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Neural-network classification methods were applied to studies of
FDG-PET images of the brain acquired from a total of 77 “prob-
able” Alzheimer’s disease and 124 nommal subjects at two dif-
ferent centers. Methods: Classification performances, as deter-
mined by relative-operating-characteristic (ROC) analyses of
cross-validation experiments, were measured for FDG PET im-
ages obtained with either a 15-mm FWHM PETT V or a 6-mm
FWHM Scanditronix PC-1024-7B camera for various methods of
data representation. Neural networks were trained to distinguish
between normal and abnormal subjects on the basis of regional
metabolic pattems. For both databases, classification perfor-
mance could be improved by increasing the “resolution” of the
representation (decreasing the region size) and by nommalizing
the regional metabolic values to the value of a reference region
(occipital region). Results: The optimal classification perfor-
mance for Scanditronix data (ROC area = 0.95) was higher than
that for PETT V data (ROC area = 0.87). Under Bayesian
theory, the classification performance with Scanditronix data cor-
responded to an ability to change a pre-test probability of dis-
ease of 50% to a post-test probability of either 90% for a positive
classification or 10% for a negative classification. Conclusion:
This classification can be used to either strongly confirm or rule
out the presence of abnomalities.
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Tle diagnosis of a dementia such as Alzheimer’s disease
(AD) may involve neurological exams, neuropsychological
testing, anatomical neuroimaging (x-ray computed tomog-
raphy or magnetic resonance imaging) and other laboratory
tests. Each of these modalities can be expected to contrib-
ute a certain amount of unique information with respect to
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the diagnosis of organic disease. Although in a large per-
centage of cases the diagnostic decisions based on these
procedures are rather obvious, there are cases in which
follow-up studies may be necessary to enable an accurate
diagnosis, especially those involving distinctions between
dementia and psychiatric disorders or normal aging. It is in
these difficult cases that functional neuroimaging such as
PET may be able to make an immediately valuable diag-
nostic contribution.

Quantitative techniques used to analyze PET scans are
generally based on region of interest (ROI) analyses (I-5).
The quantitative representations resulting from ROI anal-
yses can be used as the basis of a system to objectively
characterize PET scans as either normal or abnormal.
Strother et al. (6) note that much of the research involving
PET is directed toward improving the performance of par-
ticular links in the chain of highly complex data transfor-
mations that result in regional metabolic representations.
The authors emphasize the importance of evaluating these
advances in PET technology based on the degree to which
they enhance PET’s ability to detect disease. One impor-
tant improvement over ‘““first generation’”” PET cameras
has been higher spatial resolution, which enhances the
ability to accurately identify anatomical regions and re-
duces partial-volume effects.

The selection of a method or set of methods to be used
for objectively measuring the diagnostic impact of these
factors is important, since the choice of methods can
greatly affect the outcome of a comparison. A particular
type of classifier may be better suited for a normally dis-
tributed set of data than for a non-normally distributed set,
for example, even though the ‘‘diagnostic information con-
tent” of the two sets may be the same.

In a pattern recognition setting, ‘‘signals’ of interest
must often be detected in the presence of “noise’” and/or
missing information. In the production of regional meta-
bolic data using PET, any of the several “links’’ in the PET
data chain represent potential sources of noise. Some
sources, such as patient movement or problems with blood



TABLE 1
Composition of Subject Groups Used in Classification Performance Testing

PETT V subjects Scanditronix subjects

N 41 33

Age 70.9 = 8.8 (range: 53-93) 65.8 + 9.5 (range: 44-88)

Mini-Mental Status Exam 150+ 73 15.1 + 86

Score

Gender (M,F) 21,20 20,13
Age-Equivalent normal controls

N 50 74

Age 67.7 x 8.9 (range: 50-84) 61.6 + 10.8 (range: 45-90)

Gender (M,F) 25,25 34,40

collection or attenuation correction, are intrinsic to the
PET acquisition process, while others, such as inaccura-
cies in anatomical ROI location, result from postacquisi-
tion analysis.

