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EDITORIAL

What Should We Expect from Cardiac PET?

q s cardiac positron emission to-

ography (PET) matures into
the clinical arena and the modality at-
tains widespread use, it is essential
that the process of image interpreta-
tion not be limited to those with years
of PET experience. At first glance by
the inexperienced observer, PET car-
diac images appear a lot simpler to
interpret than single-photon emission
computed tomography (SPECT) stud-
ies. After all, for years we have been
reminded of the advantages of cardiac
PET over SPECT, i.e., higher spatial
resolution, attenuation correction,
hardly any imaging artifact compared
to those reported for SPECT (), in
short, images that are truly quantita-
tive. Thus, our expectations might be
that PET perfusion images from nor-
mal patients are homogeneous and
that any inhomogeneity, no matter
how small, may be safely interpreted
as a perfusion defect. Moreover, upon
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learning this simple rule, we are safe
to correlate these PET perfusion stud-
ies against the ““gold standard,”” coro-
nary arteriography, and that we
should expect the nearly perfect accu-
racy reported by some investigators
23).

For those making the transition
from cardiac SPECT to PET, it is im-
portant to understand that much of the
experience gained in SPECT is trans-
ferable to PET, but nevertheless,
there is another set of rules that needs
to be learned for this new modality. It
is desirable that tools be developed
that assist the PET neophyte in inter-
preting these studies and that these
tools resemble those used in SPECT.
Previously, Hicks et al. (4) reported
on the use of polar maps to quantify
paired cardiac PET studies to analyze
size of perfusion defect, intensity, sta-
tistical significance of and changes in
perfusion or metabolism, including
comparison to a normal database.
This methodology also included com-
parison of stress-stress images to eval-
uate progression/regression of steno-

sis, early and late resting rubidium
images for determining myocardial vi-
ability based on #?Rb washout kinetics
and perfusion-metabolic comparisons
for quantifying ischemia, viability and
necrosis after acute myocardial infarc-
tion.

In this issue of the Journal,
Laubenbacher et al. report on another
automated polar map analysis pro-
gram, this time for the evaluation of
cardiac '>N-ammonia perfusion PET
studies (5). As with other similar tech-
niques reported for SPECT (6-8), one
of the main expectations of this ap-
proach is to increase the objectivity of
the interpretation and to reduce inter-
observer and intraobserver variabil-
ity, two attributes particularly helpful
to the PET neophyte. Their approach
features several technical advance-
ments, including a three-dimensional
sampling and surface display of myo-
cardial activity similar to more recent
SPECT approaches (9, 10) but without
the need to generate oblique angle
images. The approach reported by
Laubenbacher et al. (5) uses a normal
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database generated from patients with
a low likelihood of disease and criteria
for abnormality developed using ROC
analysis to best separate normals from
abnormals, which are similar to tech-
niques used in SPECT quantification
(11). In contrast to the report by Hicks
et al. (4) who did not perform neither
an analysis of the normal myocardial
perfusion distribution of 82Rb or *N-
ammonia nor a correlation with coro-
nary arteriography, the report by
Laubenbacher et al. provides more
details in these areas.

One fair question of these sophisti-
cated quantification and imaging tech-
niques applied to coronary artery dis-
ease (CAD) is: Do their results meet
our expectations? In contrast to gen-
der-specific differences in bull’s-eye
displays reported in SPECT imaging
(12), Laubenbacher et al. report no
statistically significant difference in
tracer distribution dependent on gen-
der in patients with a low likelihood of
CAD. This result is expected due to
the fact that attenuation correction
should eliminate most of the counting
differences due to body habitus. How-
ever, a definitive statement that there
are no gender-specific differences in
normal *N-ammonia myocardial dis-
tribution should await a statistical
comparison of much larger normal pa-
tient populations. Laubenbacher et al.
also suggest that a mean normal tracer
distribution throughout the left ventri-
cle is homogenous.

Nevertheless, their reported values
for mean normal tracer distribution
ranges from 66% to 85% (a 78% vari-
ation) as well as a significant statistical
difference between the distal lateral
wall and a somewhat hotter distal sep-
tum and inferior distal walls. They
also report differences in relative
tracer activity between the proximal
and distal walls. There are a number
of technical factors, most of which
they point out, that may account for
these differences. Among these are:
ungated acquisition blurring the myo-
cardial wall, the relationship between
the size of the myocardial wall and the
spatial resolution of the system, lim-
ited scatter correction and not enough
patients in the normal database.

Laubenbacher et al. point out that
these regional differences in normal
tracer distribution are not observed in
other reports on O and *Rb PET
studies with similar technical limita-
tions and thus are not due to PET im-
aging. Nevertheless, we are not aware
of published reports on 0 and #?Rb
where normal myocardial distribu-
tions were quantitatively determined
and statistically analyzed.

