Myocardial Uptake and Kinetic Properties of Technetium-99m-Q3 in Dogs

From the Division of Cardiology, Department of Internal Medicine, The Eugene L. Saenger Radioisotope Laboratory, Department of Radiology, The Department of Pharmacology and Cell Biophysics, The Department of Chemistry, University of Cincinnati, Cincinnati, Ohio and Mallinckrodt Medical, Inc., St. Louis, Missouri

We postulated that 99mTc-Q3, a cationic imaging agent, produces myocardial activity related to myocardial blood flow during myocardial ischemia and pharmacologic coronary artery vasodilation, and shows little or no myocardial redistribution over 4 hr after intravenous injection. Methods: In six Group 1 dogs, the chest was opened, the left circumflex coronary artery was acutely ligated, and dipyridamole (0.32, 0.56 or 0.84 mg/kg) was infused into the right atrium, followed by 10 mCi of 99mTc-Q3. Myocardial blood flow was measured by radiolabeled microspheres. The animals were euthanized and 357 myocardial samples were assayed in a well counter for 99mTc activity. One week later, radiolabeled microsphere activity was counted and myocardial blood flow calculated. In nine Group 2 dogs, a variable occluder was placed around the left circumflex coronary artery and an ischemic level of circumflex blood flow was maintained constant over 4 hr as measured by an ultrasonic flow meter. Dipyridamole (0.56 mg/kg) was then infused into the right atrium followed by 10 mCi of 99mTc-Q3. Gamma camera images were acquired at 5, 15, 30, 60, 120 and 240 min following 99mTc-Q3 injection. Microsphere blood flow and endocardial biopsies (n = 6 dogs) were performed at 30, 60, 120 and 240 min following 99mTc-Q3 injection. Results: In the Group 1 animals, 99mTc activity (y) was related to myocardial blood flow (x) from 0 to 6.1 ml/min/g by the relationship y = 0.83x + 0.18, r = 0.95, p = 0.0001. The scintigraphic ratio of myocardial perfusion defect zone counts to normal myocardial zone counts (0.54 ± 0.05 at 30 min) remained constant over 4 hr, as did technetium counts from direct endocardial sampling. Scintigraphic count ratios allowed discrimination between perfusion defect and normal myocardial regions beginning at 5 min following 99mTc-Q3 injection. Conclusions: Over a range of myocardial blood flows from 0 to 6.1 ml/min/g, 99mTc-Q3 myocardial activity is related to myocardial blood flow at the time of tracer injection. Technetium-99m-Q3 shows no evidence of myocardial redistribution over a 4-hr period.

Key Words: myocardial perfusion; radionuclide imaging; technetium-99m

pharmacologic coronary artery vasodilation and (2) that 99mTc-Q3 shows little or no myocardial redistribution up to 4 hr after intravenous injection.

METHODS

Animal Instrumentation

Animal studies conformed to the guidelines of the American Physiological Society and were approved by the Institutional Animal Care and Use Committee. Seventeen male mongrel dogs weighing 21.0–27.0 kg were instrumented. Two animals developed sustained ventricular fibrillation following coronary artery occlusion and required prolonged resuscitation and support with inotropic drugs. These two animals remained hemodynamically unstable and were therefore excluded from all further consideration. Six dogs (Group 1) were studied by a myocardial perfusion protocol to compare initial 99mTc-Q3 myocardial distribution to the distribution of myocardial blood flow as assessed by radiolabeled microspheres.

The remaining nine dogs (Group 2) were studied by a myocardial kinetics protocol in which the myocardial distribution of 99mTc-Q3 in ischemic and nonischemic myocardium was repeatedly measured over 4 hr. The animals were anesthetized with morphine sulfate (3 mg/kg) subcutaneously and either pentobarbital 20 mg/kg (Group 1 dogs) or 1% alpha-chloralose 70 mg/kg (Group 2 dogs) intravenously. Anesthesia was supplemented with either agent as needed. The animals were intubated with a 10-mm internal diameter endotracheal tube, placed on a positive pressure ventilator (Harvard Apparatus Co., South Natick, MA) and ventilation was supplemented with 95% O$_2$ and 5% CO$_2$ to maintain an arterial blood pO$_2$ greater than 100 mmHg. The chest was opened with a left lateral thoracotomy through the fourth intercostal space and the heart was suspended in a pericardial cradle. For the nine Group 2 animals studied over 4 hr, an ultrasonic flow probe (Transonic Systems, Inc., Ithaca, NY) was placed on the proximal portion of the left circumflex coronary artery (Fig. 1). In these animals, a hydraulic occluder was placed distal to the flow probe and a 22-gauge, 2.5-cm plastic catheter was inserted into the distal portion of the left circumflex artery to monitor distal circumflex artery pressure.