We have previously demonstrated that neural networks
can be trained, on the basis of quantitative regional repre-
sentations, to classify fluorodeoxyglucose (FDG) PET
scans with an accuracy comparable to that of an expert
PET reader (7,8). We describe here the application of
neural networks to FDG-PET data acquired with two dif-
ferent PET cameras from patients with AD and from age-
equivalent normal subjects, with particular emphasis on
the diagnostic value associated with recent advances in
PET technology. Diagnostic significance was determined
directly by evaluating cross-validation classification perfor-
mances for given conditions. The objectives of the inves-
tigation were:

1. To enable the formation of recommendations for op-
timizing the representation and analysis of PET data
for the diagnosis of AD.

2. To demonstrate and compare the optimal ability of
PET to discriminate between normal and AD subjects
with the two cameras.

3. To determine the most generally applicable metabolic
profiles that discriminate normal from AD subjects.

MATERIALS AND METHODS

Normal and AD subjects who underwent FDG-PET studies
with a PETT V scanner (9) (inplane and axial image resolution of
15 mm) were recruited for brain imaging studies at the Wien
Center, Mount Sinai Medical Center, Miami Beach. Recruiting
procedures are described in detail elsewhere (10). A second group
of normal and AD subjects were studied with a Scanditronix PC
1024-7B scanner (11) (inplane resolution of 6 mm, axial resolution
of 10 mm) at the Laboratory of Neurosciences at the National
Institute on Aging, National Institutes of Health, Bethesda, Mary-
land (12). At both sites, the patients used in these studies had been
diagnosed with ‘‘probable AD”’ according to NINCDS-ADRDA
criteria (13). Table 1 summarizes the composition of the two
experimental groups.

PET scans for both PETT V and Scanditronix subjects were
obtained in the “‘resting state” (in a quiet, darkened room with

eyes and ears occluded). Both procedures involved injection of
approximately 5 mCi of ['®F]FDG, and both involved the use of
head-positioning devices.

In the PETT V procedures, ‘“arterialized’’ venous blood was
collected in order to measure plasma radioactivity and glucose
(14). Regional cerebral metabolic rate of glucose (rCMRgic) val-
ues were calculated using standard rate constants, a lumped con-
stant of 0.42 and an operational equation (15). A contour-based
attenuation correction procedure was performed. Data were col-
lected for 67 ROIs in the brain using previously-published meth-
ods (16). For each region, the average metabolism in mg/100 g/min
was determined. Values for certain regions were appropriately
averaged to provide values for the 25 ‘‘lobules’’ shown in Table 2
and for 4 bilateral lobar regions (frontal, parietal, temporal and
occipital).

In the Scanditronix procedures, arterial blood was sampled in
order to measure plasma radioactivity and glucose (12). The op-
erational equation of Brooks et al. (I7) was used to estimate
rCMRglc using a lumped constant of 0.42 (18). Transmission
scans, performed prior to the injection of FDG, were used to
perform attenuation correction. ROI procedures are described by
Kumar et al. (12). For classification studies, small structures from
the Scanditronix database were combined to obtain regional rep-
resentations equivalent to those of the PETT V data at both
lobular and lobar levels.

For quantitative analyses, subjects were thus represented by

TABLE 2
Identification of Regions Used in Lobule-Level Experiments
Region
numbers Region(s)
1,2 Right, left prefrontal
34 Right, left premotor
56 Right, left orbitofrontal
78 Right, left motor-sensory
9,10 Right, left superior parietal
11,12 Right, left inferior and medial parietal
13,14 Right, left occipital
15,16 Right, left superior temporal
17,18 Right, left mid-temporal
19,20 Right, left medial temporal
21,22 Right, left middie gray (Basal ganglia, thalamus)
23,34 Right, left cerebellum
25 Paracentral
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their regional metabolic patterns. These n-dimensional vectors
(n = 8 for lobar representations, n = 25 for lobular representa-
tions) served as inputs when training and testing the classifiers.
Classification performances were evaluated on the basis of rela-
tive operating characteristics (ROC) analyses (19,20), in which the
area under the ROC curve was used as the figure of merit. The
ROC area measures a diagnostic system’s performance at several
different settings of the decision criteria, and is a more complete
representation of a diagnostic system’s performance than, for
example, the report of a single pair of sensitivity and specificity
values. Classification performances within each of the two data-
bases were evaluated for both lobular and lobar representations
for various methods of classification and data preprocessing.

