
the diagnosis of organic disease. Although in a large per
centage of cases the diagnostic decisions based on these
procedures are rather obvious, there are cases in which
follow-up studies may be necessary to enable an accurate
diagnosis, especially those involving distinctions between
dementiaand psychiatricdisordersor normalaging. It is in
these difficult cases that functional neuroimaging such as
PET may be able to make an immediately valuable diag
nostic contribution.

Quantitativetechniques used to analyze PET scans are
generally based on region of interest (ROI) analyses (1â€”5).
The quantitativerepresentations resulting from ROI anal
yses can be used as the basis of a system to objectively
characterize PET scans as either normal or abnormal.
Strotheret al. (6) note that much of the research involving
PET is directed toward improving the performance of par
ticular links in the chain of highly complex data transfor
mations that result in regional metabolic representations.
The authorsemphasize the importanceof evaluatingthese
advances in PET technology based on the degree to which
they enhance PET's ability to detect disease. One impor
tant improvement over â€œfirstgenerationâ€•PET cameras
has been higher spatial resolution, which enhances the
ability to accurately identify anatomical regions and re
duces partial-volume effects.

The selection of a method or set of methods to be used
for objectively measuring the diagnostic impact of these
factors is important, since the choice of methods can
greatly affect the outcome of a comparison. A particular
type of classifier may be better suited for a normally dis
tributed set of data than for a non-normally distributed set,
for example, even thoughthe â€œdiagnosticinformationcon
tentâ€•of the two sets may be the same.

In a pattern recognition setting, â€œsignalsâ€•of interest
must often be detected in the presence of â€œnoiseâ€•and/or
missing information. In the production of regional meta
bolic data using PET, any of the several â€œlinksâ€•in the PET
data chain represent potential sources of noise. Some
sources, such as patient movement or problems with blood

Neural-networkclassfficationmethodswere apd to studiesof
FDG-PETimagesofthebrainacquiredfroma totalof77â€œprOb
ableâ€•Alzheimer'sdiseaseand124normalsubjectsat twodif
ferent centers. Methods: Classificationperformances,as deter
mined by relative-operaling-characterlstic(ROC) analyses of
cross-validationexpedments,weremeasuredfor FDGPETim
ages obtained w@ alther a 15-mm FWHM PEIr V or a 6-mm
FWHMScandftronlxPC-1024-7Bcameraforvahousmethodsof
data representation.Neuralnetworkswere trainedto distinguish
betweennormal and abnormalsubjectson the basisof re@onal
metabolicpatterns.For both databases,classificationparlor
mance could be improved by increasingthe â€œresolutionâ€•of the
representation(decreasingthe region size) and by normalizing
the regionalmetabolicvaluesto thevalueofa referenceregion
(occipital region). Results: The optimal classification parlor
mancefor Scanditronbcdata (ROCarea = 0.95)was higherthan
that for PEU V data (ROC area = 0.87). Under Bayesisn
theory,the classificationperformancewithScandftronixdatacor
respondedto an abilityto changea pre-testprobabilityof dis
ease of 50% to a post-testprobabilityof either90%for a positive
dassificatlon or 10% for a negativeclassification.Conclusion:
ThisclasSificatiOncanbeusedto eitherstronglyconfirmor rule
out the presenceof abnormalities.

Key Words: neural networlÃ§AWielmer's disease; fluorode
oxyglucose
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he diagnosis of a dementiasuch as Alzheimer's disease
(AD) may involve neurologicalexams, neuropsychological
testing, anatomical neuroimaging (x-ray computed tomog
raphy or magnetic resonance imaging) and other laboratory
tests. Each of these modalities can be expected to contrib
ute a certain amount of unique information with respect to
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PET1â€¢ V subjectsScanditrOnIXsubjectsâ€¢â€˜Proba@e

ADâ€•subjectsN4133Age70.9

Â±8.8(range:53-93)65.8 Â±9.5(range:44-88)Mini-Mental
Status Exam15.0 Â±7.315.1 Â±8.6&@reGender(M,F)21,2020,13Age-Equ@ialent

normalcontrolsN5074Age67.7Â±8.9(range:50-84)61.6Â±10.8(range:45â€”90)Gender

(M,F)25,2534,40

RegionnumbersRegion(s)I

,2Right leftprefrontal3,4Rlght@
leftpremotor5,6RIght
leftorbitofrontal7,8Right
leftmotor-sensory9,10RIght@
left superiorparletal1

