
scatter in the image, and the detector response blur. Pho
ton attenuationdecreases the numberof photons detected
by photo-absorption or scattering in the object. Scatter
events in the image are caused by photons that are emitted
in other directions but scattered in the object into a direc
tion detectable by the SPECT camera. These photons thus
cari@;misleading information regarding the decay location.
Detector blurring is caused by the intrinsic spatial resolution
of the cameraand the inherentdesign of the collimator.

The presence of scatter in the images limits the accuracy
of quantification of activity. It does not produce major
artifacts comparable to attenuation but reduces image con
trast by includinga low-frequency blur in the image. The
impact of scatter generally depends on the photon energy,
camera energy resolution, energy window settings, object
shape and the source distribution. Many of these parame
ters are nonstationarywhich implies a potential difficulty
when developing properscatter and attenuationcorrection
techniques. However, scattercorrection remainsessential,
not only for quantification,but also for lesion detection and
image segmentation. For the latter case, if the boundary of
an activity region is distorted by scatter events then the
accuracy in the calculated volume will be affected.

A number of scatter correction techniques have been
proposed by several investigators (1â€”12).Among these are
methods based on different types of scatter functions in
convolution-subtractiontechniques (spatial domain meth
ods) and methods that estimate scatter by acquiring events
in additional energy windows (energy domain methods).

A major problem when evaluating different correction
techniques for attenuation and scatter is validation of the
results. Experimental measurements of scatter fractions
and response functions are feasible only for simple source
andphantomgeometries. In these cases, a point source can
be measuredboth in a scatteringmediumandin air. Scatter
images can be calculated by subtractionafterfirstapplying
narrow-beam attenuation on the air measurement (13).
However, problems arise when investigating extended
source distributions such as spheres of different diameters.
Here, self-absorptionand scatteringwithin the spheres can
be significantwhen imagingthese sources in air. The com
plexity increases furtherwhen extending to clinically real
istic source distributions.It is the performanceof the scat

Scattercorrectionin SPECTis importantfor improvingimage
quality, boundary detection and the quantification of activity in
different regions. This paper presents a comparison offour scat
ter correctionmethods,threeusingmorethanoneenergywin
dow and one convolution-subtractioncorrectionmethodusing
spatialvailant scatterline-spreadfuncbons.Mthods: The corn
parisonis based on Monte Carlo simulateddata for point
sourceson-andoff-axis,hotandcoldspheresofdifferentdiam
eters,anda dinicallyrealisticsourcedistributionsimulatingbrain
imaging.i4Jlstudies were made for a uniformcylindricalwater
phantom.Sincethenatureofthedetectedphotonisknownwith
MonteCailosimulation,separateimagesof primay andscat
tered photons can be recorded. These can then be compared
with estimatedscatterand primaryimagesobtainedfromthe
differentscatter correctionmethods.The criteriafor comparison
were the normalized mean square error, scatter fraction, % re
coveryand imagecontrast.Results: ftJIcorrectionmethods
signdlcantlyimprovedimage qualftyand quantificationcorn
pared to those obtained with no correction. Quantitatively,no
single method was observed to be the best by all criteriafor all
the sourcedistributions.Three ofthe methodswere observedto
performthe bestby at leastone of the criteriafor one of the
sourcedistributions.Forbrainimaging,thedifferencesbetween
all the methods were much less than the d@terencebetween
themandnocorrectionat all.Conclusion: ft is COnClUdedthat
performingscattercorrectionisessentialforaccuratequantifica
tion, and that all four methodsyield a good,but not perfect,
scattercorrection.Sinceit is hardto distinguishthe methods
consistently in terms of their performance, ft may be that the
choiceshouldbemadeonthebasisof easeof implementation.

Key Words: scatter correction; SPECT; brain Imaging;
Monte Carlo sImulated data
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he major physical effects which limit one's ability to
accurately quantitate the activity distribution obtained by
single-photon emission computed tomography (SPECF)
are the photon attenuationin the object, the contributionof
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ter correction methods for clinical source distributions
which is of interest; measurements in simple phantoms
may not represent the performance of the methods with
realistic distributions.