Classifiers were evaluated by cross-validation studies similar to
those described in our earlier work (8). In order to make the
cross-validation results as general as possible (i.c., to reduce the
results’ dependence on any special properties of a particular com-
bination of training and testing sets), different cross-validation
configurations were used for each experiment. To create training
and testing sets, normal subjects were randomly apportioned into
two groups, as were the abnormal subjects. Either of the normal
groups could be paired with either of the abnormal groups to form
a training set, with the remaining subjects forming an independent
set used for testing. Since training and testing sets could be inter-
changed, this resulted in four unique ways to perform cross-
validation for each experiment. For neural-network experiments,
training was repeated 20 times for each configuration, each time
with random network initialization in order to eliminate any po-
tential bias attributable to particular initial conditions. Each ROC
value reported for neural network performance was thus the mean
value of ROC results for 80 experiments (20 for each of four
cross-validation configurations). “Within-database”’ cross-valida-
tion was performed for most of the experiments, i.e., training and
testing sets were created from the subjects within one database.
For some of the experiments, networks were either trained with
patterns from both databases or were trained with patterns from
one database and tested on patterns from the other. In all such
cases, however, testing sets were kept strictly independent of
training sets.

Neural network training was performed using back-propaga-
tion techniques described elsewhere (8,21,22). The regional met-
abolic patterns of all members of the training sets (resulting from
ROI analyses of normal and AD PET scans) were repeatedly
presented at the input layer. For each presentation, networks
“‘learned” by comparing the calculated value of the output unit
with the predetermined target values for the given pattern and
then adjusting the internal weights so that the calculated outputs
would be closer to the target values. Normal subjects were as-
signed a target value of 1.0. Abnormal subjects were assigned
targets in a graded manner, in order to include dementia-severity
information in the training. These targets were based on scaled
Mini-Mental Status Exam scores (23), all of which were obtained
within 30 days of the PET procedure, a period of time during
which changes in mental status would have been minimal.

Once a network was trained in this way, ‘“‘unknown’’ testing
patterns were classified by comparing the network’s output re-
sponse (after presentation of the input pattern) to a numerical
decision threshold. ROC curves were constructed by computing
true-positive and false-positive ratios for a range of output deci-
sion thresholds. Detailed descriptions of the methods for training
and optimization of the networks used in this study are given
elsewhere (7,8,24).
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Classification results for neural networks were compared to
results using discriminant analysis, which were implemented with
SAS statistical software (25), regional metabolic values as inde-
pendent variables and diagnosis as the classification variable. To
cross-validate, the discriminant function obtained for a “‘training
set”” was applied to patterns within a “‘testing set.”” The SAS
procedure employed an optimization strategy which used either
linear or quadratic discriminant analysis, depending on the results
of tests of the intra-class and pooled covariance matrices (26).
ROC curves were constructed by choosing a range of prior prob-
abilities (from 0 to 1) for the discriminant procedure.