In all animals, a 2.7-mm diameter plastic catheter was placed in the left atrium for recording pressure and injecting radiolabeled microspheres. A 2.3-mm diameter Goode-Lubin catheter was inserted through a femoral artery and advanced into the ascending aorta for measurement of central aortic pressure and withdrawal of microsphere blood samples. A femoral vein was cannulated for administration of intravenous fluids and withdrawal of serial blood samples for measurement of 99mTc blood radioactivity levels. A separate femoral vein catheter advanced to the right atrium was used for injection of dipyridamole and 99mTc-Q3. A heated water circulation pad was placed under the dogs to assure normothermia during the studies.

Radiopharmaceutical

The structure of the 99mTc-Q3 cation is depicted in Figure 2. It was prepared as follows. N,N'-ethylenebis(acetylacetoneimine) (H$_2$acac$_2$en, 15–25 mg in 0.1–0.2 ml of ethanol) was combined with KOH (0.03 ml of 1 M solution in 50% ethanol) and Na99mTcO$_4$ (1–2 ml saline containing 80–120 mCi) in a 5-ml sterile vial. The solution was deaerated with a vigorous stream of oxygen-free argon for 10–15 min. At the same time, a solution of SnCl$_2$ in ethanol (2–3 mg/ml) was prepared by first deaerating the ethanol, then adding the SnCl$_2$, and finally stopping the vial immediately to ensure anaerobic conditions. Under anaerobic conditions, 10–20 µl of the SnCl$_2$ solution were added to the reaction vial, and the solution was heated for 15 min at 70–90°C. The air-sensitive product formed, ([99mTc(V)acac$_2$en]O)”, and was assayed for purity by reversed-phase HPLC. This intermediate was then reduced to the cationic complex, 99mTc-Q3 ([99mTc(III)acac$_2$en(TMPP)$_2$]$^+$), by anaerobic addition of tris(3-methoxy-1-propyl)phosphine (TMPP) hydrochloride (0.1 ml of 50 mg/ml solution in ethanol) and heating at 80–90°C for 10 min.

Purification was necessary to remove excess ligands prior to animal injection. The crude 99mTc-Q3 preparation was diluted to 20 ml with water and loaded onto a preconditioned Waters C18 Sep-Pak Plus cartridge. The Sep-Pak was rinsed with 20 ml of water and then with 4 ml of 80% ethanol/20% water. The purified radiopharmaceutical was then eluted with 2 ml of 80% ethanol/20% saline, collecting the middle 1-ml fraction, filtered through a 0.2-µm filter and finally diluted with 4 ml of sterile saline.

Quality control was performed by reversed-phase HPLC on a
The yard

spheres

were

North

Technetium-99m-Q3

chemical

composition

of

namic

II)

systemic

dium;

radiochemical

Heart

For

were

studied

after

microspheres

hypertension

was

response

15

minute.

Radioactivity was

observed

15

and

had

mI/mm.

Radioactivity

samples

were

1.39

3.5 g.

with

the

was

10%

formation

vials.

Myocardial

ischemia

below

radioactivity

10%

samples

selected

subendocardium,

subepicardium,

midmyocardium

the

ventricle.

The

were

placed

in 10%

healthy

slices

with

remaining

10%

samples

taken

subendocardium,

subepicardium,

midmyocardium

the

ventricle. The

samples

were

weighed

and

placed

in 10%

formalin

counting

microspheres;

Myocardial

samples

were

weighted

4

after

animal

was

euthanized,

each

sample

was

counted

for

Tc in

a

gamma

well

counter

with

multichannel

analyzer

(Model

1185,

Tracor,

Elk

Grove,

IL).

The

samples

were

stored

for

1 wk

to

1

activity
to

background

levels,

and

were

recounted

for

measurement

of

radiolabeled

microsphere

activity.