The use of Monte Carlo calculations to validate correc
tion methods has been shown to be a successful way to
overcome this problemsince this evaluationmethod allows
separation of primaryand scattered photons into different
projection sets. Furthermore, scatter images can, in pm
ciple, be calculated for any arbitraiy source distribution.
Simulated realistic SPEC!' images (includingboth primary
and scatter) can be corrected for attenuation and scatter
andcomparedto scatter-andattenuation-freeideal images.
The accuracy in correction methods can thus be evaluated
in an unbiased way since systematic errors can be con
trolled.

Previously reported Monte Carlo validations of scatter
and attenuation correction methods and related parameters
have often been made by using simple source distributions
and phantom geometries (7,13â€”15).In addition to these
evaluations,there is a needto also investigatemore clini
cally realistic sources to validate and compare correction
methods. The aim of this work is to provide such an eval
uation by comparing four previously reported scatter cor
rection techniquesusing Monte Carlo simulateddata of a
digital brain phantom. Evaluations have also been made for
point sources and spheres to characterize the differences
between the methods for more standard geometries and
allow determination of whether performance in the stan
dard geometry predicts performance in the clinically real
istic source distribution.

MATERIALAND METhODS

Scatter Correcflon
The scatter correction methods evaluated in this work are

individually described below and referred to in the following text

by their abbreviations.The location of each energy window used
in this study is denotedW1â€”W5and shownin Figure 1.

Compton Window Methoti The Compton window (CW)
method, proposedby Jaszczaket al. (7), is based on acquisitionin
a secondary energy window (W1)positioned in the Compton re
gionof theenergypulse-heightdistribution.Intheoriginalwork,
the upper and lower energy thresholds were held to 125 and 92
keV, respectively,for @â€œTcphotons.The acquiredscatterwas
then assumed to be qualitativelyequal to the scatter in the pho
topeak window (W3 + W4)with respect to the spatial distribution
butdifferquantitativelybya factork. Thek factorwas determined
by the ratiobetween the scatter in the photopeakwindow and the
counts in the secondaryenergywindow.Projectionsrepresenting
scattered photons only are calculated from the equation:

@â€˜scatt(@,r) = k - P1(O, r), Eq.1

whereP1denotestheprojectionacquiredinthesecondaryenergy
window W1, 0 denotes the projection angle and r denotes the ray
in the projectionset correspondingto a certainslice of the object.
Thegenerallyacceptedk-valueof 0.5was used in thiswork. This
valuewas derivedfromexperimentalstudiesof a linesourceand
a 6-cm sphere (7).

DualPhotopeak WzndowMetkxL The dual photopeak window
scatter correction technique (DPW) is based on acquisition of
events in two abutted nonoverlappingenergywindows(W@and
W4)thataresymmetricallylocatedaroundthephotopeakenergy
(89). The lower energy window counts represent photons scat
teredmorethan those in the upperwindowsincescatter results in
a decrease in the energycarriedby the photons. It is assumed that
the scatter fraction (SF, e.g., the ratio between the number of
scattered events-to-the numberof primaryevents) at each pixel
can be estimatedfromsomeanalyticalfunctionof the count ratio
betweenthe lowerand the upperwindow,Rat = P3(O,r)/P4(O,r).
In theworkspreviouslyreferenced,a powerrelationwas used.
However, in this work we have used a third-orderpolynomialof
the form:

SF(O,r)=A+BRat+CRat@+DRat@. Eq.2
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The polynomialcoefficients A, B, C and D may be obtainedfrom
MonteCarlosimulationsor fromexperimentalmeasurementof
point sources in different depths in a water phantom. The photo
peak scatter projection is finally obtained on a pixel-by-pixel basis
by the relation:

SF(O, r)
P',@@(O,r) = P3@4(O,r)@@ SF(O, r)

where the term on the rightwithin the square brackets identifies
the scatter-to-totalratio, ST.

