
(ANNs). While processingdata in an ES takes a serial or
sequential progression through a number of IF-THEN
type rules, the processing used by ANNs is a parallel
form analogous to that of the brain, adaptive and not
constrained by fixed rules.

Specialists in the fields of nuclear medicine, radiology
and other disciplines in which data evaluation involves
the interpretation of visual patterns may benefit from
applications of ANN technology. Unlike conventional
serial computers, the parallel processing of ANNs exhib
its more brain-like behavior. If we contrast two types of
human problem-solving, such as recognizing a familiar
visual pattern and mentally solving a mathematical prob
lem, the dichotomy of parallel versus serial processing is
illustrated. A personal computer operating at a rate mea
sured in nanoseconds per operation can outperform a
human in solving a math problem by orders of magnitude,
while the human has a tremendous speed advantage over
the computer (in visual pattern recognition tasks). Neu
ronal processing speeds measured in milliseconds
achieve remarkable systemic speeds because of the enor
mous number of highly interconnected processing ele
ments that operate simultaneously in a distributed pro
cessing manner.

BASICS

An ANN is composed of simple processing elements
(PEs) each of which is capable of communicating with a
large number of similar PEs. This architecture is called
parallel distributed processing (PDP), a term introduced
by Rumelhart and McClelland (3). Parallel refers to the
activityof a largenumberof PEs,in layers,simulta
neously processing data. Distributed refers to the sharing
of the learning task by many processors. Although PEs
are often referred to as neurons, they are, in fact, gross
simplifications of biological neurons. Whereas memory
and adaptation in biological neurons take place in a com
plex interaction of neurotransmitters, synapses and den
drites, memory and adaptation in ANNs reside totally in
the changing weights used to amplify the effects of affer
ent connections to each PE. Figure 2 shows the ultimate
simplicity of the model with I representing the accumu
lated sum of all incoming signals from other PEs, each

J NucIMed 1993;34:510â€”514

uch work has been done attempting to refine or
make increasingly explicit the diagnostic process. Nor
mally, diagnosis principally involves the processes of col
lection, analysis, recognition and classification of data.
Patient data are obtained from interviews, examinations
and tests. The physician, using his knowledge and expe
nence, transforms the data into a diagnosis. If one were
to view the physician as a system, the data collected
would provide the inputs and the diagnoses the outputs.
This system is shown schematically in Figure 1 in a black
box representation with three parts: inputs, outputs, and
a mapping or transformation F(I) from inputs into outputs
taking place within the box. This simplistic representa
tion of cognitive behavior is useful because the black box
can represent many forms of internal processing of data.

The field of artificial intelligence (Al) has provided
several approaches to defining systems that may be useful
for medical diagnosis. There is a distinct dichotomy,
however, between the approaches used by two of the
most popular systems in what takes place in the black box
described above. Expert systems (ESs) are rule-based to
explicitly define the steps that take one from a set of
inputs to outputs (1). The transformation appears as a
progression through a number of IF-THEN type rules
constructed with the help of domain experts such as
physicians experienced in the diagnostic area of interest.
If the domain of knowledge required for the diagnosis can
be clearly defined by such rules, ESs may be successful
(2). The rules must be so structured and implemented
through the use of an â€œinferenceengineâ€•that when a
pattern of inputs is presented to the ES, a diagnosis or
other form of response will be produced as output. This
logically complete set of rules employed to perform the
transformation is in contrast to artificial neural networks
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FIGURE 1. Aschematicrepresentationofa systemmapping
inputsintooutputs.

multiplied by its weighted connection. This sum is com
pared with a bias obtained from a special input with a
fixed excitation value of 1 which is also multiplied by its
weight to produce a changeable threshold (Wbjas X 1).
The PE fires or outputs a value of 1 only if (I-threshold)

0, otherwise the PE does not fire (output = 0). This

conversion of I into a binary output is provided by a
nonlinear transfer function called a step function. Other
forms of transfer functions find utility in various network
paradigms.

