Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Technetium-99m-Hydroxymethylenediphosphonate Negative Bone Tumors

Masayuki Sasaki, Yuichi Ichiya, Yasuo Kuwabara, Makoto Otsuka, Toshimitsu Fukumura, Yasuhiro Kawai, Hirohumi Koga and Kouji Masuda

Department of Radiology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka, Japan

CASE REPORTS

Patient 1

A 44-yr-old man was admitted to our hospital for evaluation of an abnormal chest x-ray. The chest radiograph and x-ray CT demonstrated an osteolytic lesion with an expansile margin in the right 3rd rib (Fig. 1A). The FDG-PET image revealed a marked accumulation in the tumor (Fig. 1B) with a tumor-to-muscle ratio of 7.5. The bone scintigram with 99mTc-HMDP showed no abnormality (Fig. 1C). After the PET study, a needle biopsy was performed and the histopathological diagnosis of myeloma was confirmed.

Patient 2

A 57-yr-old man was admitted to our hospital for radiotherapy to a right-neck lymph node metastasis originating from esophageal cancer. After the completion of radiotherapy, an FDG-PET study was performed to evaluate the response to radiotherapy. FDG-PET demonstrated a decreased accumulation in the right-neck tumor compared with that before radiotherapy (Fig. 2A). The tumor-to-muscle ratio decreased from 11.6 to 3.8. However, high FDG accumulation was seen in the left neck. The tumor-to-muscle ratio of the left-neck mass was 8.7. X-ray CT revealed a metastatic lesion in the 6th cervical spine (Fig. 2B). A bone scintigram with 99mTc-HMDP showed no abnormality (Fig. 2C).

DISCUSSION

Bone scintigraphy with 99mTc-phosphate complex is widely used for examination of tumors in bone because of its high sensitivity (1,2). Most malignant lesions in bone have an increased accumulation of 99mTc-phosphate complex due to the increased osteoblastic activity or hyperemia of the bone tissue around the tumor (15). However, there are some bone tumors that result in a negative bone scintigram (3-5). Multiple myeloma is known to be one bone tumor with a negative bone scintigram (3). It has been suggested that the bone scintigram is negative because myeloma cells produce an osteoclast-activating factor which promotes bone resorption without osteoblastic change (16). The patient with myeloma that we studied...
had a negative bone scan with 99mTc-HMDP, but the lesion demonstrated increased metabolic activity with FDG.

Most bone metastases show an increased uptake of 99mTc-phosphate complex (1,2). However, the bone scintigram in our patient with a metastatic lesion in the cervical spine from esophageal cancer showed no such abnormality. A highly destructive bone tumor may result in minimal osteoblastic activity and show no significant radionuclide accumulation (5). When the tumor grows very rapidly or is highly destructive, the bone tissue surrounding the tumor may not be able to react sufficiently enough to increase its osteoblastic activity (17). It is also possible that the tumor produces some humoral factors which promote bone destruction and depress the osteoblastic activity (12).

FDG has been reported to accumulate in many kinds of human malignant tumors (6–10), including bone tumors (11–13). Kern et al. first reported the usefulness of FDG-PET for bone tumor imaging (11), and several reports have suggested a correlation between the uptake of FDG and histological grading (12,13). We have encountered a high accumulation of FDG in myeloma and metastatic bone tumor from esophageal cancer. It is possible that FDG accumulation in myeloma is due to increased metabolic activity of the myeloma and is similar to other hematological malignancies, such as lymphoma (9). The accumulation of FDG in primary esophageal cancer has been reported (10), and the same mechanisms may be responsible for increased accumulation in its metastases. Our case may thus reflect the rapid growth and highly invasive features of the tumor.

In this report, we presented two patients with bone tumors having a high FDG accumulation but a negative bone scintigram. The bone scintigram with 99mTc-phosphate complex reflects the osteoblastic activity of the surrounding or remaining bone tissue, whereas the accumulation of FDG is associated with the metabolic activity of the tumor itself. An FDG-PET study can be used as a complementary study for the detection and follow-up of bone tumors when 99mTc-phosphate bone scintigraphy is negative. For this purpose, whole-body FDG-PET will be particularly useful.

ACKNOWLEDGMENTS

We thank Mr. Brian T. Quinn and Ms. Julia W. Buchanan for editorial assistance.
REFERENCES

Correction
Due to a production error, in the December 1992 issue of the Journal, the authors for the article, "c-erbB2 Protein Overexpression in Breast Cancer as a Target for PET Using Iodine-124-Labeled Monoclonal Antibodies" (pages 2154-2160) were listed incorrectly. The corrected list is as follows: M. Adel Bakir, Suzanne Eccles, John W. Babich, Nighat Aftab, Jennifer Styles, Christopher J. Dean, Richard M. Lambrecht and Robert J. Ott.