Three Window MethoL The three window (flY) method, re
ported by Ogawa et al. (10), uses three energy windows. The first
is the ordinaryphotopeakwindow andthe other two, W2andW5,
are two narrow-energywindows located on each side of the pho
topeak window. The scatter events in the photopeak window are
estimated by averaging the projections from the two additional
energywindows while takingthe differentphotopeakwindow size
(W3+ W4)into consideration,accordingto:

II P2(O,r) P5(O,r) (W3 + W4)
P@@(O, r) = @2@ W5@ 2

Ina recentpaperbyOgawaet al. (16)themethodabovehasbeen
modifiedin that only the lower scatter windowis used, which is
equivalentto setting P5(O,r) equal to zero in Equation4. It should
be noted that this is equivalent to using a smaller Compton win
dow,normalizationforwindowwidthanda k of 0.5withtheCW
method. The two different methods are denoted TW(1)when
includingthe events in W5and TW(2)when events in W5are not
used.

Scatter line-Spread Function Method@The scatter line-spread
function (SLSF) method is a convolution-subtractiontechnique
that uses spatialvariant scatter line-spreadfunctions in the mod
cling of the scatter component (11,12). A knowledge of the source
distributionis necessaty to select appropriatescatter functions.
This informationis obtained from reconstructed SPECF images
since each voxel is an estimate of the given voxel in the object. It
is therefore assumedthat the content in each pixel in a SPECT'
image reflects the amount of activity within the corresponding
voxelintheobject.Thismethodestimatesthescattercontribution
from each voxel location in the object by modeling the scatter
function for that voxel location. The scatter function is obtained
by bilinearinterpolationof precalculatedscatter line-spreadfunc
tions. The estimate of the scatterdistributionforeach voxel to the
overallscattercomponentintheprojectiondatais calculatedby a
convolution procedure accordingto:

P@@(O,r) = :@.: ST(l) .@ E,,@9r)(@,j)SI..SF(l, r â€”

Eq.5

whereST(l)is thescatter-to-totalfractionfora location1;51SF
(1,r) is the scatter line-spreadfunctionnormalizedto unity area;E
(1,j) is the SPECT image;y is the current ray-of-viewand r is a
convolutionvariable.

AU@ Co@
Correction for attenuation is made by calculating individual

correction factors from the reconstructed SPECT images by a
reprojectionmethod(17â€”20).Thedensitydistributionof theoh
ject and the body outlineare taken into accountby usingdensity
mapsso thatthecorrectionmethodmayalsoincludenonuniform
attenuation. The estimated scatter is subtractedfrom the uncor

rected photopeakprojectionand the result is corrected for atten
uation, accordingto:

@ r)1
Pa,rr(O,r) = [P@,@(O,r) â€”P,@,11(O,r)] - [ P@@(O,r) j' Fc1 6

Eq. 3 where 1@nauand P@ are two unattenuated and attenuated projec
tions calculated from the SPECF image. The first reprojection
representsthe unattenuatedcase andhas been calculatedfromthe
lineintegralof pixelsin the emissionimagealongthe ray-of-view.
Thesecondreprojectionis attenuatedbycalculatingtheexponen
tial of the attenuationcoefficients times the distance between the
currentpixel and the body outline along the ray-of-view. These
attenuated counts are then summed along the ray to yield the
count in the projection. The ratio between these two projections is
thus the attenuationcorrectionfactor. The â€œgood-geometryâ€•un
earattenuationcoefficientisusedsinceascatterestimatehasbeen
subtractedfromtheprojectiondatabeforetheattenuationcorrec
tion is performed.

Eq. 4 The Simulated SPECT System
The simulatedSPECTsystem was based on a commercial

system (PRISM-3000,Picker International,Bedford, OH) with a
low-energy,ultra-highresolutioncollimator.Thethicknessof the
NaI(TI) crystal was 0.95 cm and the ctystal measured 30.5 x 40.5
cm. The system spatial resolution for SPECT was 0.9 cm FWHM
ata distanceof 15cm. Theenergyresolutionandintrinsicspatial
resolutionwere 9.4% (FWHM) and 0.28 cm, respectively, at 140
keV.SPEC!'projections(64x 64matrixmode)correspondingto
five different energy windows were calculated during each simu
lationrun. The energysettingsfor each window(W1â€”W5)are
shownin Figure1. The sumof the two projectionsacquiredin
windowsW3andW4was usedto createthe photopeakSPECT
image.Thepixelsizemeasured0.4 x 0.4cm2.SPECTprojections
were simulated for 64 equidistant views in a 360Â°rotation mode.
Theradiusof rotationwas keptat 13.5cm forallsimulations.