1,12Right left inferiorand medialpatietal13,14R@ht@Ieftoccipital15,16RIght@

left superiortemporal17,18Right
leftmid-temporal19,20Right@
leftmed@temporal21

,22R@h1 left middlegray (Basalgangila,thalamus)23,34RIght
leftcerebellum25Paracentral

TABLE 1
Compositionof Subject Groups Used in ClassificationPerformanceTesting

collection or attenuation correction, are intrinsic to the
PET acquisition process, while others, such as inaccura
cies in anatomical ROl location, result from postacquisi
tion analysis.

We have previously demonstratedthat neuralnetworks
can be trained, on the basis of quantitativeregional repre
sentations, to classify fluorodeoxyglucose (FDG) PET
scans with an accuracy comparable to that of an expert
PET reader (7,8). We describe here the application of
neural networks to FDG-PET data acquiredwith two dif
ferent PET cameras from patients with AD and from age
equivalent normal subjects, with particularemphasis on
the diagnostic value associated with recent advances in
PET technology. Diagnostic significance was determined
directly by evaluating cross-validation classification perfor
mances for given conditions. The objectives of the hives
tigation were:

1. To enable the formationof recommendations for op
timizing the representation and analysis of PET data
for the diagnosis of AD.

2. To demonstrate and compare the optimal ability of
PET to discriminatebetween normalandAD subjects
with the two cameras.

3. To determine the most generally applicable metabolic
profiles that discriminate normal from AD subjects.

MATERIALS AND MEIHODS

NormalandAD subjectswho underwentFDO-PETstudies
with a PE'VF V scanner (9) (inpiane and axial image resolution of
15 mm) were recruited for brain imaging studies at the Wien
Center, Mount Sinai Medical Center, Miami Beach. Recruiting
proceduresare describedindetailelsewhere(10).A secondgroup
of normaland AD subjectswere studiedwith a ScanditronixPC
1024-7Bscanner(11)(inpianeresolutionof6 mm,axialresolution
of 10 mm) at the Laboratory of Neurosciencesat the National
Instituteon Aging,NationalInstitutesofHealth, Bethesda,Mary
land (12). At both sites, the patients used in these studies had been
diagnosedwith â€œprobableADâ€•accordingto NINCDS-ADRDA
criteria (13). Table 1 SUmmariZeSthe compositionof the two
experimental groups.

PETscansforbothPETFV andScanditronixsubjectswere
obtained in the â€œrestingstateâ€•(in a quiet, darkened room with

eyes and ears occluded). Both procedures involved injection of
approximately 5 m@ of [l8fl}@1yJ, @dboth involved the use of
head-positioningdevices.

In the PE'VFV procedures,â€œarterializedâ€•venousbloodwas
collected in order to measure plasma radioactivityand glucose
(14). Regional cerebral metabolic rate of glucose (rCMRglc) val
ues were calculated using standard rate constants, a lumped con
stant of 0.42 and an operationalequation (15). A contour-based
attenuationcorrectionprocedurewas performed.Datawere cot
lectedfor67 ROISin thebrainusingpreviously-publishedmeth
ods(16). For eachregion,the averagemetabolisminmg/lOOg/min
was determined. Values for certain regions were appropriately
averagedto providevaluesforthe25â€œlobulesâ€•showninTable2
and for 4 bilateral lobar regions (frontal, parietal, temporal and
occipital).

In the Scanditronixprocedures,arterialbloodwas sampledin
order to measure plasma radioactivity and glucose (12). The op
erational equation of Brooks et at. (17) was used to estimate
rCMRglcusing a lumped constant of 0.42 (18). Transmission
scans, performed prior to the injectionof FDO, were used to
performattenuationcorrection.ROIproceduresare describedby
Kumar et al. (12). For classification studies, small structures from
the Scanditronixdatabasewere combinedto obtain regionalrep
resentations equivalent to those of the PET!' V data at both
lobularandlobarlevels.