With only two inputs, X and Y, a PE's output is math
ematically an equation of a line that divides two-dimen
sional space into two parts. The line is called a linear
discriminant. Any arbitrary line can be defined by assign
ing weights to the two input connections and the bias
connection as shown in Figure 3. Here, the line that
intercepts the x-axis at 8 and the y-axis at 6 is defined by
the three connection weights shown. The output of the

PE will take on a positive or negativesign dependingon
the position of a point on the surface (determined by
inputs X and Y) with respect to that line. The function
represented by the PE and its associated weights is
shown as F(X, Y). Suppose, for example, that a patient's
diagnosis with respect to either having a disease or not
having a disease could be completely determined by two
parameters that could be represented as numbers. Sup
pose the disease is hypertension, with a PE's positive
output associated with the diagnosis hypertensive and a

FIGURE 2. Elementaryprocessingelementina neuralnet
work.

x
LINEAR DISCIUMINANT

FIGURE 3. Exampleof a discriminantcreatedbyweights
assignedto a processingelement.

negative output associated with normality. The input pa
rameter values are blood pressure, X for systolic and Y
for diastolic. In actual practice, it may not be possible to
find a line that will correctly separate all points in a space.
For example, Figure 4 shows a set of sample points of
men, X, and women, 0, identified by height and weight.
The task of a PE is to find a set of weights (linear dis
criminant) that will correctly associate an input pair
(height, weight) as belonging to a man or a woman. The
best choice of a linear discriminant is one that minimizes
the number of incorrect classifications.

HISTORY

In 1943, McCulloch and Pitts (4) proved that simple
threshold sensitive ANNs could be configured to perform
any logical function. The implication of this was to show
that networks of simple neural-like processors could be
designed to operate logically as digital computers now do.
It is believedthat von Neumannwas inspiredby this

FIGURE4. Best(leasterror)discriminantclassifyingmales
(x) and females (0) on the basis of height and weight.
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flIRKE-LAYER PERCEPTRON

early work to develop the first stored program digital
computer.FortheMcCulloch-Pittsmodeltobebiologi
cally plausible, neurons must behave in a binary manner
producing an output that is either all or none. In 1949,
Hebb (5) advanced a postulate of neuronal learning based
on cooperative synaptic reinforcement: â€œWhenan axon
ofcellA is near enough to excite a cell B and repeatedly
orpersistently takespart infinng it, some growth process
or metabolic change takes place in one or both cells such
that A â€˜Sefficiency, as one of the cells firing B, is in
creased. â€œSubsequent research into ANNs used varia
tions in this theory known as Hebb's rule to provide
learning paradigms for networks. Since only the connec
tion weights carry information, all learning algorithms
must function in such a manner so that as each input
pattern is presented, the connection weights to each PE
will be adjusted to reduce the error or difference between
the desired and actual output of the PE and eventually

minimize the error. The reader will find excellent ac
counts of the early development of ANNs in the literature
(6, 7). The Perceptron, an ANN proposed by Rosenblatt
(8) in 1958, applied this technology to recognize two
dimensional patterns, such as letters, using the retina as
a model. Rosenblatt proved that a perceptron trained
with his learning algorithm will converge or learn to prop
erly classify input patterns if the patterns are linearly
separable. This will be discussed later.

In 1960,Widrow andHoff (9) implementedin hardware
an adaptive processing element called Adaline. Varia
tions of their learning algorithm, Widrow-Hoff, are used
with current ANNs. This algorithm is also known as the
delta rule or gradient descent method in weight space.
Somewhat later, ANN research entered the â€œDarkAgesâ€•
(10) when in 1969, Minsky and Papert were critical of the
future of ANN research (11) and pointed to the inability
of the simple perceptron to handle the logical AND func
tion. Nonlinear networks were needed to solve many
problems. At that time, major funding for Al was divided
between expert systems and neural networks. While A!
research using digital computers continued, research in
ANNs ebbed. A serious drawback for ANN was the lack
of a learning algorithm that could reduce output error
through weight adjustment in a multi-layered perceptron
(the credit assignment problem). In 1974, Werbos (12)

introduced a method to solve the credit assignment prob
lem in dynamic modeling. Rumelhart et al. refined a
multi-layer learning rule in 1986(13). The 1980sbrought a
resurgence in ANN research due in large part to the
availability of low cost, high speed computers on which
to simulate ANNs. The algorithm known as â€œback-prop
agationâ€•is the most widely used learning algorithm for
multi-layered networks. As Lippmann (14) shows, most
interesting problems can be solved by using three-layered
networks.