SImulation and Evaluation
Photonsof 140keVweresimulatedtomimicSPECTstudiesof

99'@Tc.Thesimulationsincludedtheeffectsof attenuation,scatter
and distance-dependentsystem spatial resolution. Simulationof
projectionswas also made for the ideal case where no scatter or
attenuationwereincluded.Idealcasesimulationswerecreatedto
serve as reference studies since these projections only include
collimatorblur and reconstructioneffects. Thus, these recon
structed imagesshouldbe regardedas ideal images.SPEC!' pro
jectionsweresimulatedfromthe followingsourcedistributions.

Point Source Simulation. Planar simulations of point sources
located at multiple depths along the center line of a 20.8-cm
phantomwere madeto calculatethe windowratiosandcorre
sponding scatter fractions in order to evaluate the polynomial
coefficientsA, B, C and D in Equation2 for the DPWmethod.
Two SPEC!' simulations were also conducted with a point source
located in the center of the phantom and 6 cm off-axis in a
cylindricalwater phantom (length 17 cm, diameter 20.8 cm).
These simulationsof a simple and well-defined source geometry
were madeto evaluateestimatedscatterpoint-spreadfunctions
fromthe fourscattercorrectionmethods.

Sphere SimUlatiOn. Both hot and cold spheres of different radii
weresimulatedinthecylindricalphantomwithaspecifiedfraction
of simulatedactivityappearingas background.Thesphereswere
placedsymmetricallyat a radialdistanceof 5.8 cm fromthe axis

),(o,r)
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Scatter point-spreadfunctions (SPSF) for point sources at the
center and 6 cm off-axis were obtained from estimated scatter
images and evaluated by calculating the difference between
â€œtrueâ€•SPSFs and estimated SPSFs. The scatter fractions (the

ratio of scatter counts-to-primary counts) were calculated from
the estimated SPSF images by two circular regions of interests
(ROIs).ThefirstROlcoveredanareacorrespondingto thewhole
phantom.The secondROIwas smallerandcoveredonlythepoint
source where the primarycounts dominatedthe response.

The sphere andbrainsimulationswere evaluatedby calculating
the normalizedmean-squareerror(NMSE), the activity recovery,
and the image contrast, all expressed as percentages. Circular
ROIsweredefinedovereachspherein the spheresimulationin
such a way thatthe imageof the sources was completely covered.
The percentageNMSE was calculatedto evaluate the accuracy in
the differentROIsin a correctedimage, E(i,j), as comparedto the
ideal simulated image, E@(i,j) by:

NMSER0I@:@ j@ E(i j)}2 100%. Eq. 7

Eventswithineach of the ROIswere integratedfor both ideal
imagesand scatter- and attenuation-correctedimages.The activ
ity recovery, defined as the percentage ratio of events in a ROI in

the corrected images-to-events in the same ROl in the ideal im
ages, were calculated according to:

@ @F4i,j)

Recovery = N@@ 100%,

Contrast = [i _ i@;:j - 100%,
NR0I1

RESULTSAND DISCUSSION

. 20.8 CM

FiGURE 2. Dlmenaionsof the c@linddcalwaterphantomand the
sizeandlocationofthedifferentsimulatedspheres.

of rotation,as indicatedin Figure2. The radiifor spheresAâ€”F
were 3, 2, 1.6, 1.3, 0.9 and 0.8 cm, respectively.The relative
activity concentrations were 1 for spheres A and B, 2 for spheres
C andD, and3 forspheresE andF.

