Detection and Comparison of Patterns in Images

ndamentally, all medical imag-
ing involves comparisons. When
used for diagnosis, images are fre-
quently compared with mental pic-
tures (the interpreter’s concepts) of
normality and different disease states.
For prognosis or treatment monitor-
ing, comparisons often focus on
changes in serial studies in the same
patient. These comparisons are based
on the patterns seen in the images. In
nuclear medicine, these patterns rep-
resent spatial and temporal arrange-
ments and rearrangements of the
physiological or biochemical pro-
cesses under investigation. How are
these patterns best detected and com-
pared?

In this issue of the Journal, Kippen-
han and coworkers present an exten-
sion (1) of their previously reported
approach (2) to classification of nor-
mal and Alzheimer’s disease subjects
based on neural-network analysis of
FDG-PET studies. Their approach
utilizes the “‘pattern’’ formed by orga-
nizing region of interest (ROI) values
from selected brain areas into (mathe-
matical) vectors (or “‘profiles”),
which provide the input for a neural-
network based classifier. With this ap-
proach, the investigators found that
the network could change a pre-FDG-
PET probability of disease of 50%
(i.e., that of a subject with the greatest
pre-FDG-PET uncertainty) to a post-
test probability of either 90% for a
positive classification or 10% for a
negative classification.

The output of the neural network
(i.e., classification of the pattern as
either ““normal’’ or ‘‘Alzheimer’s dis-
ease’’) can be considered equivalent
to the interpretation of a diagnostic
test as either ‘“‘normal’” or ‘‘abnor-
mal.”” In this fashion, one could apply
the concepts of ‘‘sensitivity”’ and
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““specificity’’ so often used to express
diagnostic performance. It is notewor-
thy that the investigators chose to use
receiver- (or relative-) operating-char-
acteristic (ROC) analysis to study the
performance of their classifier. This
approach (3), which characterizes the
accuracy of a test over the full oper-
ating range of normal/abnormal deci-
sion (or classification) thresholds, has
finally achieved the widespread use it
deserves in medical imaging. This ap-
proach does not require a priori selec-
tion of a single decision threshold to
use with a new test, and facilitates a
posteriori selection of the optimum
threshold prior to routine clinical use.

In those clinical situations in which
the relevant distinction is between the
normal and abnormal, ROC analysis
provides a rigorous assessment of a
test’s diagnostic accuracy. However,
with the complex differential diag-
noses so frequently encountered with
neurologic and psychiatric disorders,
the distinction (or classification) that
frequently must be made is not be-
tween normal and abnormal, but be-
tween multiple diagnoses (e.g., Alz-
heimer’s disease versus multi-infarct
dementia in a patient with an abrupt
change in clinical state). Furthermore,
the distinction between normal and
abnormal must often be made in the
face of subtle disease (e.g., normal ag-
ing versus early dementia in a patient
with short-term memory loss). In such
settings, normal and abnormal (and
sensitivity and specificity) take on less
straightforward meanings. In this re-
gard, one of the limitations of the cur-
rent study (/) is that it does not pro-
vide data indicating the classifier’s
ability to provide these more difficult,
yet more clinically useful, distinc-
tions.

The spatial resolution of PET tomo-
graphs continues to improve. While it
is easy to show the relationship be-
tween resolution and quantitative ac-
curacy (4), and therefore the effect of
resolution on measured FDG-PET

metabolic rate (5), increases in diag-
nostic accuracy with improved resolu-
tion are harder to document. In this
regard, the current work offers tanta-
lizing evidence that such increases oc-
cur in that the classification perfor-
mance for the better resolution
tomograph tended to be better. It
should be noted that the use of an
objective, quantitative classification
scheme explicitly links quantitative
and diagnostic accuracy.

The patterns seen in FDG-PET
studies arise from a combination of
biologic and technical factors; these
also lead to the variations seen within
a population at a given time and in a
given subject over time (6,7). Many
investigators favor normalizing data
by a reference value (e.g., global met-
abolic rate or that in a reference brain
area, such as cerebellum or occipital
cortex) to better uncover regional dif-
ferences (8). In this regard, it is inter-
esting to note that, in the current
study, occipital-normalized patterns
produced the highest diagnostic accu-
racy (as measured by the area under
the ROC curve) for the poorer resolu-
tion, but not the better resolution, to-
mograph, and that normalization im-
proved diagnostic accuracy for the
smaller (““lobular’’), but not the larger
(“lobar”’), regions with the better res-
olution tomograph (7). A recent mul-
ticenter report suggests that a stan-
dardized FDG-PET protocol utilizing
ROIs representing larger brain areas
and ratios rather than absolute meta-
bolic rates can provide comparable
data in spite of differences in tomo-
graph resolution (9). Thus, whether or
not normalization helps or hurts
seems to be determined by a number
of factors, including ROI size, tomo-
graph resolution, variation (both bio-
logic and technical) in the data and the
type of normalization. In any event,
the use of vectors or profiles such as
those formed in the current work, to
express patterns facilitates both nor-
malization and statistical analyses, as
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demonstrated by others (10). The
term profile when used in this context
does not necessarily imply a sequence
of ROI values from anatomically con-
tiguous brain areas.

The use of computer-assisted diag-
nosis is, of course, not new. Common
approaches include statistical (e.g.,
cluster analysis, discriminate analysis)
and rule-based designs, such as those
based on “‘artificial intelligence.”” All
approaches are heavily influenced by
the data used to initially design the
analysis algorithm. In this regard, a
very important aspect of the current
study was the use of explicitly sepa-
rate training and test sets, because it
demonstrated that the classifier was
applicable to a broader population
than that with which it was initially
derived. It is also clear that the gen-
eral approach Kippenhan and cowork-
ers have described has much broader
applicability than just FDG-PET. The
extension to SPECT and planar imag-
ing, and to other diseases, is easy to
envision. Such an extension might

provide detection of more subtle pat-
terns than the usually visually appar-
ent pattern of probable Alzheimer’s
disease. In any event, these ap-
proaches are clearly consistent with
the quantitative, pattern-based char-
acter of nuclear medicine, and their
continued development should be
strongly supported.
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