The Dosimetry of Iodine-123-Labeled TISCH: A SPECT Imaging Agent for the D1 Dopamine Receptor

P. David Mozley, Xiaowei Zhu, Hank F. Kung, Mark H. Selikson, James Hickey, Suzanne Galloway, Nula Pfieffer and Abass Alavi

Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania

TISCH is an iodinated D1 specific dopamine receptor antagonist that may be useful as a SPECT imaging agent. This report documents its pharmacological safety in animals and its radiation dosimetry in humans. The dose of radiation that 123I-TISCH delivered to seven healthy subjects was estimated with the absorbed fraction technique. Conjugate images of the body were serially acquired for up to 24 hr after the administration of a known amount of activity. The count rates in the organs that could be visualized were measured on each image. These count rates were corrected for attenuation with 123I transmission scans. The doses to the other organs that did not take up enough activity to be visualized on the images were estimated with established models. The dosimetry was calculated for each subject individually before the results were averaged. Rapid biological washout minimizes the radiation exposure to most organs. The dose to the large bowel is limiting in healthy volunteers. The proximal colon receives about 0.67 rad/mCi (180 μGy/MBq) or about 5 rad for every 7.5 mCi of TISCH injected. This low radiation burden should make it feasible to study the D1 dopamine receptor in patients who have neuropsychiatric disorders before and after treatment.

J Nucl Med 1993; 34:208-213

Neuroimaging studies of the D1 dopamine (DA) receptor may further the understanding of normal brain function and the pathophysiological basis of several neuropsychiatric disorders. The distribution of this receptor in regions of the neocortex, such as the dorsolateral prefrontal cortex, the hippocampus and the amygdala, suggests that it may play an intimate role in several cognitive functions (1). Decreased D1 DA activity may be associated with some of the cognitive deficits that characterize schizophrenia (2,3), since intellectual performance seems to improve in some of these patients with the administration of a D1 specific agonist (4). Decreased D1 DA activity may also contribute to the formation of psychotic symptoms. The positive symptoms of psychosis are thought to result from processes that increase the activity of D2 dopaminergic neurons (5). Animal studies have demonstrated that the D1 dopaminergic neurons in the cortex tend to inhibit D2 activity in the mesolimbic system (6,7). Decreased D1 inhibition of these D2 neurons may result in pathologically increased D2 activity that produces some of the positive symptoms of psychosis. Unfortunately, these relationships have been difficult to study in living patients, in part because a D1 specific dopamine receptor ligand that can be used with conventional neuroimaging techniques has not become widely available.

Several Schering compounds are highly specific D1 receptor antagonists. They have been useful in laboratory studies of animals and in postmortem specimens (8). Schering compounds 23390 and 39166 have been labeled with 11C for use with positron emission tomography (9,10), but they have not been satisfactorily labeled with a radionuclide that can be used in vivo with single-photon emission computed tomodraphy (SPECT).

Kung and his colleagues (11–13) have developed a series of iodinated Schering compounds which include the 3-iodo analog of 23390, referred to as TISCH [(+)-7-chloro-8-hydroxyl-1-(3'-iodophenyl) 3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine]. TISCH has a Kd of 0.03 nM in striatal membrane preparations derived from rats (13). Its binding can be blocked by D1 specific Schering compounds (13) and reduced by both direct and indirect DA agonists (14). Because its relative uptake in the brains of animals is high with a favorable target-to-background ratio (15), studies were done of its pharmacological safety in animals and its dosimetry in humans.

METHODS

Toxicology Studies

Nonradioactive TISCH was administered intravenously to seven male New Zealand White rabbits in doses of 82.6 mg/kg/day (0.7 mmol/kg/day) 5 days a week for 2 wk. Seven matched control rabbits were injected with placebo. Serial measurements were made of their weights, basal body temperatures and serum chemistries. Both groups were monitored for 2 wk after treatment before they were killed. Histopathological examinations that fol-
lowed included gross and microscopic inspections of the brain, kidneys, liver, lungs and testes.