Brain Sinudation. Our Monte Carlo program (21) takes advan

tage of integer matrices to simulate complicated and realistic
source distributionsin additionto standard source and phantom
geometries. Decays are simulated by calculating the location in
the phantom for the apparentposition of each of the map cells.
The numberof decaysfromthe locationin the phantomis then
givenby thecontentin thecorrespondingcell in the sourcedis
tributionmatrices. The mathematicalsource distnl,ution(22) of
the Hoffmanthree-dimensionalbrainphantom(23) consists of 19
binarybitmapsand is used to simulatea normalbloodflowin the
brain.The specific activities of the gray matter,white matterand
ventricles are 4 :1:0, respectively. The originalbitmapswere crc
atedin a 256 x 256matrixmodebutwereconvertedto 64 x 64
matrixmode to be readableby our MonteCarlocode. The pixel
size of these bitmapswas 0.4 cm and the slice thickness was 0.84
cm. The source distribution was simulated in a cylindrical (20.8
cm diam x 17.5 cm) water phantom.

Each simulatedSPEC!' projectionwas pre-filteredby a two
dimensionalButterworthfilterbefore image reconstruction.Esti
mated primaryand scatter projectionswere filteredwith a third
order filterwith a cut-off frequency of 0.35 cm'.

The filtered projectionswere reconstructedto transverse
SPECTimages(twopixelsinthickness)byfilteredbackprojection
usinga modifiedrampfilter(24,25). Oppositeprojectiondatawere
averagedby arithmeticalmean duringthe reconstructionprocess.
The attenuationcorrectionwas appliedusing a linearattenuation
coefficientofO.154cm'. To reducethe noiseenhancementin the
corrected projection data after attenuation correction, the cor
rected projections were, instead of a ramp filter only, recon
structed by usinga third-orderButterworthfilterorder with cut
offequalto 04 cm'.

Eq.8

Eq. 9

where NROIis the count density in the ROl. The image contrast
was calculatedfrom ROIs definedin each of the cold regions and
a backgroundROl, definedin the centerof the phantom,by:

whereNROIandN@ arecountdensitiesforthesphereROland
for the backgroundROl, respectively. The brainsimulationwas
evaluatedby calculatingtheactivityrecoveryandNMSEforsix
irregularROIs over structures that are importantin neurophysi
ology. The image slice used for calculatingthe ROIs was the one
thatincludedthebasalganglia.The imagecontrastwas not cal
culatedfor this phantomtype since the contrastis not consistently
defined in a heterogeneous activity distribution.

Point Source Simulation
The coefficients A, B, C and D for the polynomial used

in the DPW method were â€”3.834,7.822, â€”5.4057and
1.415, respectively, and were used both for the point
sources and for the extended sources. Figure 3 shows
profiles of the true reconstructed SPSF minus recon
structed SPSFs which were estimated by the four scatter
correction methods. A flat profile of zero counts would
representa perfect scatter estimate. It can be seen that the
scatter close to the source location is underestimated for
the CW method since we get a positive peak. This is due to
the different spatial distributionof counts when acquiring
in a lower energy window as opposed to the photopeak
window (26). The DPW method provides the best estimate
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*1â€¢hepercentagedevistionfromthetruescatterfract10nisalsogwen.Notethattheresuftsareobtainedfora singlereconstructedsl@eandnot
fromprojectiondata.

FIGURE 3. Profiles repre
senting the differencebetween
true reconstructedscatterand
estimated reconstructed scatter
obtained for a point source 10-
cated in the center (leftpanel)
and 6 cm off-axis (rightpanel).

of scatter for the two point sources although a small un
derestimation can be seen close to the source location for
the center location and for the off-axis source location. For
DPW there is no significant difference in predicting the
scatter estimate as a function of source location. The
TW(2) method significantly overestimates the scatter very
close to the source location and especially when the source
is off-axis. This is most likely due to the use of the third
window on the high energy side of the photopeak when
estimating scatter. It can be seen that if the higher window
is not used (shown as the curve labeled TW(1)), then the
overestimation is still presentnear the sourcebut signifi
cantly reduced. As the distance from the source increases,
the TW(1) method switches from an overestimate to a
small underestimate. The 51SF method underestimates
scatter close to the source location but overestimates scat
ter at distances away from the source. This is significant for
both source locations. The reason for this is that in this
technique, the scatter is modeled from a reconstructed
image of the point source distribution. Since the SPEC!'

image is affected by the spatial resolution of the system, the
sampledsource distributionwill not be a well-defined point
source but rathera Gaussianblurredsource. This will then
have an impact on the spatial distributionof scatter esti
mate.