Myocardial Kinetics Protocol

Technetium-99m-Q3 activity was assessed over 4 hr for evidence of tracer redistribution. Nine dogs were instrumented and

baseline hemodynamic measurements were made as described above. The left circumflex artery was occluded sufficiently

so that reactive hyperemia was abolished in response to a proximal 10-

sec complete occlusion and subsequent release of a ligature on

the

artery. All animals had a zone of visible epicardial cyanosis distal

to the coronary occluder before and/or during subsequent dipry-

diamole infusion. The animals were allowed to stabilize hemody-

namically over 15 min. Diprydiamole (0.56 mg/kg) was infused

over 4 min. Four minutes after diprydiamole infusion, 10 mCi of

Tc-Q3 was injected into the right atrium.

Blood Tc-Q3 disappearance was measured in four dogs by

withdrawing 0.5 cc of blood into a heparinized 1-cc syringe every

minute for 6 min, followed by every 2 min for 20 min, and then at

25, 30, 60, 90, 120, 180 and 240 min. Technetium-99m-Q3 blood

disappearance curves were constructed by methods reported

previously (5).

Following Tc-Q3 injection, serial gamma camera images

obtained in the right anterior oblique projection on a portable

gamma camera with a 10" field of view and a high-resolution

technetium collimator (Siemens LEM, Siemens Corporation,

Iselin, NJ) were entered into a dedicated computer (A3,

Medasys,

Inc.,

Ann

Arbor, MI). The position of the animal remained constant

throughout the entire experiment, as did the position of the

gamma camera detector. Gamma camera images were obtained

over 5 min at 5, 15, 30, 60, 120, 180 and 240 min after Tc-Q3

injection.

Regional myocardial blood flow was measured by radiolabeled

microspheres at four timepoints following Tc-Q3 injection.

Microsphere radionuclides (141Ce, 55Cr, 103Ru, 95Nb) were

randomly assigned for administration at 30, 60, 120 and 240 min

following Tc-Q3 injection.

In the last six animals studied, Tc endocardial counts were

sampled by direct Cope needle biopsy of the beating heart in the

distributions of the patent left anterior descending and partially

occluded left circumflex arteries at 30, 60, 120 and 240 min fol-

lowing Tc-Q3 injection. The biopsy area was selected between

the major coronary artery and a principal branch. The locations of

myocardial biopsies in the circumflex artery distribution were

selected based on the presence of visible epicardial cyanosis. A

purse-string suture was placed around the biopsy site to assure

hemostasis. Endocardial tissue samples weighed 0.021 ± 0.001 g

(range 0.011–0.032 g, Model 2403 analytical balance, Brinkman

Instruments, Westbury, NY) and were placed in a labeled count-

ing vial containing buffered formalin. Tissue samples weighing

less than 10 mg were considered inadequate for accurate assess-

ment of Tc-Q3 activity per gram of tissue (only samples ≥ 10

mg were used).
Left and right atrial blood pressures, left circumflex coronary artery blood flow, distal circumflex artery blood pressure (in 7 of 9 dogs), systemic blood pressure, and cardiac rhythm were monitored constantly for 4 hr in all animals. Hemodynamic changes, other than those attributable to dipyridamole infusion, were corrected with fluids or adjustment of the level of anesthesia.

On completion of the 4-hr protocol, all animals were euthanized with 100 mg/kg of intravenous pentobarbital. The heart was excised from the chest and each coronary artery perfused for 10 min at 100 mmHg pressure with a different color dye (acid magenta, acid orange or methyl green certified biological stains, Sigma Chemicals, St. Louis, MO) for visualization of respective perfusion zones. The heart was then opened. Duplicate transmural myocardial tissue samples were taken from central areas in the distribution of the left anterior descending and left circumflex coronary arteries as guided by dye coloration. Additional adjacent slices were divided into subendocardial, midmyocardial and subepicardial samples. Tissue samples weighed 1.45 ± 0.08 g. Samples were placed in appropriately labeled counting vials containing 10% formalin. Direct in vivo biopsy (Cope needle samples) and postmortem tissue samples were counted in a gamma well counter (Model 1185, Tracor, Elk Grove, IL) for ⁹⁹mTc activity within 4 hr following conclusion of the experiment. One week later, when ⁹⁹mTc activity was fully decayed to background levels, the samples were recounted for microsphere radioactivity. A computer program corrected for spillover of radioactive counts into the counting window of other microspheres. In a separate validation study carried out in our laboratory, myocardial ⁹⁹mTc activity was serially counted in a dose calibrator before and after dye coloration in two dog hearts. The net change in myocardial ⁹⁹mTc activity in response to intracoronary dye infusion was ±1% of total myocardial ⁹⁹mTc activity.