Radionuclide
The 123I used in this study was obtained commercially (Nordion Intl., Canada). It was generated with the reaction

$$^{124}\text{Xe}(p, 2n)^{123}\text{Cs} \rightarrow ^{123}\text{Xe} \rightarrow ^{123}\text{I}.$$

This cyclotron-based production scheme does not produce any ^{124}I or ^{125}I contamination. The radionuclide purity of each dose was guaranteed to exceed 99.8%.

Radiolabeling
The preparation of the radiotracer labeling kit has already been described in detail (13). This kit contained 50 μg of the lyophilized tributyl tin derivative, SnBu3-TISCH. After adding about 12 mCi of 123I NaI dissolved in a 50% solution of ethanol and hydrochloric acid, an iodostannylation reaction was initiated with hydrogen peroxide and quenched with sodium bisulfite. After purging the volatile side products with air, the reaction mixture was neutralized with sodium bicarbonate and extracted with ethyl acetate. The radiolabeled TISCH was separated from any impurities with preparative reverse-phase, high-pressure liquid chromatography (HPLC). The fraction corresponding to the 123I-TISCH was collected and condensed before being dissolved in ethanol and diluted with 2.0 ml of normal saline. This solution was passed through a 0.22 μm filter prior to administration.

A small volume of the final solution was removed and analyzed for purity with HPLC. Another aliquot was retained for sterility and pyrogenicity tests.

Accrual and Assessment of Subjects
Seven men with a mean age of 31 ± 6.8 (range: 23–41) gave informed consent. A structured medical history and physical examination indicated that they were healthy and without any disease processes that could potentially affect the distribution or elimination of the radioligand in a meaningful way. Each took ten drops of Lugol’s solution prior to the study, which was administered after the initial laboratory studies had been drawn.

Blood was drawn an hour before and 24 hr after administration of the tracer. The clinical laboratory battery included a complete blood cell count with differential, serum electrolytes, liver enzymes, thyroid function tests, an autoimmune panel, urinalysis and a urine drug screen.

Measurements of Linear Attenuation
Each subject was positioned between a sheet source and a gamma camera so that their mid-coronal panel was 35 cm from the surface of a parallel hole collimator. The sheet source contained between 4 and 8 mCi of 123I in 500 ml of water. Transmission images were acquired for 2 min through air and each organ. The fraction of attenuated activity was determined by dividing the transmitted counts per pixel through an organ by the counts per pixel in an unattenuated image of the sheet source.

Measurements of Administered Activity
The amount of radioactivity in each syringe containing 123I-labeled TISCH was measured in a Radcal 4045 dose calibrator before and after injection. The doses that were administered in this study ranged from 1.8 to 3.1 mCi. Images of these syringes were also acquired before and after injection on the same gamma camera that was used to scan the subjects. Images of the injection sites were checked to make sure that the doses had not infiltrated the subcutaneous tissue.

Emission Images
Conjugate images were obtained for 2 min each on a single-headed SPECT system (GE Medical Systems, Milwaukee, WI). It was equipped with a large field of view, low-energy, all-purpose, parallel-hole collimator. A 20% window was symmetrically centered on 159 keV. The dose was administered at about 4 p.m. (1600 hr). The first set of images was acquired about 1 hr later. Between four and six sets of images were obtained over the next 9 hr. Another set of images was acquired the next day in five of the seven subjects.

Count Rate Measurements
Two methods were used to measure the count rates in organs that took up enough activity to be visualized on the images. The clearest image of each organ was displayed on a gray scale, with the upper limit automatically set for the pixel of maximum intensity. The operator then subtracted 10% as background. An automated subroutine counted the number of pixels in a region of interest (ROI) that was made by tracing the edges of the organ with a trac ball. A subset of 54 ROIs was drawn twice in order to quantify the intra-rater reliability of these measurements.

The rapid elimination of this SPECT agent obscured the boundaries of most organs on the delayed images. Whenever the boundaries of an organ could not be clearly visualized, the total number of counts in its image was calculated by first placing a limited ROI within the organ and measuring the mean counts per pixel in the ROI. With the exception of the right lung base, these ROIs were made as large as possible, while ensuring that they fell completely within the organ borders. The average counts per pixel in these ROIs was then multiplied by the total area of the organ that was measured on its clearest image.

A subset of 17 organs was measured both ways on their initial images in order to quantify the effect of using a limited boundary instead of a whole organ boundary.