Table 1 shows calculated scatter fractionsfromthe point
source simulations. The TW(2) method significantlyover
estimates scatter fraction in both ROIs, and especially in
the small ROl. The TW(1) method gives the best estimate
for both small and large ROIs. From Figure 3, it can be
noted that this performanceis due to the averagingof over
and under corrections within the ROI. The DPW method
also gives close estimates of the scatter fraction for both
ROIs. The SLSF method estimates the scatter fraction
within 20% for small ROIs but significantly overestimates
for largeROIs. The CW method underestimatesthe scatter
fraction in both ROl sizes and especially in the small ROl.

Since there was such a significant improvement by not
using the upper energy window for the TW method, the

TABLE 1
EstimatedScatter FractionsObtainedfor POIntSources Located in Center and Off-axisCompared to True Scatter Fractions*

Center,Large0.10â€”33%0.12â€”20%0.2033%0.13â€”13%0.2353%0.15Center,
Small0.06â€”45%0.09â€”18%0.1864%0.110%0.1318%0.11Off-axis,Large0.09â€”18%0.110%0.1973%0.129%0.1973%0.11Off-axis,

Small0.06â€”40%0.09â€”10%0.1880%0.1110%0.1220%0.10
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FiGURE4. Images of reconstructed
scatter for hot-sphere (top row)and cod
sphere simulations(bottomrow).The im
ages locatedto the ilghtrepresentthe true
reconstructed scatter. The other images
show estimatedscatterobtainedfrom the
d@erentmethods.
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evaluations of the sphere and the brain simulations were
carried out only for the version with only the lower win
dow, i.e., the TW(1) method.

Sphere Simulation
Figure 4 shows reconstructed estimated scatter images

and true scatter images for both hot spheres (top row) and
cold spheres (bottom row).

Hot Spheres. The scatter obtained from the CW method
is very uniformly distributed, as can be seen from Figure 4
(upper row). The method predicts more scatter between
the sources than is present in the truescatter image. This is
a result of the acquisition of events in the Compton region
that result from large-anglescattered photons. The scatter
estimate obtained from the DPW method bears a close
resemblance to the true scatter even though significant
low-frequency noise has been introduced. The TW(1)
method gives a good estimate of the scatter distribution
even if the scatter image looks somewhat â€œsharperâ€•than
the true scatter image. This might result when some of the
primary photons are included in the lower energy window
due to the limited energy resolution of NaI(Tl). The 51SF
method also gives a good estimate of the scatter but tends
to underestimate scatter close to the center of the phan
tom. Also, it can be seen that scatter between the sources

has been overestimated. The reasons for these effects are
not yet understood.

Table 2 shows the percentage activity recovery and
NMSE for the counts obtained in the ROIs defined over
the hot spheres. All methods result in a recovery that is
within 2% of 100%. The standard deviation of the activity
recovery is, however, somewhat higher for the DPW

method. The average in NMSE is nearly the same in mag
nitude for all correction methods but the standard devia
tion indicates a large spread for the CW and the DPW
methods.

Cold Spheres. Figure 4 (lower row) shows that the scat
ter estimate fromthe CW method is very uniformlydistrib
uted. Only the two largestcold spheres can clearly be seen.
The DPW and the SLSF method give about the same
scatter estimate although the SLSF method results in a
much smoother scatter image. The same lower scatter es
timateclose to the center appearsin the SLSF image as for
the hot sphere case. When comparing scatter obtained
from the TW(1) method with the true scatter image, it can
be seenthat the former givesa very good scatterestimate
but with somewhat sharperedges of the cold-spheres than
is the case for the true scatter image.