Forquantitativeanalyses,subjectswere thusrepresentedby

TABLE 2
Identificationof RegionsUsedin LObule-LevelExpetiments
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their regional metabolic patterns. These n-dimensional vectors
(n = 8 for lobar representations, n = 25 for lobularrepresents
tions) served as inputs when trainingand testing the classifiers.
a@ification performanceswere evaluatedon the basis of rela
tive operating characteristics (ROC) analyses (19,20), in which the
area under the ROC curve was used as the figure of merit. The
ROC area measures a diagnostic system's performance at several
different settings of the decision criteria, and is a more complete
representation of a diagnostic system's performance than, for
example, the report of a single pair of sensitivity and specificity
values. O@ification performances within each of the two data
bases were evaluated for both lobular and lobar representations
for various methodsof classificationand data preprocessing.

a@ifiers wereevaluatedbycross-validationstudiessimilarto
those described in our earlier work (8). In order to make the
cross-validationresults as generalas possible(i.e., to reduce the
results'dependenceonanyspecialpropertiesofaparticularcom
bination of training and testing sets), different cross-validation
configurationswere used for each experiment.To create training
and testingsets, normalsubjectswere randomlyapportionedinto
two groups, as were the abnormal subjects. Either of the normal
groupscouldbe pairedwitheitherofthe abnormalgroupsto form
atrainingset,withtheremainingsubjectsforminganindependent
set used for testing. Since training and testing sets could be inter
changed, this resulted in four unique ways to perform cross
validation for each experiment. For neural-network experiments,
trainingwas repeated 20 times for each configuration,each time
with random network initializationin order to eliminateany po
tentialbias attributableto particularinitialconditions.Each ROC
valuereportedforneuralnetworkperformancewas thus the mean
value of ROC results for 80 experiments (20 for each of four
cross-validationconfigurations).â€œWithin-databaseâ€•cross-valida
tion was performedfor most of the experiments, he., trainingand
testingsets were created from the subjectswithinone database.
For some of the experiments,networkswere either trainedwith
patterns fromboth databasesor were trainedwith patterns from
one database and tested on patterns from the other. In all such
cases, however, testing sets were kept strictly independent of

trainingsets.
Neural network trainingwas performedusing back-propaga

tion techniques described elsewhere (8@21,22).The regionalmet
abolicpatternsof allmembersof thetrainingsets(resultingfrom
ROl analyses of normal and AD PET scans) were repeatedly
presentedat the input layer. For each presentation,networks
â€œlearnedâ€•by comparingthe calculated value of the output unit
with the predeterminedtarget values for the given pattern and
then adjustingthe internalweights so that the calculated outputs
would be closer to the target values. Normal subjects were as
signed a target value of 1.0. Abnormal subjects were assigned
targets in a graded manner, in order to include dementia-severity
information in the training. These targets were based on scaled
Mini-Mental Status Exam scores (23), all of which were obtained
within 30 days of the PET procedure, a period of time during
whichchangesin mentalstatus would have been minimal.

Once a network was trained in this way, â€œunknownâ€•testing
patterns were classified by comparing the network's output re
sponse (after presentation of the input pattern) to a numerical
decision threshold. ROC curves were constructed by computing
true-positive and false-positive ratios for a range of output dcci
sion thresholds. Detailed descriptions of the methods for training
and optimization of the networks used in this study are given
elsewhere (7,824).

a@thcation results for neural networks were compared to
resultsusingdiscriminantanalysis,whichwere implementedwith
SAS statistical software (25), regional metabolic values as mdc
pendent variables and diagnosis as the classification variable. To
cross-validate, the discriminant function obtained for a â€œtraining
setâ€•was applied to patterns within a â€œtestingset.â€•The SAS
procedureemployedan optimizationstrategy which used either
linearor quadraticdiscriminantanalysis,dependingon the results
of tests of the intra-class and pooled covariance matrices (26).
ROC curves were constructed by choosing a range of prior prob
abilities (from0 to 1) for the discriminantprocedure.