OUTPUT LAYER

fiJDDEN LAYER

@PUTLAYER

FIGURE 5. Exampleofa three-layerPerceptronneuralnet
work.

APPLYING NEURAL NETWORKS

Although an ANN may have any number of layers, the
most common ANN, a three layered perceptron com
posed of an input layer, a hidden or intermediate layer

and an output layer, is used as an example (Fig. 5). Input
patterns must be paired with predetermined outputs or
targets toward which the network's weights must be ad
justed. The weights are adjusted according to rules based
on the error between the desired outputs (those presented
with the input data) and the actual outputs of the network

before weights are adjusted. The training algorithm han
dles the credit assignment problem of determining the
degree of error contributed by each PE in the network
and makes appropriate incremental weight changes
where needed to reduce the error.

There are two steps involved in this type of learning:
first, an input stimulus is applied to the network and
allowed to propagate through the network to the outputs;
second, the network outputs are compared with the de
sired outputs and the error or difference between them is
reflected back through changes to the network's connec
tion weights. These two steps are executed for each input
pattern and the process is repeated until the overall error
has been reduced to an acceptable level.

Training a network has two goals: first, to reduce the
network error to an acceptable level (convergence) and
second, to produce a set of network weights that will
extend the relationship between the input and output
pairs established during training to produce correct out
puts when the network is presentedwith input patterns
not previously seen. This ability is called â€œgeneraliza
tion.â€•If the secondgoal cannot be attained, the ANN is
doing little more than finding unique relationships be
tween trained inputs and outputs. This is similar to a
â€œtablelook-upâ€•procedure where the input represents an
address and the output is the data found at that address.
The multi-layered perceptron is the form of ANN most
used for classification problems. The simple feed-forward
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type network moves signals from the input layer to the
hidden layer and then to the output layer. Each PE's
output is generally (fully) connected to all of the PEs in
the layer immediately above. Except for the input layer,
the bias PE, which always has an output value of one, is
also connected to each PE. With a single hidden layer,
the ANN transforms patterns or points in the input space
into points in another space whose dimensionality is de
termined by the number of PEs in the hidden layer. The
real power of the ANN lies in hidden layer's internal
representation of the input pattern. Correctly sizing the
number of PEs in the hidden layer is often critical to
performance of the network. Too large a number may
cause the network to do little more than provide a table
look-up for the input patterns, while too few PEs may not
be able to fully extract the critical input/output relation
ships in the training patterns. Either extreme may lead to
poor generalization of new patterns once the network has
been trained. In an autoassociative network, where the
desired output is the same as the input and the number of
PEs in the hidden layer is less than the number of PEs in
the input layer, the reduced dimensionality of the hidden
layer's output represents a compression of the data (15).
The output layer provides the final transformation needed
for the desired output. For example, if the network was to
simply separate input patterns into two classes, those
which are â€œnormalâ€•from those which are â€œabnormal,â€•
then a single PE in the output layer could represent nor
mal patterns by producing a one out and the abnormal
patterns with a zero out.

THE PROMISE

ANNs are being applied to many areasfrom weather
forecasting to stock market predictions and vary greatly
in form and function. The four learning paradigms listed
by Rummelhart and Zipser (16) are:

1. Auto-associator, which maps a pattern onto itself (A
-* A).

2. Pattern Associator, which maps a set of patterns
into a different set of patterns (A â€”@B).

3. ClassificationParadigm,which mapsall variations
of a set of input patterns into a fixed set of catego
ries.

4. RegularityDetector,whichdiscoversinputpattern
dissimilarities and develops its own appropriate out
put classes rather than using previously assigned
categories.

The focus here will only be on ANN research that offers

the greatest promise in image classification, recognition
and enhancement.

