
ndamentally, all medical imag
ing involves comparisons. When

used for diagnosis, images are fre
quently compared with mental pic
tunes (the interpreter's concepts) of
normality and different disease states.
For prognosis on treatment monitor
ing, comparisons often focus on
changes in serial studies in the same
patient. These comparisons are based
on the patterns seen in the images. In
nuclear medicine, these patterns rep
resent spatial and temporal arrange
ments and rearrangements of the
physiological on biochemical pro-.
cesses under investigation. How are
these patterns best detected and corn
pared?

In this issue of theJournal, Kippen
han and coworkers present an exten
sion (1) of their previously reported
approach (2) to classification of nor
mal and Alzheimer's disease subjects
based on neural-network analysis of
FDG-PET studies. Their approach
utilizes the â€œpatternâ€•formed by onga
nizing region of interest (ROl) values
from selected brain areas into (mathe
matical) vectors (or â€œprofilesâ€•),
which provide the input for a neural
network based classifier. With this ap
proach, the investigators found that
the network could change a pre-FDG
PET probability of disease of 50%
(i.e., that of a subjectwith thegreatest
pre-FDG-PET uncertainty) to a post
test probability of either 90% for a
positive classification on 10% for a
negative classification.

The output of the neural network
(i.e., classification of the pattern as
either â€œnormalâ€•or â€œAlzheimen'sdis
easeâ€•)can be considered equivalent
to the interpretation of a diagnostic
test as either â€œnormalâ€•or â€œabnor
mal.â€•In this fashion, one could apply
the concepts of â€œsensitivityâ€•and
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â€œspecificityâ€•so often used to express
diagnostic performance. It is notewor
thy that the investigators chose to use
receiver- (or relative-) operating-char
actenistic (ROC) analysis to study the
performance of their classifier. This
approach(3), which characterizes the
accuracy of a test oven the full open
ating range of normal/abnormal dcci
sion (or classification) thresholds, has
finally achieved the widespread use it
deserves in medical imaging. This ap
proach does not requirea prioriselec
tion of a single decision threshold to
use with a new test, and facilitates a
posteriori selection of the optimum
threshold priorto routine clinical use.

In those clinical situations in which
the relevantdistinction is betweenthe
normal and abnormal, ROC analysis
provides a rigorous assessment of a
test's diagnostic accuracy. However,
with the complex differential diag
noses so frequently encountered with
neurologic and psychiatric disorders,
the distinction (or classification) that
frequently must be made is not be
tween normal and abnormal, but be
tween multiple diagnoses (e.g., Alz
heimer's disease versus multi-infarct
dementia in a patient with an abrupt
change in clinical state). Furthermore,
the distinction between normal and
abnormal must often be made in the
face of subtle disease (e.g., normalag
ing versus early dementia in a patient
with short-term memory loss). In such
settings, normal and abnormal (and
sensitivity and specificity) take on less
straightforwardmeanings. In this re
gard, one of the limitationsof the cur
rent study (1) is that it does not pro
vide data indicating the classifier's
ability to provide these more difficult,
yet more clinically useful, distinc
tions.

The spatialresolution of PET tomo
graphs continues to improve. While it
is easy to show the relationship be
tween resolution and quantitative ac
cunacy (4), and therefore the effect of
resolution on measured FDG-PET

metabolic rate (5), increases in diag
nostic accuracywith improvedresolu
tion are harder to document. In this
regard, the currentwork offers tanta
lizing evidence that such increases oc
cur in that the classification perfor
mance for the better resolution
tomograph tended to be better. It
should be noted that the use of an
objective, quantitative classffication
scheme explicitly links quantitative
and diagnostic accuracy.

The patterns seen in FDG-PET
studies arise from a combination of
biologic and technical factors; these
also lead to the variations seen within
a population at a given time and in a
given subject over time (6,7). Many
investigators favor normalizing data
by a reference value (e.g., global met
abolic rate or that in a reference brain
area, such as cerebellum or occipital
cortex) to better uncover regional dii
fenences (8). In this regard, it is inter
esting to note that, in the current
study, occipital-normalized patterns
produced the highest diagnostic accu
racy (as measured by the area under
the ROC curve) for the poorer resolu
tion, but not the better resolution, to
mograph, and that normalization im
proved diagnostic accuracy for the
smaller (â€œlobularâ€•),but not the larger
(â€œlobarâ€•),regions with the better res
olution tomograph (1). A recent mul
ticenter report suggests that a stan
dardized FDG-PET protocol utilizing
ROIs representing larger brain areas
and ratios rather than absolute meta
bolic rates can provide comparable
data in spite of differences in tomo
graphresolution (9). Thus, whether or
not normalization helps on hurts
seems to be determined by a number
of factors, including ROI size, tomo
graph resolution, variation (both bio
logic andtechnical) in the data andthe
type of normalization. In any event,
the use of vectors or proffles such as
those formed in the current work, to
express patterns facilitates both nor
malization and statistical analyses, as
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demonstrated by others (10). The
term profilewhen used in this context
does not necessarily imply a sequence
of ROl values from anatomicallycon
tiguous brain areas.

The use of computer-assisted diag
nosis is, of course, not new. Common
approaches include statistical (e.g.,
cluster analysis, discriminateanalysis)
and rule-based designs, such as those
based on â€œartificialintelligence.â€•All
approaches are heavily influenced by
the data used to initially design the
analysis algorithm. In this regard, a
very important aspect of the current
study was the use of explicitly sepa
rate trainingand test sets, because it
demonstrated that the classifier was
applicable to a broader population
than that with which it was initially
derived. It is also clear that the gen
eralapproachKippenhanandcowork
ers have described has much broader
applicability than just FDG-PET. The
extension to SPECT and planar imag
ing, and to other diseases, is easy to
envision. Such an extension might

provide detection of more subtle pat
terns than the usually visually appar
ent pattern of probable Alzheimer's
disease. In any event, these ap
proaches are clearly consistent with
the quantitative, pattern-based char
acter of nuclear medicine, and their
continued development should be
strongly supported.
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