Several different methods were used to preprocess the data,
each ofwhichpreservedcertainaspectsof the data's information
content while eliminatingothers. Posthoc analysesof the classi
ficationresults for differentpreprocessingmethods thus allowed
assessmentsof therelativeimportancesof thedifferenttypesof
informationpresent. The first method was simple scalingby a
constant. This was necessary to avoid â€œsaturationâ€•of the transfer
function used in the neural networks' processing units. Each
valuein the numericalrepresentationswas dividedby 15.0,which
scaled the maximumvalues to approximatelyunity. It is impor
tant to note that this operation (equivalentto representingthe
samedatawithdifferentunits)didnot affectthe covariancestruc
ture of the datasetsâ€”absolutemetabolisminformationwas re
tamed. A second preprocessingmethod involvedremovalof the
meanvalue fromeach pattern (the meanvalue of each n-dimen
sional pattern was subtracted from each of the n dimensions).
Two additional preprocessing methods were used: global normal
ization, i.e., division of each value by the subject's global metab
olism; and occipital normalization,i.e., the division of each value
by that of the (assumedly unaffected) occipital region (3). The
differentmethodsofnormalizationhavedifferentimplicitassump
tions:removalof meanvalueswouldbe expectedto decreasethe
influence of spurious effects (noise) which were additive in nature,
whereas normalizationof data by divisionwould be expected to
counteract multiplicativenoise. All but the first preprocessing
method, however, affectedthe covariancestructure of the data,
removingany referencesto absolutemetabolism.

Posterior â€œprobabilitiesof diseaseâ€•were calculated by employ
ing concepts from Bayesian theory and information theoty. a@ai
fication at the point of maximum â€œinformationcontentâ€•on a given
ROC curve (27) yielded an effectively dichotomous test with a
specified sensitivity and specificity, and the conditional probability
ofdisease,giventheresultsofthisclassificationanda specifiedprior
probability, was calculated from Bayesian theory (28).

Methodsto extract discriminatingprofilesfromtrained neural
networks are described elsewhere (7). Briefly, weight vectors
from many different trained networks were subjected first to anal
yses of sensitivity and orientation and then to clustering analyses
to describe, on a probabilisticbasis, the regions in the weight
vectorspacewhichrepresentedthe mostimportantdiscriminating
profiles.

RESULTS
Figures 1 and 2 illustrate the mean pattern vectors for

the two subject groups within each database. Mean values
of CMRg1c are plotted by region, with a two-standard
deviation range shown (high = mean + 1 s.d., low = mean
â€” 1 s.d.). Figure 1 shows the mean pattern vectors for

lobar representations, while Figure 2 shows the mean vec
tors for lobular representations. At both levels of represen

NeuralNetWOrkClassificationPerformanceâ€¢Kippenhanat al. 9
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FIGURE 1. Meanregionalmetabolisminthefourbilateraliobes
of the brain(tightandleftfrontal,pailetal,temporalandoccipital)
withinnormalandabnormalgroupsfor (a)PElT V subjectsand (b)
Scandttronbsubjects.A 2 s.d.rangeisshown(high= mean+ s.d.,
low = meanâ€”s.d.).Therewasa largerdegreeof overlapbetween
normalandabnormalgroupsinthePElT V groupthanwaspresent
betweenthenormalandabnormalgroupsintheScandftrOnbgroup.
Thesevisibledifferenceswereconfirmedbythe classificationexper
iments.

tation, it is evident that there was a much larger degree of
overlap between the normal and abnormal groups in the
PE'VF V database than was present between the normal
and abnormal groups in the Scanditronix database. These
visible differences were confirmed by classification exper
iments. When subjects were classified strictly according to
global metabolism, the ROC area for Scanditronix data was
0.90 in comparison to 0.60 for PEU V data.

Optimization experiments indicated the use of four hid
den units at both levels of representation. Thus, the net
works used for classification were either 8-4-1 networks
(for lobar representations) or 25-4-1 networks (for lobular
representations). Figure 3 shows ROC curves for neural
networks applied to the PElT V data at lobar and lobular
levels for two different methods of preprocessing: simple
scaling (which preserved absolute metabolic information)
and occipital normalization. As this figure shows, the high
est ROC area was attained for a lobular representation

FiGURE 2. Mean regionalmetabolism,accordingto â€œlobuleâ€•
(seeTable 2 for lobuleidentification)within normaland abnormal
groupsfor(a)PEn V subjectsand(b)Scandftronocsubjects.Asin
Figure 1, one can observethe larger degree of overlap between
normaland abnormalgroups in the PEfl V group than that ob
servedbetweenthenormalandabnormalgroupsintheScandltronb
group.

using occipital-normalized data, while simply-scaled lobar
dataresultedin the lowest performance.