Myocardial blood flow (MBF) measurements in ml/min/g were calculated from the ratio of myocardial microsphere counts per gram of myocardium (Mₐ) times the rate of arterial blood withdrawal into a syringe (SBF) in ml/min divided by total microsphere counts in the reference blood sample (Bₑ):

\[
MBF = \frac{M_a \times SBF}{B_e}.
\]

Gamma camera images were viewed on the nuclear medicine computer screen and analyzed by a single observer (Fig. 3). On the 30-min image from the kinetic protocol, a 5 x 5 pixel defect region of interest (ROI) was located centrally in the perfusion defect. A second 5 x 5 pixel region of interest (NROI) was located centrally in the normally perfused anterior wall. A 5 x 5 pixel background ROI was placed approximately 5 pixels external to the anterior wall overlying the lung. Background ROI activity was subtracted from both myocardial regions, and the ratio of corrected ROI counts divided by corrected NROI zone counts was calculated. The procedure was repeated on the 5-, 15-, 60-, 120-, 180- and 240-min images for each animal studied by the kinetics protocol.

Data Analysis

Data are expressed as the mean ± one standard error. All hemodynamic data were assessed for changes over time by a two-way repeated measures analysis of variance, followed by the Scheffe F-test. In order to combine data from all Group 1 (myocardial perfusion protocol) dogs, ⁹⁹mTc counts/g were normalized to total counts/total weight of the entire left ventricular myocardium in each dog and microsphere myocardial blood flows were normalized to the mean myocardial blood in each dog (6). Normalized ⁹⁹mTc counts were plotted against normalized microsphere myocardial blood flow for the group of six animals and linear regression analysis was performed on the group data.

For the Group 2 animals, myocardial blood flow and radionuclide image count ratios were assessed for changes over time and postmortem tissue ⁹⁹mTc counts per gram were assessed by myocardial layer using a two-way repeated measures analysis of variance followed by a Scheffe F-test. Cope needle biopsy samples of adequate tissue weight (≥10 mg) were not available for all sample times on all animals. Samples of left anterior descending and left circumflex Cope biopsy ⁹⁹mTc tissue counts were analyzed at each point in time by a two-tailed paired t-test. A p value less than 0.05 was considered to be statistically significant.

RESULTS

Relationship of Technetium-⁹⁹m-Q3 Distribution to Myocardial Perfusion

With complete occlusion of the left circumflex artery, systemic blood pressures fell (from 133/97 ± 9/6 mmHg to 117/94 ± 8/7 mmHg) while heart rate and left atrial pressure rose (from 102 ± 9 beats/min to 119 ± 7 beats/min and from 9 ± 1 mmHg to 17 ± 3 mmHg) but none of the changes was statistically significant. Further hemodynamic changes with dipyridamole infusion were also not statistically significant.

For six Group 1 animals, normalized ⁹⁹mTc-Q3 myocardial counts from 357 postmortem tissue samples are compared to normalized microsphere myocardial blood flow in Figure 4. Normalized ⁹⁹mTc counts (y) and normalized microsphere myocardial blood flow (x) were related over a range of myocardial flows from 0 to 6.1 ml/min/g by the equation \(y = 0.83X + 0.18 \) (r = 0.95, p < 0.0001).
Blood Clearance of Technetium-99m-Q3

A representative blood disappearance curve for 99mTc-Q3 over time is shown in Figure 5. Blood disappearance of 99mTc-Q3 in all four dogs was biexponential with an initial half-time of 1.7 ± 0.3 min and a late half-time of 195 ± 26 min. Calculated blood clearance of 99mTc-Q3 activity was 0.25 ± 0.07 ml/min/kg. The biexponential fit is characterized by the equation:

$$C = Ae^{-at} + Be^{-bt}$$

where $A = 0.897 ± 0.012$, $B = 0.102 ± 0.012$, $a = 28.46 ± 3.82$ s$^{-1}$ and $b = 0.213 ± 0.028$ s$^{-1}$.