Several different methods were used to preprocess the data,
each of which preserved certain aspects of the data’s information
content while eliminating others. Posthoc analyses of the classi-
fication results for different preprocessing methods thus allowed
assessments of the relative importances of the different types of
information present. The first method was simple scaling by a
constant. This was necessary to avoid ‘“saturation’” of the transfer
function used in the neural networks’ processing units. Each
value in the numerical representations was divided by 15.0, which
scaled the maximum values to approximately unity. It is impor-
tant to note that this operation (equivalent to representing the
same data with different units) did not affect the covariance struc-
ture of the datasets—absolute metabolism information was re-
tained. A second preprocessing method involved removal of the
mean value from each pattern (the mean value of each n-dimen-
sional pattern was subtracted from each of the n dimensions).
Two additional preprocessing methods were used: global normal-
ization, i.e., division of each value by the subject’s global metab-
olism; and occipital normalization, i.e., the division of each value
by that of the (assumedly unaffected) occipital region (3). The
different methods of normalization have different implicit assump-
tions: removal of mean values would be expected to decrease the
influence of spurious effects (noise) which were additive in nature,
whereas normalization of data by division would be expected to
counteract multiplicative noise. All but the first preprocessing
method, however, affected the covariance structure of the data,
removing any references to absolute metabolism.

Posterior ““probabilities of disease” were calculated by employ-
ing concepts from Bayesian theory and information theory. Classi-
fication at the point of maximum “‘information content’ on a given
ROC curve (27) yielded an effectively dichotomous test with a
specified sensitivity and specificity, and the conditional probability
of disease, given the results of this classification and a specified prior
probability, was calculated from Bayesian theory (28).

Methods to extract discriminating profiles from trained neural
networks are described elsewhere (7). Briefly, weight vectors
from many different trained networks were subjected first to anal-
yses of sensitivity and orientation and then to clustering analyses
to describe, on a probabilistic basis, the regions in the weight-
vector space which represented the most important discriminating
profiles.

RESULTS

Figures 1 and 2 illustrate the mean pattern vectors for
the two subject groups within each database. Mean values
of CMRglc are plotted by region, with a two-standard-
deviation range shown (high = mean + 1s.d., low = mean
— 1 s.d.). Figure 1 shows the mean pattern vectors for
lobar representations, while Figure 2 shows the mean vec-
tors for lobular representations. At both levels of represen-
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FIGURE 1. Mean regional metabolism in the four bilateral lobes
of the brain (right and left frontal, parietal, temporal and occipital)
within normal and abnormal groups for (a) PETT V subjects and (b)
Scanditronix subjects. A 2 s.d. range is shown (high = mean + s.d.,
low = mean — s.d.). There was a larger degree of overiap between
normal and abnormal groups in the PETT V group than was present
between the normal and abnormal groups in the Scanditronix group.
These visible differences were confirmed by the classification exper-
iments.

tation, it is evident that there was a much larger degree of
overlap between the normal and abnormal groups in the
PETT V database than was present between the normal
and abnormal groups in the Scanditronix database. These
visible differences were confirmed by classification exper-
iments. When subjects were classified strictly according to
global metabolism, the ROC area for Scanditronix data was
0.90 in comparison to 0.60 for PETT V data.
Optimization experiments indicated the use of four hid-
den units at both levels of representation. Thus, the net-
works used for classification were either 8-4-1 networks
(for lobar representations) or 25-4-1 networks (for lobular
representations). Figure 3 shows ROC curves for neural
networks applied to the PETT V data at lobar and lobular
levels for two different methods of preprocessing: simple
scaling (which preserved absolute metabolic information)
and occipital normalization. As this figure shows, the high-
est ROC area was attained for a lobular representation

10

FIGURE 2. Mean regional metabolism, according to “lobule”
(see Table 2 for lobule identification) within normal and abnormal
groups for (a) PETT V subjects and (b) Scanditronix subjects. As in
Figure 1, one can observe the larger degree of overlap between
normal and abnormal groups in the PETT V group than that ob-
served between the normal and abnormal groups in the Scanditronix
group.

using occipital-normalized data, while simply-scaled lobar
data resulted in the lowest performance.

Figure 4 shows equivalent ROC curves for neural net-
works applied to the Scanditronix data. For this database,
maximum ROC area was achieved with lobular data (with
approximately equal performances for both types of pre-
processing), while occipital-normalized lobar data gave the
lowest performance. Neural-network classification results
for both databases and for all preprocessing methods are
summarized in Table 3. Small variations in these ROC
values were highly significant. T-tests indicated that differ-
ences in ROC area of 0.02 were significant (p = 0.005).