Figure 4 shows equivalent ROC curves for neural net
works applied to the Scanditronix data. For this database,
maximum ROC area was achieved with lobular data (with
approximately equal performances for both types of pre
processing), while occipital-normalized lobar data gave the
lowest performance. Neural-network classification results
for both databases and for all preprocessing methods are
summarized in Table 3. Small variations in these ROC
values were highly significant. T-tests indicated that differ
ences in ROC area of 0.02 were significant (p = 0.005).

Figure 5 illustrates ROC curves which compare the per
formances of neural networks and discriminant analysis for
particular datasets. For Scanditronix lobular data, the per
formances of neural networks and discriminant analysis
were approximately equal; for PElT V lobular data, the
performance of neural networks was somewhat higher than
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FIGURE 4. ROCcurvesIllustratingclassificationperformancefor
neuralnetworksappliedtotheScanditronixdataatlobarandlobular
levelsfortwodifferentpreprocessingmethods:simplascalingand
occipitalnormalization.Forthis database,mwdmumROCareawas
achievedwithlobulardata(withapproximatelyequalperformances
for bothtypesof preprocessing),whereasOCcIpitaI-nOrmailzedlobar
datagavethelowestperformance.

in the panietal(regions 9â€”12)and temporal (regions 15â€”18)
regions combined with consistently higher values in the mo
ton-sensory (regions 7 and 8) and occipital regions (regions 13
and 14). The first profile shows consistent asymmetries
(right-side coefficients higher than left-side coefficients) in the
frontal, temporal and panietal regions, whereas the second
profile shows asymmetries in the opposite direction (left-side
coefficients higher than right-side coefficients) in the panietal
and temporal regions.

DISCUSSION

The results of this work illustrate that PET can be a
powerful tool for discriminating between normal and de
mented subjects. The ROC areavalues presented here can
be compared with values from the literature (19) which
descnl,e the diagnostic performances of various medical
imaging techniques, such as the detection of brain lesions
on CF (A = 0.97) and on radionucide scanning (A = 0.87)
and the detection of adrenaldisease (0.93 for CT, 0.81 for
ultrasound). The highest ROC area of the PET-neural
network combinationwas 0.95, which compares well with
these values and supports similarperformancesshown by
Friedland et al. (29) for a similar subject group.

Some general trends were immediately apparent. First,
classification performance for Scanditronix data was gen
erally higher than that for PElT V data. As seen from

FiGURE 3. ROCcurvesillustratingclassificationperformancefor
neuralnetworksappliedto the PElt V data at lobarand lobular
Ievelsfortwo d@erentpreprocessing methods: simple scaling (which
preservedabsolutemetabolicinformation)andoccipitalnonnaliza
tion.ThehighestROCareawasattainedfora lobularrepresentation
usingoccipital-normaJizeddata,whereassimplyscaledlobardata
resultedin the lowestperformance.The curvesin Figures3 and 4
areaveragesofROCcurvesfrom80tilals(20tilalsforeachoffour
cross-validationconfigurations).

that of discriminant analysis. Classification performances
for discriminantanalysis are summarized in Table 4.

Table 5 summarizes the results of experiments which
investigated the extent to which neural networks could
identify groups in one database after being trained with sets
that included subjects from the other database. These ex
periments were conducted with occipital-normalized data.
At the lobar level, all between-database, cross-validation
tests yielded ROC areas that were within 0.02 units of the
corresponding results from the last column of Table 3. At
the lobular level, this was true only when testing with
Scanditronix subjects after training with a mixture of PET].'
V and Scanditronix subjects. The between-database per
formances when testing on lobular PElT V data, in par
ticular, were much lower than the corresponding result
(A = 0.87) from Table 3.

Figures 6 and 7 illustrate the most important and general
izable discriminating profiles learned by the neural networks.
The profiles in both figureswere learnedduringâ€œbetween
databaseâ€• experiments corresponding to results from the
second row of Table 5. The two lobar profiles in Figure 6 are
similar in that they both have relatively low values for pan
etal and temporal lobes, particularlyfor panietallobes. In
particular, the first proffle emphasizes low values in the left
parietal region, whereas the second gives approximately
equal weights to both pa.rietal lobes. The major features of
the two lobular profiles in Figure 7 are: generally low values

11NeuralNetWOrkClassificationPerformanceâ€¢Kippenhanat al.