Relationship of Technetium-99m-Q3 Myocardial Kinetics to Myocardial Blood Flow Over Four Hours

Hemodynamics. Table 1 summarizes the hemodynamic data from the myocardial kinetics protocol. Distal left circumflex artery pressure and blood flow in the left circumflex coronary artery were reduced significantly by design with inflation of the circumflex artery occluder.

During dissipation of the dipyridamole effect, myocardial blood flow in the left anterior descending coronary artery distribution as measured serially by radiolabeled microspheres (Fig. 6) decreased significantly from 1.31 ± 0.18 ml/min/g at 30 min following 99mTc-Q3 injection to 0.62 ± 0.12 ml/min/g at 240 min after 99mTc-Q3 injection (p < 0.05). Myocardial blood flow in the distribution of the left circumflex coronary artery remained unchanged from 30 to 240 min after 99mTc-Q3 injection.

Scintigraphy. The transmural scintigraphic count ratios of defect-zone-to-nondefect-zone 99mTc ROI counts at 5, 15, 30, 60, 120 and 240 min following 99mTc-Q3 injection are shown by solid bars in Figure 7. The ratios (0.51 ± 0.05 at 5 min, 0.49 ± 0.05 at 15 min, 0.54 ± 0.05 at 30 min, 0.52 ± 0.05 at 60 min, 0.46 ± 0.04 at 120 min, 0.50 ± 0.04 at 180 min and 0.49 ± 0.04 at 240 min) did not change over 4 hr despite decreasing myocardial blood flow in the area of the left anterior descending coronary artery.

Direct Myocardial Tissue Counting. Technetium-99m counts from left ventricular subendocardial biopsies were obtained by serial Cope needle biopsies in six animals (Fig. 8). Over 4 hr following 99mTc-Q3 injection counts per gram in the left anterior descending coronary artery distribution were 143576 ± 22639 at 30 min, 161123 ± 22050 at 60 min, 170630 ± 35880 at 120 min and 149951 ± 31068 at 240 min (no significant change over time). In the left circumflex coronary artery distribution, subendocardial 99mTc-Q3 counts per gram by Cope needle biopsy were 54953 ± 14048 at 30 min, 56364 ± 10963 at 60 min, 75425 ± 22128 at 120 min and 75679 ± 22844 at 240 min (no significant change over time).

The relative distribution by the myocardial layer of 99mTc-Q3 4 hr after its administration was evaluated in the subendocardium, midmyocardium and subepicardium by dividing postmortem transmural sections from the left anterior descending and circumflex artery territories each into three slices. The ratio of subendocardial left circumflex counts per gram of myocardium-to-subendocardial left anterior descending counts per gram from myocardial slices obtained 240 min following 99mTc-Q3 injection was 0.31 which is similar to the corresponding subendocardial ratio of 0.38 present at 30 min after tracer injection as acquired from Cope needle biopsies of the beating heart. The distribution of 99mTc-Q3 in the left anterior descending...
region was uniform across the myocardial wall (Fig. 9, top). Technetium-99m-Q3 activity in the distribution of the stenotic left circumflex artery was reduced in all myocardial layers relative to the anterior descending territory (p < 0.05), with a significantly greater reduction in circumflex subendocardial compared to subepicardial activity (p < 0.05). Corresponding myocardial blood flow measurements in the left anterior descending and left circumflex artery distributions are shown at the bottom of Figure 9.

DISCUSSION

Technetium-99m-Q3 has many positive attributes as a myocardial-imaging agent in man. Rossetti et al. (1) carried out the first clinical study of Technetium-99m-Q3 in six healthy volunteers and in eight patients with coronary artery disease documented by angiography. Effective visualization of infarcted and ischemic myocardium was reported, along with rapid clearance through the hepatobiliary system. These results have been confirmed and extended in a report by