Quantitation of Activity
A version of the absorbed fraction technique was used to quantify the fraction of the injected activity C_i, in each organ at each time point (16–19). These fractions were calculated from the count rates that were measured on the images with the equation:

$$C_i(t) = \frac{\sqrt{C_d(t) \times C_p(t)}}{C_s},$$

Eq. 1

where $C_i(t)$ = fraction of the administered dose at time t;

$C_d(t)$ = anterior view count rate at time t (cpm);

$C_p(t)$ = posterior view count rate at time t (cpm);

μ = effective linear attenuation coefficient (cm$^{-1}$);

x = effective thickness of the patient over the organ of interest (cm);

C_s = difference in the syringe count rates pre- and postinjection (cpm).

The value of [e$^{-\mu x}$] was measured directly from the transmission images. The correction factor for organ geometry that is usually included in Equation 1 was assumed to be unity.

Cumulated Activity
The cumulated activity, A_c, within an organ depends on how much of the radiotracer it takes up and how long the activity resides in the organ. In this study, curve fitting was not neces-
sary to integrate the time-activity curves because the cumulated activity in an organ could be calculated directly with Equation 2 below:

\[
\tilde{A}_i = A_{t,i} + \sum_{j=i}^{n-1} \frac{1}{2}[A(t_j) + A(t_{j+1})][t_{j+1} - t_j]
\]

\[+ \frac{A_n(t_n)}{\lambda_p}, \tag{Eq. 2}\]

where \(\tilde{A}_i\) is the cumulated activity in the \(i^{th}\) organ (\(\mu\text{Ci-hr}\)), \(A_{t,i}\) is the activity in the \(i^{th}\) organ at the first time point (\(\mu\text{Ci}\)), \(A_i\) is the measured activity in the \(i^{th}\) organ (\(\mu\text{Ci}\)), \(t_i\) is the time interval between injection and the first set of emission images (hr), \(t_i\) is the time interval between injection and the \(j^{th}\) set of emission images (hr) and \(n\) is the total number of images made over the course of the study.

The first two terms in the equation represent the summation of areas under the actual time (hours) activity (\(\mu\text{Ci}\)) curve for each organ. The last term represents the maximum dose an organ could have absorbed after the last measurement of activity was made even if there was no further biological washout, and physical decay was the only means of elimination from that point on.

Bladder Model

Each subject was asked to micturate frequently, but the voiding interval used in the calculations was 3.5 hr. The voided urine specimens were imaged the same way the syringes and the subjects were. The counts in these images were used to determine the fraction of the injected dose excreted by the renal system as a function of time.

The absorbed dose to the bladder was calculated with the method recommended by ICRP 53 (20). In this model, the bladder dose is a function of the total activity in the body, the fraction of the total body activity that is excreted by the kidneys, the renal excretion rate, and the voiding interval. In a one-compartment model, the rate \(U(t)\) at which activity will be excreted into the bladder is given by Equation 3:

\[
U(t) = f_{A_T}\lambda_a e^{-\lambda_a t} + \lambda_p\lambda_a, \tag{Eq. 3}\]

where \(U(t)\) is the rate at which activity is excreted into the bladder (\(\mu\text{Ci/hr}\)), \(f\) is the fraction of activity which is eliminated by the renal system, \(A_T\) is the total amount of activity injected into the body (\(\mu\text{Ci}\)), \(\lambda_a\) is the biological elimination constant (hr\(^{-1}\)) and \(\lambda_p\) is the radioactive decay constant (hr\(^{-1}\)).

Assuming the bladder is empty at \(t = 0\), then the total activity \(A_B\) excreted in the bladder at \(t\) (hr) can be calculated by integrating Equation 3 to yield:

\[
A_B[\mu\text{Ci}] = f_{A_T} e^{-\lambda_a t}[1 - e^{-\lambda_p t}], \tag{Eq. 4}\]

This function was fit to the urine collection data in order to determine the fraction of activity which was eliminated by the renal system, \(f\), and the biological elimination constant, \(\lambda_a\). For a series of regular voiding intervals \(T_v\), the total cumulated activity \(\tilde{A}_B\) contained in the bladder is given by Equation 5:

\[
\tilde{A}_B[\mu\text{Ci-hr}] = f_{A_T} \left[\frac{1}{\lambda_p + \lambda_a} - \frac{1}{\lambda_p + \lambda_a - e^{1/(\lambda_p + \lambda_a)}}\right] \tag{Eq. 5}\]