Table 3 shows the percentage contrast for the cold

TABLE 2
Resuftsfrom Evaluationof the HotSpheres in the C@1indticalWater Phantom
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SphereImagecontrast

(%)CWDPWTW(1)SLSFIDEALUNC*A10099981009691B979492959080C989490948877D797164746453E413635453218F28282436259Average73.870.367.274.065.854.7*Unc

Isanabbreviationforuncorrected

TABLE 3
ResultsfromEvaluationof theColdSpheresin the CylindricalWaterPhantom

sphere case. By the column averages, it can be seen that
the TW(1) method predicts the contrastvery accurately as
compared to the average contrast in the ideal image. The
other methods, on average, overcorrect for the presence of
scatter. For the CW method, this can be explained by
large-anglephoton scatteringin the object resultingin scat
ter events far away from the source. In this case, the
scatter estimate will overestimate the true scatter content.
For the SLSF method, the effect can be a result of inac
curate scatter modeling since the reconstructed SPEC!'
imageusedis not a perfect imageof the true sourcedistri
bution. This may have an effect when quantifying regions
in the image that are close to areas of high activity.

BraIn Simulation
Figure 5 shows reconstructed corrected primaryimages

(top row) and scatter images (bottom row) obtained from
the brain simulation. It is hard to judge any major differ
ences in the corrected primary images. The effect of the
large-angle scatter in the Compton window acquisition
(W1)can be clearly seen in the scatter image estimated by
the CW method. Scatter is present in areas where no ac
tivity is simulated (left and right parts of the image). The

FiGURE5. Imagesofbothreconstructed
scatter and primaries obtained from the
brainsimulation.Thenghtimagesrepresent
the Idealimage(toprow)andthetrUescatter
(bottomrow).The other images show esti
matedscatter Imagesand correctedprima
flee.

scatter estimates from the DPW and the SLSF method
agree best with the true scatter image even though low
frequency noise can be seen in the DPW image.

Table 4 shows the percentage activity recovery and per
centage NMSE for the six irregular ROIs which cover
important structures of the brain. The DPW and SLSF
methods here give very good activity recovery values
which average within 2%. CW tends to undercorrect and
1'W(l) overcorrects. The NMSE values are best for the
SLSF and DPW methods, and slightly worse for the CW
and TW(1) methods. All methods result in a significant
improvementcompared to no correction.

On the basis of both Monte Carlo calculation and exper
imental measurements of point sources, a value of k equal
to 0.5 has been widely accepted in the literaturefor the CW
method and has also been used in this work. The general
idea of the technique is to finda k that scales the amountof
scatter in the second energy window to the amount of
scatter in the photopeak energy window. However, due to
the depth-dependence of scatter, the value of k is unique
for each source location and object size in addition to other
camera-specific parameters (26). Thus, the value of k may

PRIMARY IMAGES - BRAIN PHANTOM

â€˜V â€˜V@
I@

.@

cw DPW TW SLSF IDEAL

SCATTER IMAGES - BRAIN PHANTOM

.
A@ V.,

cw DPW 1W SLSF TRUE
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98129301.51.31.31.08.8Rightbasalganglia9497101
98129301.41.11.11.08.8Left

frontalcortex981031 05100125420.70.70.90.56.7Medial
frontal cortex101104106 100125401 .01 .11.30.77.0Right

frontalcortex9810310598125400.60.60.80.56.4Posterior
medialcortex9710110399121420.70.50.70.45.0Average97.0100.8103.7

98.8125.737.30.980.881.020.687.12s.d.2.42.91
.80.92.75.20.350.300.230.241.34NSNA

= no scatter andattenuatlon correction;NSA = attenuation-corrected butno scatter-correcteddata.

TABLE 4
PercentageRecoveryandNMSECalculatedin DifferentClinicalStructuresinthe HoffmanThree-@mensionalBrainPhantom

have to be determinedfromsimulationsof a point source in
the center of a cylindrical water phantom, as has been
described in the work by Jaszczak (27), for the camera,
attenuator parameters and energy window settings used.
The k value for the CW methoddeterminedin this way for
this camerasystemwas calculatedto be 0.38. However,
when this k value is used, the scatterfractionfor the source
locations and ROIs in Table 1 was found to be 0.08, 0.04,
0.05 and 0.06, respectively, with relative errors of â€”47%,
â€”64%,â€”57%and â€”50%.The significant underestimate for
point sources with this method was not observed for the
extended source distributions (Tables 2 and 3). Since k
varies with depth for point sources (26), it may be that this
variation is averaged out for extended sources imaged over
360Â°.Still, one may need to carefully obtain a k value for
each SPEC!' system, window setting and, if possible, for
different object sizes and source distributions.