TABLE 1

Myocardial Kinetics Protocol: Hemodynamics

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Postocclusion</th>
<th>Postdipyridamole</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>240 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>109 ± 12</td>
<td>131 ± 7</td>
<td>132 ± 10</td>
<td>130 ± 6</td>
<td>126 ± 6</td>
<td>111 ± 5</td>
<td>119 ± 5</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>129 ± 5</td>
<td>116 ± 4</td>
<td>95 ± 6*</td>
<td>92 ± 7*</td>
<td>105 ± 7</td>
<td>119 ± 6*</td>
<td>116 ± 6*</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>88 ± 6</td>
<td>84 ± 4</td>
<td>58 ± 5*</td>
<td>64 ± 6*</td>
<td>79 ± 6*</td>
<td>90 ± 4*</td>
<td>81 ± 6*</td>
</tr>
<tr>
<td>Right atrial pressure</td>
<td>10 ± 1</td>
<td>9 ± 1</td>
<td>8 ± 1</td>
<td>8 ± 1</td>
<td>9 ± 2</td>
<td>8 ± 2</td>
<td></td>
</tr>
<tr>
<td>Left atrial pressure</td>
<td>13 ± 1</td>
<td>16 ± 2</td>
<td>13 ± 1</td>
<td>13 ± 1</td>
<td>15 ± 1</td>
<td>16 ± 2</td>
<td>16 ± 2</td>
</tr>
<tr>
<td>Distal circumflex systolic pressure (mmHg)</td>
<td>118 ± 10*</td>
<td>57 ± 7</td>
<td>46 ± 5</td>
<td>46 ± 5</td>
<td>56 ± 9</td>
<td>69 ± 10*</td>
<td>59 ± 7</td>
</tr>
<tr>
<td>Circumflex coronary blood flow (ml/min)</td>
<td>21 ± 3*</td>
<td>7 ± 2</td>
<td>4 ± 0.3</td>
<td>9 ± 3</td>
<td>9 ± 3</td>
<td>8 ± 2</td>
<td>7 ± 3</td>
</tr>
</tbody>
</table>

*p = 9 dogs.

1. *p < 0.05 vs. postocclusion.

2. *p < 0.05 vs. postdipyridamole infusion.

3. *p < 0.05 vs. 30' postinjection.

4. *p < 0.05 vs. all postocclusion measurements.

All other comparisons p = NS (preocclusion baseline is compared to postocclusion but not to later times).
Gerson et al. (2), who found comparable sensitivity and normalcy rates for detection of coronary artery disease with postexercise tomographic imaging of 99mTc-Q3 and 201Tl in 19 patients with angiographic coronary disease and in eight normal study participants. Technetium-99m Q3 imaging uses to advantage the favorable physical properties of 99mTc by yielding higher counting statistics and resultant improved image quality compared to 201Tl.

The relationship of 99mTc-Q3 myocardial uptake and subsequent kinetics to actual myocardial blood flow has not been previously evaluated and is the focus of the present report. In the present study, 99mTc-Q3 myocardial activity was related to radiolabeled microsphere measurements of myocardial blood flow over a range of flows from approximately 0 to 6.1 ml/min/g. Previous studies have examined the relationships of other myocardial perfusion tracers to myocardial blood flow. Thallium-201 myocardial uptake closely approximates microsphere assessments of myocardial blood flow under conditions of normal resting myocardial flow and under conditions of myocardial ischemia or infarction (7—9).

In response to treadmill exercise, myocardial blood flow and myocardial oxygen demand increase in a parallel fashion and a close relationship between myocardial thallium distribution and measurements of myocardial blood flow is maintained (10). When coronary blood flow increases out of proportion to myocardial oxygen requirements, as occurs with pharmacologic coronary artery vasodilation with dipyridamole infusion, 201Tl myocardial uptake substantially underestimates high myocardial blood flows (7,8,11). Technetium-99m-teboroxime, a boronic acid adduct, shows myocardial uptake parallel to actual myocardial blood flow in a manner similar to 201Tl for normal resting flows and for augmented flow following dipyridamole infusion (12—14).