Figure 5 illustrates ROC curves which compare the per-
formances of neural networks and discriminant analysis for
particular datasets. For Scanditronix lobular data, the per-
formances of neural networks and discriminant analysis
were approximately equal; for PETT V lobular data, the
performance of neural networks was somewhat higher than

The Jounal of Nuclear Medicine ® Vol. 35 ¢ No. 1 * January 1994
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FIGURE 3. ROC curves illustrating classification performance for
neural networks applied to the PETT V data at lobar and lobular
levels for two different methods: simple scaling (which
preserved absolute metabolic information) and occipital normaliza-
tion. The highest ROC area was attained for a lobular representation
using occipital-normalized data, whereas simply scaled lobar data
resulted in the lowest performance. The curves in Figures 3 and 4
are averages of ROC curves from 80 trials (20 trials for each of four
cross-validation configurations).

that of discriminant analysis. Classification performances
for discriminant analysis are summarized in Table 4.

Table 5 summarizes the results of experiments which
investigated the extent to which neural networks could
identify groups in one database after being trained with sets
that included subjects from the other database. These ex-
periments were conducted with occipital-normalized data.
At the lobar level, all between-database, cross-validation
tests yielded ROC areas that were within 0.02 units of the
corresponding results from the last column of Table 3. At
the lobular level, this was true only when testing with
Scanditronix subjects after training with a mixture of PETT
V and Scanditronix subjects. The between-database per-
formances when testing on lobular PETT V data, in par-
ticular, were much lower than the corresponding result
(A = 0.87) from Table 3.

Figures 6 and 7 illustrate the most important and general-
izable discriminating profiles learned by the neural networks.
The profiles in both figures were learned during “‘between-
database™ experiments corresponding to results from the
second row of Table 5. The two lobar profiles in Figure 6 are
similar in that they both have relatively low values for pari-
etal and temporal lobes, particularly for parietal lobes. In
particular, the first profile emphasizes low values in the left-
parietal region, whereas the second gives approximately
equal weights to both parietal lobes. The major features of
the two lobular profiles in Figure 7 are: generally low values
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FIGURE 4. ROC curves illustrating classification performance for
neural networks applied to the Scanditronix data at lobar and lobular
levels for two different preprocessing methods: simple scaling and
occipital normalization. For this database, maximum ROC area was
achieved with lobular data (with approximately equal performances
for both types of preprocessing), whereas occipital-normalized lobar
data gave the lowest performance.

in the parietal (regions 9-12) and temporal (regions 15-18)
regions combined with consistently higher values in the mo-
tor-sensory (regions 7 and 8) and occipital regions (regions 13
and 14). The first profile shows consistent asymmetries
(right-side coefficients higher than left-side coefficients) in the
frontal, temporal and parietal regions, whereas the second
profile shows asymmetries in the opposite direction (left-side
coefficients higher than right-side coefficients) in the parietal
and temporal regions.

DISCUSSION

The results of this work illustrate that PET can be a
powerful tool for discriminating between normal and de-
mented subjects. The ROC area values presented here can
be compared with values from the literature (19) which
describe the diagnostic performances of various medical
imaging techniques, such as the detection of brain lesions
on CT (A = 0.97) and on radionuclide scanning (A = 0.87)
and the detection of adrenal disease (0.93 for CT, 0.81 for
ultrasound). The highest ROC area of the PET-neural-
network combination was 0.95, which compares well with
these values and supports similar performances shown by
Friedland et al. (29) for a similar subject group.