It is also interestingto note that the performanceof the
correction methods for point sources did not always pre
dict the performance of the methods for an extended din
ical source distribution. For example, the SLSF method
did not perform as well as the TW(1) method for point
sources, but performed better for the brain simulation.
Also the CW method performed poorly for the point
sources, but was much improved with the extended source
where under- and overestimates could average out. It is
therefore important to perform a test of scattercorrection
methods for source distributionswhich closely match the
clinical application to which they will be applied. The
Monte Carlosimulationis a useful tool for performingsuch
a test.

CONCLUSION

A comparison of four different scatter correction tech
niques has been made from Monte Carlo simulated SPEC!'
projections of point sources, spheres of differentdiameters
and a clinically realistic source distribution of the brain
perfusion.

CWMethod. Determination of a value for k is a problem
for the CW method. As discussed above, a k value of 0.5 is
commonly used but this may vary with the imaging situa

tion. Based on this study, a value of 0.5 for k for brain
imaging and the energy windows used seems to be a rea
sonable choice. Once k is defined, this method does have
the advantage of being very easy to implement and use
clinically.

DPW Method. When comparing quantitative data, the
DPW method gave the best performancefor point sources
(when the over- and under-correctionof TW(1) are taken
into account), but was not consistently better than the
other methods for the extended source distributions.
DPW's sensitivity to image noise and the improvedperfor
mance of the other methods for estimating scatter with
extended sources are responsible for this change. DPW
requires the determination of the coefficients used in the
regression relationship of Equation 2, and that the win
dows be reproducibly positioned thereafter. It is thus
harderto implementthanthe CW and1'W(l) methods. For
a pair of windows split at the emission energy of the pho
ton, DPW also has a problem with stability of the regres
sion relation over time and location on the face of the
camera(28).

ml Method@ The 1'W method is the easiest method to

implement since it requires no system-specific calibration.
However, the use of the window above the photopeak is
questionable for @Tc;without the upper window the
number of counts in the narrow lower window might make
the method sensitive to noise. This work shows that ne
glecting the upperwindow improves performance.

SLSF MethotL The SLSF method is much more com
plicated than the other three methodsandmay be difficult
to implement on a routine basis since accurate scatter
functions needto be available. In this work, scatter func
tions have been calculated from Monte Carlo simulations.
Work is, however, ongoing in simplifying this by applying
the methods of Frey et al. (29).

A general disadvantage for window correction methods
is that some commercial systems do not include the option
of acquiringevents in separate windows to separate stud
ies. Also, further problems may arise if one needs to ad
quire events in the lower Compton region for accurate
boundarydetection in the attenuationcorrection, therefore
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requiringa different window than that of the scatter cor
rection method. Here, the SLSF method has an advantage
since it is an analyticalmethod appliedon photopeak data.
The event acquiredby the CW method can also be used for
boundary detection due to the location of this secondary
energy window.

All correction methods significanfly improved the image
contrast. Generally, it was shown that the differences in
the estimated scatter distributions did not have a significant
impacton the final quantitativeresultssincemost recovery
calculations were found to be within Â±5%.It may be con
cluded that in modern cameras with good energy resolu
tion, the impact of scatter is reduced since a narrower
energy window can be used (15% in this study). The results

also indicate that the differences in performance between
differenttypes of scatter correction techniques areminimal
for @â€œ@Tcbrainperfusion imaging.Thus, a user may select
a correction method that is easy to implementon a partic
ular system. These conclusions are true only for a brain
sized attenuator. With a larger attenuator (such as the
abdomen) more scatter will be produced and largereffects
due to scatter would therefore be expected.
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