Myocardial uptake of 99mTc-sestamibi, a cationic isonitrile, is related linearly to myocardial blood flow determined by radiolabeled microspheres in a flow range from 0.3 to 2.0 ml/min/g (15,16). Technetium-99m-sestamibi uptake overestimates myocardial blood flow for flows <0.3 ml/min/g (15,17), and substantially underestimates myocardial blood flow for flows >2.0 ml/min/g (15,17,18). Similarly, the diphosphine tracer, 99mTc-tetrofosmin, has been reported to have myocardial uptake in excess of myocardial blood flow at low flows and to underestimate myocardial blood flow at high flows induced by pharmacologic coronary vasodilation (19). Technetium-99m-Q12 or furisom, a mixed ligand cation with structure similar to 99mTc-Q3, shows myocardial uptake increased out of proportion to myocardial blood flow at low flows and a good relation of uptake to myocardial blood flow for flows up to 2.0 ml/min/g (20). Thus, myocardial distribution character-

![FIGURE 8. Technetium-99m counts per gram of myocardium from Cope needle biopsies taken from the left anterior descending (LAD) and left circumflex (LCX) coronary artery distributions at 30, 60, 120 and 240 min following 99mTc-Q3 injection. Also shown are the subendocardial (Endo) 99mTc-Q3 counts/gram acquired from tissue slices following euthanasia at 240 min. Technetium-99m counts per gram were significantly lower in the left circumflex artery distribution compared to the left anterior descending distribution at each point in time (p < 0.05). There was no change in 99mTc counts per gram over time in either coronary artery distribution for the six dogs studied with subendocardial biopsies.](image)

![FIGURE 9. (Top) Technetium-99m-Q3 activity in subepicardial (EPI), midmyocardial (MID), and subendocardial (ENDO) segments obtained from post-mortem slices in nine Group 2 dogs. Subendocardial, midmyocardial and subepicardial tracer activities in the distribution of the stenotic left circumflex artery (LCX) were significantly reduced compared to tracer activities associated with the nonstenotic left anterior descending artery (LAD) (p < 0.05). Technetium-99m normalized counts per gram were significantly lower in the subendocardial compared to the subepicardial circumflex artery distribution. (Bottom) Myocardial blood flow values in the samples shown above.](image)
istics of 99mTc-Q3 in dogs compare favorably to septasmin, tetrofosmin and 99mTc-Q12.

Clearance of 99mTc-Q3 from the central circulation is rapid with an initial phase $T_{1/2}$ of 1.7 ± 0.3 min. This is similar to other myocardial perfusion imaging agents in current use. This property facilitates early myocardial imaging following tracer injection.

The present study also demonstrates that once 99mTc-Q3 is taken up into the left ventricular myocardium, the relative myocardial distribution of tracer remains constant over time. This observation was confirmed by external myocardial imaging and by direct counting of myocardial samples in a well counter. In the ischemic distribution of the left circumflex artery and in the transiently hyperemic left anterior descending arterial distribution, myocardial 99mTc-Q3 activity remained constant over 4 hr. The relative distribution of tracer activity in the left ventricular myocardium was also confirmed at the end of the experiments from larger left ventricular slices counted for 99mTc activity in a well counter. No differential washout of 99mTc-Q3 from ischemic compared to nonischemic myocardial zones or other evidence of tracer redistribution was detected over 4 hr of study. The lack of myocardial redistribution over 4 hr observed with 99mTc-Q3 is similar to the kinetic properties previously reported for 99mTc-sestamibi (15,21) and for 99mTc-Q12 (furiosmin) (20). The kinetic properties of 99mTc-Q3 differ from those of 99mTc-sestamibi (22–24) which shows clinically important myocardial redistribution and 99mTc-teboroxime (25–27) which shows evidence of myocardial washout.

Possible limitations of this study include the blind nature of the serial endocardial biopsies used to measure 99mTc-Q3 activity over 4 hr. The endocardium is not visualized during the Cope needle biopsies of the beating heart and, therefore, the possibility exists that all putative endocardial muscle samples may not be accurately located in the central distribution of either the left anterior descending or left circumflex coronary artery but could be located in an area with overlapping flow from both arteries. Other investigators have implanted miniature cadmium telluride radiation detectors on the endocardial and epicardial walls for counting regional myocardial tracer activity (15,21,22). This approach assures a relatively constant location of serial radioactivity detection but samples a transmural section of tissue that may have a heterogenous flow and 99mTc distribution by myocardial layer (as illustrated in Fig. 9). In the present study, location of the Cope needle endocardial biopsy sites was verified at postmortem examination of the heart. Additionally, in this study, the lack of change in 99mTc-Q3 activity over time was verified independently by external gamma camera quantitation of a ratio of defect zone-to-nondefect zone activity in all animals.

