the Children's Hospital at Stanford are also studied at the University Hospital. The program is approved by the ACGME and satisfies the requirements of the American Board of Nuclear Medicine. Prerequisite for entry into program: one year prior training in an ACGME-approved program in internal medicine, radiology, pathology, or pediatrics. Requests for further information (include CV and reference list) should be directed to: Dr. I. Ross McDougall, Professor of Radiology and Medicine, Stanford University Medical Center, Room H-0101, Stanford, CA 94305-5281. Stanford University Medical Center is committed to increasing representation of women and members of minority groups in its resident training programs and particularly encourages applications from such candidates.

Take Your Profession To A Better Point Of View

At Riverview Medical Center, we're proud of our progress and are dedicated to their role in delivering quality, personalized patient care. We have a community-wide reputation for promoting excellence, pursuing professional advancement and having state-of-the-art facilities. We are currently seeking the following outstanding professionals to join our top staff:

PROGRAM DIRECTOR
School of Nuclear Medicine Technology

If you have a strong vision for education, this could be your ideal opportunity. Riverview Medical Center has a key position available for a Program Director to assume responsibilities in our hospital-based School for Nuclear Medicine Technology. You will plan, coordinate, evaluate and supervise both clinical and didactic instruction. You will also plan and coordinate students, staff, and new employee orientations, and assist in maintaining the policies and procedures of the Medical Center as it pertains to students.

The qualified candidate will have a B.S. degree and ARRT and/or NMTCE, supported by a least 2 years' clinical experience. Background should reflect previous supervisory experience. Proficiency in curriculum design, instructional methodology, educational psychology, and training evaluation is preferred.

Riverview Medical Center offers a competitive salary, an excellent benefits package including on-site fitness and child care centers, and an ideal location off of exit 109 on the GSP, near attractions to serve as a base. For consideration, please contact: Charlene Orlando-Manager, Radiology Department, Riverview Medical Center, Rivercraft Medical Center, Red Bank, New Jersey, Phone (908) 330-2303.

An Equal Opportunity Employer.

Riverview Medical Center • Vol. 35 • No. 11 • November 1994
For over fourteen years, Advanced Medical Research, now known as AccuSync Inc., has been serving the cardiac health care industry with the finest line of cardiac gates available in today's market. Our dedication to service and commitment to provide you with a reliable product have built the reputation of our gates. With a complete line of models available, you are able to choose the gate which best corresponds to your specific requirements.

The AccuSync 5L, our top model (featured at left) includes CRT monitor (visual) and Strip Chart Recorder (hard copy).

Accessory and optional products available:
The AccuAmp 5, the 5 lead system available for AccuSync 5L, 6L, and 1L, transmits information through fiber optic link. Patient cables, lead wires, and BNC cables available for AccuSync models.
Nuclear Medicine Group—Providing leadership through simple, cost-effective solutions.

Cardiofocal Collimation

Cardiofocal Collimators available for all Siemens Gamma Cameras

Competitive, dedicated or variable angle systems

Siemens Medical Systems, Inc. Nuclear Medicine Group • 2501 North Barrington Road • Hoffman Estates, IL 60195-5203 USA • Phone (708) 304-7700

Circle Reader Service No. 181