Some general trends were immediately apparent. First,
classification performance for Scanditronix data was gen-
erally higher than that for PETT V data. As seen from

1



TABLE 3
Summary of Neural-Network Classification Performances for Various Data Representation Methods Using Two Different

PET Databases
Data preparation method
Simple scaling Global Occipital
Data/Representation (Absolute metab.) Mean removal normalization normalization
PETT V/Lobes 0.78 0.78 0.80 0.80
PETT V/Lobules 0.81 0.84 0.87 0.87
Scanditronix/Lobes 0.91 0.86 0.86 0.86
Scanditronbx/Lobules 0.95 0.94 0.95 0.95

Table 4, ROC areas for corresponding experiments were
from 0.06 to 0.13 higher for Scanditronix data than for
PETT V data. The difference between the respective levels
of highest performance was 0.08 (A = 0.87 versus A =
0.95). By comparing Tables 3 and 4, it is also evident that
the performance of neural-networks was generally higher
than that of discriminant analysis, with the two exceptions
of mean-removed and occipital-normalized lobule-level
Scanditronix data. The ability of the neural-network clas-
sifiers to form nonlinear and nonparametric decision
boundaries apparently allowed it to be generally more ro-
bust for these classification problems.

The strength of the cross-validation method is that it
indicates the degree to which a classification system is able
to generalize, i.e., to apply learned ““classification rules”
to previously unseen data. The backpropagation neural
network, a highly adaptive classifier, places much of the
burden for determining generalization ability on the train-
ing data. The ease by which disease “‘signals’ were de-
tected depended on the manner of representation, as illus-
trated in Table 3, where the interactive effects of variations
in representation level (lobar versus lobular) and prepro-
cessing method for each of the two databases can be seen.

Examination of the first row of Table 3 shows that the
classification performances for PETT V lobar data with
either global or occipital normalization were slightly higher
than performances with either simple scaling or mean re-
moval. This trend also held true for PETT V lobular data,
with the difference that performance for mean removal,
although lower than performances for normalization, was
higher than that for simple scaling. The results with both
lobar and lobular data affirm previously published obser-
vations (8) that absolute metabolic information for this data
did not contain important discriminating information. The
results also indicate that normalization by division (with
the intention of removing multiplicative noise) may have an
advantage over mean removal (intended to combat addi-
tive noise).

The trends for Scanditronix data had important similar-
ities and important differences compared to those for
PETT V data. Performances for Scanditronix lobar data
with either mean removal or normalization were lower than
the performance with simple scaling. These results are
intuitively consistent with the plots shown in Figures 1 and
2, which show that the distributions of mean values for

12

Scanditronix data demonstrate greater separation between
classes than is the case for PETT V data, and are also
consistent with the separation between classes demon-
strated by Kumar et al. (12) for Scanditronix data from a
similar subject group. One of the most likely reasons for
disparity between databases is the difference in methods
for blood collection. ‘‘Arterialized”” venous blood curves
are reportedly less reliable than those from arterial mea-
surements (30-32) and variability in the PETT V blood
curves would have translated directly into increased noise
in the ROI data. This said, it is interesting to note that the
apparent importance of absolute metabolism in the lobar
Scanditronix data did not hold true for lobular data. For
these experiments, the performance for normalized data
(containing no information about absolute metabolism)
equaled that for data which contained absolute metabolic
information.

The results with both PETT V and Scanditronix data-
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FIGURE 5. ROC curves illustrating and comparing the perfor-
mances of neural networks and discriminant analysis. For Scan-
ditronix lobular data, the performances of neural networks and dis-
criminant analysis were approximately equal, whereas for the more
difficult problem of separating normalized lobular PETT V data, the
performance of neural networks was significantly higher than that of
discriminant analysis.
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TABLE 4
Summary of Discriminant-Analysis Classification Performances for Various Data Representation Methods Using Two Different
PET Databases

Data preparation method Simple scaling Global Occipital
data/representation (Absolute metab.) Mean removal normalization normalization
PETT V/Lobes 0.74 0.75 0.79 0.79
PETT V/Lobules 0.7 0.72 0.74 0.7
Scanditronix/Lobes 0.868 0.83 0.84 0.83
Scanditronby/Lobules 0.84 0.95 0.88 0.95

bases indicate that the lobular representation is probably
more appropriate for the detection of dementia. Although
classification problems in 25-dimensional space are inher-
ently more difficult than those in 8-dimensional space, the
value of this type of representation over the lobar repre-
sentation was apparently high enough to overcome the
increased difficulties associated with classifying patterns in
such a higher-dimensional space.