First a note of caution. The black box approach de
scribed earlier limits learning to data provided by the
user. The goodness of the output when tested on trained
patterns as well as new patterns depends entirely on the

statistics of the patterns used in training that make up the
data base. The old computer adage of â€œgarbagein, gar
bage outâ€•certainly applies here. For example, suppose a
medical specialist is skilled in one form of diagnostic
imaging. Let I@,be an image obtained from Patient p using
this familiar imaging system, I. Also, let the specialist's
evaluation of this image be D(I@). If the specialist is
introduced to a new form of potentially valuable imaging,
I', initially hemay be unableto interpret the new images.
If images using both systems are made of Patient p. then
if the system I' is to perform at least as well as system I
on data from Patient p, the specialist would expect D(I@)
= D(I@'). The ANN can then be trained on data obtained

from the new system, I', using correct diagnoses D(I@)as
the output on which to be trained. If the training of the
ANN is successful, the network should be able to gener
alize on the transformation learned during training and
apply it correctly to images, I', that are not part of the
training data. The supervised training provided the ANN
is really a form of conceptualization where the ANN,
after repeated exposure to data that has already been
correctly classified, discovers the invariance of certain
data items that distinguish class membership. Concepts
correctly learned can then be extended or generalized to
input patterns not previously seen.

Most of today's research on ANN applications is done
on conventional computers using software simulations
with hardware accelerator boards offering additional pro
cessing speed. While use of a software simulator may
seem to defeat the advantage of parallel processing
speeds, the flexibility of design changes offered by simu
lation compensates for the speed disadvantage. Once an
ANN has been trained, the connections and their weights
completely specify the mapping of inputs to outputs. An
alog and digital integrated ANN circuits are currently
being developed to implement various algorithms in hard
ware.

As stated earlier, ANNs learn by example, not by
rules. There really is no mystery, however, as to what is
happening during the learning process for most learning
paradigms are deterministic. Training is terminated once
the synaptic weights have adjusted or converged to cor
rectly map the training patterns of input/output pairs. The
adequacy of the weights, once trained, is totally depen
dent on the proper selection of training data. We would
like the network, once trained, not only to map the train
ing set of inputs into correct outputs, but also to be able
to generalize from the concept learned to correctly map
new inputs (not part of the training set) into correct and
useful outputs.

It is fortunate that technology has favored the use of
digital images. Gamma camera images, computed tomog
raphy (Cr), ultrasound and magnetic resonance (MRI) all
create digital images easily manipulated by computers
and ANNs. There are a number of researchers reporting
favorable results in using ANNs for image classification.
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TABLE1
Comparison of ANN and ES

determine the likelihood of pulmonary embolism. Carver
Mead's book (23) on the development of hardware neural
systems defines new approaches to ANN fabrication,
including an electronic 100,000 transistor retina. As hard
ware is developed to permit the design of very large
networks, we may expect many useful imaging applica
tions to emerge for ANNs in the medical field.
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Dawson et al. (17) reported good agreement between
neural network and human classification of breast carci
noma using nuclear graded images. Neonatal chest x-rays
(18)were used to train an ANN to chooseone or more
diagnoses from a list of 12possible diagnoses. After train
ing, the researchers found good diagnostic agreement
between the ANN and participating radiologists. A back
propagation ANN was applied to the problem of segmen
tation of the aorta from MRI images (19) with limited
success. A screen for abnormal cells from slide images
using an ANN has been shown to be a useful diagnostic
tool (20) in hemotology.

Table 1 contrasts expert systems and ANNs with re
spect to three stages of design, execution and analysis.
Expert systems are driven by a set of rules provided by
domain experts. Acquiring the knowledge base for the
expert system is the most difficult process with the effec
tiveness of the system being totally dependent upon the
completeness and accuracy of the rules upon which the
system is based. The analysis, however, of the outputs of
an expert system is easy since the line of reasoning is
simply the progression through the set of rules. On the
other hand, the rules in an ANN are implicit in the train
ing data provided to the network. Expertise is still
needed, however, to insure the correctness of the training
data. While the expert system's outputs are easy to ana
lyze, the ANNs' outputs, basedon distributed processing
of the inputs and dependent solely on the weighted con
nection set arrived at through training, are difficult to
analyze.

SUMMARY
In nuclear medicine, analysis, interpretation and diag

nosis may each be appropriate as applications for ANNs.
Image processing and pattern recognition are two appli
cation areas of ANN technology that appear promising.
An ANN (21) was used to classify normal and abnormal
FDG-PET scans and performed better than discriminant
analysis. Favorable results have been obtained from an
ANN (22) in the interpretation of data recorded by expe
rienced observers using various standard V/Q scans to
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