Of course, it is also possible that the
hypothesis stated by Laubenbacher et
al., that there is a real regional varia-
tion in the normal myocardial distribu-
tion of '*N-ammonia, is correct, as
has been suggested for the heteroge-
neity of normal myocardial '®F-deox-
yglucose distribution (13,14). Impor-
tantly, the large lateral/septal wall
count inhomogeneity and the large de-
crease of counts in the inferior wall (in
males) observed in SPECT 2°'Tl (12)
and (somewhat less) in *™Tc-sesta-
mibi studies (I7) due to the lack of
attenuation compensation is not
present in normal myocardial '*N-am-
monia distribution, which does make
these PET perfusion studies easier to
interpret visually. Thus, these normal
PET tracer distributions are more ho-
mogeneous than those reported for
SPECT (12), but there is still some
degree of heterogeneity that quantita-
tive comparison to a normal database
can help interpret.

Does their accuracy for detecting
CAD meet our expectations? It should
be pointed out that the authors warn
that definite diagnostic accuracy re-
quires a prospective multicenter trial
in a larger patient population employ-
ing their normal database and the ab-
normality criteria that they estab-
lished. Nevertheless, it is a misnomer
to call their findings ‘“the accuracy of
their technique’” when the method
was never tested prospectively by
them, not even in a small, in-house
validation. When the thresholds for
detecting disease are allowed to vary
in order to find the best cut-off points
that separate normals from abnor-
mals, those findings are better called
agreements with the gold standard
rather than the accuracy of the tech-
nique. This is because one would ex-
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pect the best possible results when the
same population that is used to de-
velop the criteria for abnormality is
used to test that criteria. Yet, their
best agreements with angiography, us-
ing a very small population of 29 pa-
tients [13-16 patients had CAD (de-
pending on the criteria)], was 85% for
detecting the presence or absence of
CAD and 91%, 79% and 88% for lo-
calizing disease to the LAD, LCx, and
RCA vascular territories respectively.

These results were obtained by
mixing the normal limit comparison of
different polar maps (stress, ratio
{rest/stress} and difference {rest-
stress}) as independent mechanisms
for detecting and localizing CAD. Per-
haps better, or at least more compre-
hensive results could have been ob-
tained had all this information been
fused together. Moreover, the patients
in the normal database were not age-
matched to the study population, and
adenosine was used to stress the ref-
erence group, whereas 35% (12/34) of
the study group were stressed with
dipyridamole. Although these results
are favorable when compared to myo-
cardial perfusion SPECT, they fall
short of perfection. But should we ex-
pect PET to be close to perfect? First,
13N-ammonia PET and coronary arte-
riography measure two different
things, i.e., myocardial perfusion ver-
sus vessel anatomy. Even if both tech-
niques measured the same exact pa-
rameter of vessel anatomy, it is well
documented that the interobserver
agreement of coronary arteriography
is far from perfect (15, 16).

Even though Laubenbacher et al.
used quantitative assessment of one
angiographic view to evaluate the
quantification of myocardial perfu-
sion, there is still angiographer subjec-
tivity in selecting the projection angle
as well as which frame to quantify.
Moreover, even if the quantitative
method used is well validated, the
original developers point out that two
orthogonal views are often required
for accurate quantification of stenoses
(17) rather than the one view used by
Laubenbacher et al. One would have
to question how a perfusion modality
could be expected to agree with a ves-
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sel anatomy modality better than the
gold standard can agree with itself.
The accuracy of the method also de-
pends on the prevalence of disease in
the population being tested. Compar-
ing the accuracy of a new technique to
that reported for an old technique is
like trying to hit a moving target. In
today’s environment of containing
health care costs, patients who are
easy to diagnose because of very high
or very low pretest likelihoods of dis-
ease hardly ever reach a PET facility.
The patients we are more likely to
find, and correctly so, are those with
close to a 50% pretest likelihood of
disease, a 40%-60% stenosis as deter-
mined from a previous coronary arte-
riogram or those with previous multi-
ple PTCAs and CABGs. One could
always try to find and use the easy
patients to show superior results for
any technique, but the results re-
ported would in no way predict what
other users would expect using the
technique in their more complicated
populations. It is not rational to ex-
pect a technique that uses this compli-
cated test population to be perfect.
Moreover, it needs to be technically
superior in order to be even slightly
better than techniques validated 5-10
yr ago. Clearly, if the purpose of a
study is to prove that a new technique
is better than a previously established
technique, the approach should be to
perform a prospective validation using
a large patient population in which pa-
tients undergo both studies in a ran-
dom fashion and are then compared to
the same gold standard.

As with myocardial SPECT, Lau-
benbacher et al. point out that there is
arole not only for polar map represen-
tation but also for comparison to a
normal database. They have provided
us with the realization that at least for
PET !*N-ammonia myocardial perfu-
sion imaging one should not expect
perfectly homogenous myocardial dis-
tributions in normals or perfect agree-
ment with angiography, but rather im-
provements over SPECT imaging.
Laubenbacher et al. have helped pro-
vide us with familiar tools to assist
those learning to interpret cardiac
PET studies which should promote
the widespread clinical utilization of
this important imaging modality.

Ernest V. Garcia

Robert L. Eisner

Randolph E. Patterson

Emory University School of Medicine
Atlanta, Georgia
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