Altogether, the results serve to elucidate the relative
contributions of two components of the discriminating in-
formation obtained in these PET studies, i.e., the overall
absolute metabolism, and the multivariate patterns of rel-
ative regional metabolism. The performance using overall
metabolism without pattern information (A = 0.90) was
higher than that achieved with normalized Scanditronix
lobar patterns (A = 0.86), and performance for lobar pat-
tern data that included absolute metabolic information was
higher (A = 0.91) than that for normalized data, indicating
that absolute metabolism was able to contribute important
discriminating information at the lobar level. However, the
performance using overall metabolism alone was lower
than that for normalized Scanditronix lobular patterns
(A = 0.95), and performance for lobular data that included
absolute metabolic information was not higher (A = 0.95)
than that for normalized data, which indicates that absolute
metabolism did not contribute any additional discriminat-
ing information at the lobular level. The net implication is
that reduction of variability was of overriding importance.
The reduction of variability in ROI data due to the higher
resolution of the Scanditronix camera, combined with that
resulting from normalization of the lobular data, apparently

TABLE 5
Summary of Neural-Network Classification Performances for
Between-Database Cross-Validation
Representation
Training set
Testing set Lobe Lobule
PETT V/Scand. 0.85 0.90
PETT V + Scand./Scand. 0.84 0.94
Scand /PETT V 0.80 0.70
PETT V + Scand./PETT V 0.81 0.76

All tests were conducted with occipital-normalized data.
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improved the representations to the point that, for a mul-
tivariate approach, they contained as much discriminating
information as did representations which contained abso-
lute metabolic information.

The finding that absolute quantification may not neces-
sarily be vital for the detection of disease appears to be
compatible with the findings of Strother et al. (6), who
reached a similar conclusion after examining measures of
group discrimination for patients with acquired immune
deficiency syndrome dementia complex. These results im-
ply that, with regard to the detection of memory disorders,
efforts to improve image resolution may be at least as
deserving of attention as those focusing on absolute quan-
tification of metabolism. Such considerations may have
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FIGURE 6. The most important and generalizable discriminating
profiles leamed by neural networks during lobe-level training with
subjects from both PET databases. Coefficients are plotted for right
and left frontal, parietal, temporal and occipital lobes. The two pro-
files are similar in that they both have relatively low values for parietal
and temporal lobes, particularly for parietal lobes. The first profile
more strongly emphasizes low values in the left-parietal region, while
the second gives approximately equal weights to both parietal lobes.
Although these admittedly oversimplify the role of
these profiles in the neural network classification process, they do
provide an intuitive indication of the basis on which classification
“decisions” were made, which show that neural networks incorpo-
rated and combined some features “typical” of Alzheimer’s disease.
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FIGURE 7. The mostimportant and generdizable discriminating

profiles are: genemllylmvaluesinmepaﬂetal(regimss-m)and
temporal (regions 15-18) regions combined with consistently higher
values in the motor-sensory (regions 7 and 8) and occipital regions
(regions 13 and 14). The first profile shows consistent asymmetries
(right-side coefficients higher than left-side coefficients) in the frontal,
temporal and parietal regions, whereas the second profile shows
asymmetries in the opposite direction (left-side coefficients higher
than right-side coefficients) in the parietal and temporal regions. The
trained networks thus identified either type of asymmetry as an
indicator of abnormality.

implications for the application of quantitative classifica-
tion techniques to both current and future metabolic imag-
ing modalities.

The results highlighted in Figure 5 appear to confirm that
the ability of neural networks to employ multiple discrim-
inating surfaces allowed it to outperform discriminant anal-
ysis for the difficult problem of separating groups for nor-
malized lobular PETT V data. The separation of groups for
Scanditronix data was apparently accomplished with a sin-
gle discriminating surface, allowing discriminant analysis
to perform at the level of neural networks.