A second potential technical limitation of this study relates to the level of augmentation of left anterior descending coronary blood flow at the time of the first endocardial biopsies 30 min following dipyridamole administration. Hintze and Vatner (28) showed that coronary artery cross-sectional area increased and diastolic coronary vascular resistance decreased significantly within 5 min following dipyridamole infusion, but had largely returned to baseline levels by 30 min. Afonso (29) produced marked increases in coronary blood flow by administering 5 mg of dipyridamole into the right atrium in mongrel dogs. By 15–20 min later, coronary blood flow had returned nearly to baseline levels. In the present study, in the Group 1 animals, microsphere measurements of coronary blood flow at 5 min following dipyridamole infusion demonstrated coronary blood flows up to 6.1 ml/min/g (6–9 times normal basal flow). In the nine Group 2 animals studied by the 4-hr myocardial kinetics protocol, maximal myocardial blood flow by microsphere techniques at 30 min following dipyridamole infusion was 2.03 ml/min/g (group mean 1.31 ± 0.18 ml/min/g). If earlier samples of 99mTc-Q3 tissue activity and corresponding microsphere blood flow measurements had been taken at 10–15 min following dipyridamole infusion, a larger augmentation and subsequent decline in blood flow over 4 hr might have been recorded. This was not, however, part of the original study design, at which time it was not known how much time following tracer injection was required to permit complete myocardial extraction and blood pool clearance of 99mTc-Q3. Although the measured increase in myocardial blood flow in the left anterior descending coronary artery distribution at 30 min following 99mTc-Q3 injection was limited in this open-chest anesthetized model, the change in myocardial blood flow from 30 min to 4 hr following tracer injection was statistically significant.

A third potential limitation of this and all other studies of myocardial tracer distribution versus myocardial blood flow is the unavailability of a universally accepted method for combining myocardial tracer versus blood flow data from multiple animals. In a preliminary report (30) of 99mTc-Q3 myocardial tracer distribution versus myocardial blood flow by microsphere injection, we normalized the data from each individual dog by assigning a value of 1 to the number of 99mTc-Q3 counts per gram of myocardium at a myocardial blood flow of 1 ml/min/g. Data were then combined from three dogs. With this approach to data normalization, the combined data from three animals suggested a relationship of tracer activity versus myocardial blood flow at flows above 2.0 ml/min/g. Subsequently, an additional three animals were studied and the data from all six animals were reanalyzed by the more widely reported methods of Bassingthwaighte et al. (6). This method normalizes the data from each animal by dividing the number of 99mTc-Q3 counts per gram of myocardial sample by the number of 99mTc-Q3 counts per gram in the entire ventricular myocardium and also normalizes each measurement of myocardial blood flow for an animal to the mean myocardial blood flow for that animal (the method used in the present report).

Finally, we cannot exclude the possibility that myocardial washout of 99mTc-Q3 may have occurred during the first 5 min following tracer injection. Very early washout of
The neutral tracer has been observed with the neutral tracer 99mTc-teboroxime. Examination of very early tracer myocardial kinetics following injection is potentially confounded by scattered counts from adjacent blood pool activity and by overlap of myocardium and blood pool regions. Very early substantial myocardial tracer washout has not been documented with other cationic 99mTc myocardial imaging agents and is not suspected to be a major component of 99mTc-Q3 kinetics.

Caution is required in attempting to extrapolate from the results of these canine studies to the likely perfusion and kinetic properties of 99mTc-Q3 in man. Nevertheless, Rossetti and associates [31] have reported that 99mTc-Q3 showed no evidence of myocardial washout over 5 hr in six normal volunteers. Technetium-99m-Q3 appears to hold substantial promise as a clinical myocardial perfusion imaging agent. Preliminary reports of rapid hepatic clearance of 99mTc-Q3 in humans [31], with a high myocardial-to-liver activity ratio, suggest a potential advantage in terms of convenience for clinical imaging of 99mTc-Q3.

We conclude that 99mTc-Q3 activity in the myocardium is related to actual myocardial blood flow over a clinically relevant range of flows, the tracer is rapidly cleared from the blood, and once extracted, 99mTc-Q3 remains relatively fixed in the myocardium for at least 4 hr. The correlates of these findings in humans require further clinical study.

REFERENCES