SimplescalingData

preparationmethodGlobalOccipitalData/RepreSentatiOn(Absolute

metab.)MeanremovalnormalizationnormalizationPEI-r

V/Lobes0.780.780.800.80PElT
V/LObUleS0.810.840.870.87Scanditronix/Lobes0.910.860.860.86Scanditronix/Lobules0.950.940.950.95

/

TABLE 3
Summaryof Neural-NetworkClassfficationPerformancesfor VariousDataRepresentationMethodsUsingTwoDifferent

PET Databases

Table 4, ROC areas for corresponding experiments were
from 0.06 to 0.13 higher for Scanditronix data than for
PETF V data. The difference between the respective levels
of highest performance was 0.08 (A = 0.87 versus A =
0.95).By comparingTables3 and4, it is alsoevidentthat
the performance of neural-networkswas generally higher
than that of discriminantanalysis, with the two exceptions
of mean-removed and occipital-normalized lobule-level
Scanditronix data. The ability of the neural-network clas
sifiers to form nonlinear and nonparametnic decision
boundaries apparentlyallowed it to be generally more ro
bust for these classification problems.

The strength of the cross-validation method is that it
indicates the degree to which a classificationsystem is able
to genemlize, i.e., to apply learned â€œclassificationrulesâ€•
to previously unseen data. The backpropagation neural
network, a highly adaptive classifier, places much of the
burden for determininggeneralization ability on the train
ing data. The ease by which disease â€œsignalsâ€•were de
tected depended on the mannerof representation, as illus
trated in Table 3, where the interactive effects of variations
in representation level (lobar versus lobular) and prepro
cessing method for each of the two databases can be seen.

Examination of the first row of Table 3 shows that the
classification performances for PETF V lobar data with
either global or occipital normalization were slightly higher
than performances with either simple scaling or mean re
moval. This trend also held true for PET!' V lobular data,
with the difference that performance for mean removal,
although lower than performances for normalization, was
higher than that for simple scaling. The results with both
lobar and lobular data affirmpreviously published obser
vations (8) thatabsolute metabolic informationfor this data
did not contain important discriminating information. The
results also indicate that normalization by division (with
the intentionofremoving multiplicativenoise) may have an
advantage over mean removal (intended to combat addi
tive noise).

The trends for Scanditronix data had importantsimilar
ities and important differences compared to those for
PElT V data. Performances for Scanclitronix lobar data
with either mean removal or normalization were lower than
the performance with simple scaling. These results are
intuitivelyconsistent with the plots shown in Figures 1 and
2, which show that the distributions of mean values for

Scanditronix data demonstrate greater separation between
classes than is the case for PET].' V data, and are also
consistent with the separation between classes demon
strated by Kumar et al. (12) for Scanditronix data from a
similar subject group. One of the most likely reasons for
disparity between databases is the difference in methods
for blood collection. â€œArterializedâ€•venous blood curves
are reportedly less reliable than those from arterialmea
surements (30â€”32)and variability in the PEU V blood
curves would have translateddirectly into increased noise
in the ROl data. This said, it is interestingto note that the
apparent importance of absolute metabolism in the lobar
Scanditronix data did not hold true for lobular data. For
these experiments, the performance for normalized data
(containing no information about absolute metabolism)
equaled that for data which contained absolute metabolic
information.

The results with both PETF V and Scanditronix data
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PETTY(DISCR.)
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FiGURE 5. ROC curvesillustratingand competingthe parlor
mancesof neural networksand disctiminantanalyals.For Scan
ditronixlobulardata,theperformancesof neuralnetworksanddis
criminantanalysiswereapproximatelyequal,whereasforthemore
difficuftproblemofseparatingnOrmalizedlobularPEU V data,the
performanceof neuralnetworkswassignificantlyhigherthanthatof
discriminant analysis.
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testswereconductedwithoccipital-normalizeddata.

TABLE 4
Summary of Disctiminant-AnalysisClassificationPerformancesfor Various Data RepresentationMethOdSUsing Two Different

PET Databases

bases indicate that the lobular representation is probably
more appropriatefor the detection of dementia. Although
classification problems in 25-dimensional space are inher
ently more difficultthan those in 8-dimensionalspace, the
value of this type of representation over the lobar repre
sentation was apparently high enough to overcome the
increased difficulties associated with classifying patterns in
such a higher-dimensionalspace.