It is apparent from the results of Table 5 that it is pos-
sible to successfully combine normalized data from differ-
ent databases. The major exception to this was training
with Scanditronix data and testing with PETT V data at the
lobule level. The PETT V lobular data apparently served as
a fairly good training set for testing on Scanditronix lobular
data, but the reverse was not true. Presumably, this oc-
curred because the PETT V data was the noisier of the two
sets of data; training with this data would have yielded an
“expanded” decision region compared to the decision re-
gion resulting from training with the Scanditronix data.
Better performance would be expected by training with
noisier data and testing on the less noisy data than by
performing the reverse experiment. It should be noted that
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any recommendations based on these experiments apply
only to normalized data from the two databases and not to
data based on absolute metabolism.

The classification methods shown here can be used to
influence a diagnostic decision based on Bayesian theory.
For example, classification at the point of maximum infor-
mation on the ROC curve for normalized Scanditronix
lobular data resulted in a sensitivity of 90% with a corre-
sponding specificity of 89%. Given a patient with mild
cognitive impairment, where the diagnosis of AD was un-
certain, corresponding to a prior probability of 50%, then a
positive classification at this point on the ROC curve would
yield a post-test probability of disease of 90% (strongly
confirming the presence of abnormality), while a negative
classification would give a post-test probability of 10%
(strongly ruling out abnormality). The corresponding post-
test probability values for normalized PETT V lobular data
were 87% (for a positive classification) and 24% (for a
negative classification).

Although the representations of discriminating profiles
in Figures 6 and 7 admittedly oversimplify the role of these
profiles in the neural network classification process, they
do serve to provide an intuitive indication of the basis on
which classification ‘‘decisions’ were made. They show
that the neural networks incorporated and combined fea-
tures thought to be ““typical’’ of Alzheimer’s disease. In-
terested readers may contact the primary author to obtain
complete quantitative descriptions of networks trained
with subjects from both databases.

These profiles represent discriminating “‘surfaces”
which roughly define directions (in n-dimensional pattern
space) of increasing severity of dementia. This interpreta-
tion of the profiles is consistent with results shown by
Kumar et al. (12) for normalized data. They found mainly
parietal deficiencies in ‘“‘mild”’ dementia; parietal, temporal
and premotor deficiencies in ‘“‘moderate’’ cases; and wide-
spread involvement in severe cases. In addition, the pro-
files emphasizing ‘‘left-side-low’> asymmetry are consis-
tent with profiles from our previous work (8) and with
published reports of predominantly left-side deficits (10)
for similar subject groups. The fact that the two profiles in
Figure 7 incorporated asymmetries of opposite directions
in the parietal and temporal regions indicates that the
trained network identified either type of asymmetry as an
indication of abnormality. It should be noted that typical
analyses comparing normal to abnormal groups based on
mean trends would have great difficulty recognizing such a
situation, since the presence of both types of asymmetry in
one group would cancel each other out on a mean basis.

In summary, analyses of these results indicate that the
combination of PET and neural networks performed well
in discriminating normal from AD subjects. The increased
spatial resolution of the Scanditronix camera apparently
allowed a net increase in signal-to-noise ratio of the lobule-
level ROI data, which resulted in improved classification
performance. Absolute quantification of metabolism was
shown to contain discriminating information, but classifi-
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cation performance for lobule-level data was not improved
by including this information. These results indicate that
the maturation of PET technology over the last few years
has improved its clinical research value in the diagnosis of
dementia. The results also indicate that PET data obtained
with ““first generation’” cameras may have value as training
data, despite (or perhaps even because of) the fact that they
may contain greater variability. The above findings could
not have been confirmed intuitively. They provide direc-
tions for future investigations employing PET in the study
of dementia. These results show that it should be possible
to share metabolic data from different scanners and insti-
tutions to develop an extensive ‘‘knowledge’” base of met-
abolic patterns. This would greatly enhance the utility of
metabolic neuroimaging by using it to predict disease prob-
abilities based on a metabolic profile obtained in a given
clinical situation.
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