Altogether, the results serve to elucidate the relative
conthl,utions of two components of the discriminating in
formation obtained in these PET studies, i.e., the overall
absolute metabolism, and the multivaniatepatterns of nd
ative regional metabolism. The performance using overall
metabolism without pattern information (A = 0.90) was
higher than that achieved with normalized Scanditronix
lobar patterns (A = 0.86), and performancefor lobar pat
tern data that included absolute metabolic information was
higher (A = 0.91) than that for normalized data, indicating
that absolute metabolism was able to contribute important
discriminating information at the lobarlevel. However, the
performance using overall metabolism alone was lower
than that for normalized Scanditronix lobular patterns
(A = 0.95),andperformanceforlobulardatathatincluded
absolute metabolic informationwas not higher (A = 0.95)
thanthatfor normalizeddata,which indicates that absolute
metabolism did not contribute any additional discriminat
ing informationat the lobular level. The net implicationis
that reduction of variabilitywas of overridingimportance.
The reduction of variability in ROI data due to the higher
resolution of the Scanditronixcamera, combined with that
resultingfromnormalizationofthe lobulardata, apparently

TABLE 5
Summary of Neural-NetworkClassificationPerformancesfor

Between-DatabaseCmas-Val@abon

improved the representations to the point that, for a mul
tivaniate approach, they contained as much discriminating
information as did representations which contained abso
lute metabolic information.

The findingthat absolute quantificationmay not neces
sarily be vital for the detection of disease appears to be
compatible with the findings of Strother et al. (6), who
reached a similar conclusion after examining measures of
group discrimination for patients with acquired immune
deficiency syndrome dementia complex. These results im
ply that, with regardto the detection of memory disorders,
efforts to improve image resolution may be at least as
deserving of attention as those focusing on absolute quan
tification of metabolism. Such considerations may have

FIGURE6@Themostimportantandgenerallzabladiscriminating
profileslearnedby neuralnetworksduring lobe-leveltrainingwith
subjects from both PET databases. Coefficients are plotted for right
and left frontal, @,temporaland occipitallobes.The two pro
filesaresimilarinthattheybothhaverelativelyIOWVaIUeSfOrparletal
andtemporallobes,particularlyfor parietallobes.Thefirstprofile
morestronglyemphaslzeslowvaluesIntheleft-parietalregion,while
thesecondgivesapproximatelyequalweightsto bothparietallobes.
Aithoughtheserepresentationsadmittedlyoversimplifytheroleof
theseprofilesin the neuralnetworkclassificationprocess,they do

@dean IntuitiveIndicationof the basison which dassffication
â€œdecisionsâ€•were made,whichshowthat neuralnetworksincorpo
ratedandcombinedsomefeaturesâ€œtypicalâ€•ofAIzhelmer@sdisease.
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any recommendations based on these experiments apply
only to normalized data from the two databases and not to
data based on absolute metabolism.

The classification methods shown here can be used to
influence a diagnostic decision based on Bayesian theory.
For example, classifIcationat the point of maximuminfor
mation on the ROC curve for normalized Scanditronix
lobular data resulted in a sensitivity of 90%with a cone
sponding specificity of 89%. Given a patient with mild
cognitive impairment,where the diagnosis of AD was Un
certain, correspondingto a priorprobabilityof 50%,then a
positive classification at this point on the ROC curve would
yield a post-test probability of disease of 90% (strongly
con.finning the presence of abnormality), while a negative
classification would give a post-test probability of 10%
(strongly ruling out abnormality). The corresponding post
test probabilityvalues for normalizedPET!' V lobulardata
were 87% (for a positive classification) and 24% (for a
negative classification).

Although the representations of discriminatingprofiles
in Figures 6 and 7 admittedlyoversimplify the role of these
proffles in the neural network classification process, they
do serve to provide an intuitive indication of the basis on
which classification â€œdecisionsâ€•were made. They show
that the neural networks incorporated and combined fea
tunes thought to be â€œtypicalâ€•of Alzheimer's disease. In
terested readers may contact the primaryauthor to obtain
complete quantitative descriptions of networks trained
with subjects from both databases.

These profiles represent discriminating â€œsurfacesâ€•
which roughly define directions (in n-dimensional pattern
space) of increasing severity of dementia. This interpreta
tion of the profiles is consistent with results shown by
Kumar et at. (12) for normalized data. They found mainly
parietaldeficiencies in â€œmildâ€•dementia;panietal,temporal
and premotordeficiencies in â€œmoderateâ€•cases; andwide
spread involvement in severe cases. In addition, the pro
files emphasizing â€œleft-side-lowâ€•asymmetry are consis
tent with profiles from our previous work (8) and with
published reports of predominantly left-side deficits (10)
for similarsubject groups. The fact that the two proffles in
Figure 7 incorporated asymmetries of opposite directions
in the parietal and temporal regions indicates that the
trained network identifiedeither type of asymmetry as an
indication of abnormality. It should be noted that typical
analyses comparing normal to abnormal groups based on
mean trendswould have great difficultyrecognizing such a
situation, since the presence of both types of asymmetry in
one groupwould cancel each other out on a mean basis.

In summary,analysesof these resultsindicatethatthe
combination of PET and neural networks performedwell
in discriminatingnormalfrom AD subjects. The increased
spatial resolution of the Scanditronix camera apparently
allowed a net increase in signal-to-noise ratio of the lobule
level ROI data, which resulted in improved classification
performance. Absolute quantificationof metabolism was
shown to contain discriminatinginformation, but classifi
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FiGURE 7. Themostimportantandgeneralizablediscriminating
profileslearnedby neuralnetworksduringlobule-leveltrainingwith
subjectsfrombothPET databases.The majorfeaturesofthese
profilesare:generallylowvaluesin the parietal(regions9-12) and
temporal(regions15-18)regionscombinedwithconsistentlyhigher
valuesin the motor-sensoly(regions7 and 8) andoccipitalregions
(regions13and 14).Thefirst profileshowsconsistentasymmetries
(right-sidecoefficientshigherthanleft-sidecoefficients)inthefrontal,
temporalandparie@regions,whereasthesecondprofileshows
asymmetriesIn the oppositedirection(left-sidecoefficientshigher
thanright-sidecoefficients)Intheparietalandtemporalregions.The
trained networksthus Identifiedeither type of asymmetryas an
indicatorofabnormality.

implications for the application of quantitative classifica
tion techniques to both currentand futuremetabolic imag
ing modalities.

The results highlightedin Figure5 appearto confirmthat
the ability of neural networks to employ multiple discnim
inating surfaces allowed it to outperform discniminant anal
ysis for the difficultproblem of separatinggroups for nor
malized lobularPETF V data. The separationof groupsfor
Scanditronix data was apparently accomplished with a sin
gle discriminatingsurface, allowingdiscriminantanalysis
to performat the level of neural networks.

It is apparentfrom the results of Table 5 that it is pos
sible to successfully combine normalized data from differ
ent databases. The major exception to this was training
with Scanditronixdata andtestingwith PETF V data at the
lobule level. The PET!' V lobulardataapparentlyserved as
a fairlygood trainingset for testing on Scanditronixlobular
data, but the reverse was not true. Presumably, this oc
curredbecause the PElT V datawas the noisier of the two
sets of data; training with this data would have yielded an
â€œexpandedâ€•decision region compared to the decision re
gion resulting from training with the Scanditronix data.
Better performance would be expected by training with
noisier data and testing on the less noisy data than by
performingthe reverse experiment. It should be noted that
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cation performancefor lobule-level datawas not improved
by including this information. These results indicate that
the maturationof PET technology over the last few years
has improved its clinical researchvalue in the diagnosis of
dementia. The results also indicate that PET data obtained
with â€œfirstgenerationâ€•cameras may have value as training
data, despite (orperhapseven because of) the fact thatthey
may contain greater variability. The above findings could
not have been confirmed intuitively. They provide direc
tions for future investigations employing PET in the study
of dementia. These results show that it should be possible
to share metabolic data from different scanners and insti
tutions to develop an extensive â€œknowledgeâ€•base of met
abolic patterns. This would greatly enhance the utility of
metabolic neuroimagingby using it to predictdisease prob
abilities based on a metabolic profile obtained in a given
clinical situation.
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