Gastrointestinal Model

The model for the gastrointestinal (GI) tract was taken from ICRP 30 (21). The standard mass of tissue in each region of the gut was taken from ICRP 23 (22). The dose to each region of the GI tract was calculated from the count rates in a single ROI that included the entire extrahepatic abdomen. Because the kidneys and the spleen never accumulated enough activity to be visualized on any of the images, they could not be excluded from this ROI. The right upper quadrant boundary of this ROI was drawn along the superior margin of the right colon and the inferior margin of the liver. In patients with high hepatic flexures, this resulted in the inclusion of some liver tissue in the ROI. The left upper quadrant boundary of this ROI was drawn along the base of the heart and the left lung. Its inferior border included most of the pelvis with the exception of the urinary bladder.

Indirect Measurement of Activity in the Rest of the Body

The dose to many organs could not be measured directly because there was never enough uptake in them to be visualized on the images. Any activity not in the organs that could be visualized on the images was assumed to be evenly distributed in the rest of the body. Because there was no way to determine whether or not the retention of the tracer was prolonged in some of these tissues, the biological half-life of elimination in them was assumed to be 24 hr. This activity was calculated with Equation 6:

\[
A_{B_R}(t) = A_T - \sum_{i=1}^{m} A_i(t_i), \tag{Eq. 6}\]

where \(A_{B_R}\) is the total activity in the rest of the body at \(t = 1, A_T\) is the total amount of activity that was injected, \(A_i\) is the amount of activity in each organ measured at the time of the first scan and \(m\) is the number of organs that were measurable on the images.

Absorbed Doses

The absorbed doses were estimated according to the MIRD formalism (23). The dose to the ovaries was calculated by assuming that a female would have the same percent uptake per somatic organ and whole body as the men in this study.

The equation that was used to calculate the dose \(D\) of radiation absorbed by each organ is given by (24):

\[
D[k][\text{rad}] = \sum_{i=1}^{n} \tilde{A}_i S(k \leftrightarrow i), \tag{Eq. 7}\]

where \(D[k]\) is the dose to target organ \(k\) [rad], \(\tilde{A}_i\) is the cumulated activity in source organ \(i\) (\(\mu\text{Ci-hr}\)) and \(S(k \leftrightarrow i)\) is the mean dose to target organ \(k\) per unit of cumulated activity in source organ \(i\) (\(\mu\text{Ci-hr}\)).

RESULTS

None of the rabbits which were administered large doses of TISHC for 10 days had any behavioral signs of acute toxicity. When compared to the seven matched control rabbits, their weights and temperatures were stable and they did not develop any meaningful changes in their serum chemistries. Histopathological examinations did not demonstrate any gross or microscopic changes in any of the organ systems that were examined.

HPLC demonstrated that the minimum radiochemical
purity of 123I-TISCH used in this study was $\geq 95\%$. The preparation never failed any other tests of quality control. Pyrogenicity tests were all negative.

The neuroligand was successfully administered to each subject. Images of the injection sites did not show any infiltrated activity. No free activity could be visualized in the salivary glands or stomach. The doses used in this study ranged from 1.8 to 3.1 mCi. The measured count rates in the images of the syringes ranged from 210 to 440 thousand counts per minute. There was no evidence to suggest that these count rates ever approached the saturation rate of the camera. The images were acquired without any untoward events. No artifacts were introduced.

There were no subjective effects of the radiotracer on any of the subjects. Their vital signs remained stable throughout the procedure, and there were no changes noted on physical examination. There were no meaningful changes in the blood counts or serum chemistry values in any of the subjects.

Analysis of the urine data showed that six of the subjects voided over half the administered activity within the first 8 hr of administration. Rapid clearance of this tracer prevented the boundaries of many organs from being clearly seen on the delayed images.

In a sample of 54 organs with well-delineated boundaries on the early images, ROIs could be drawn around a whole organ with an intra-rater reliability of 94%. However, the measurements of organ area on the delayed images some-

TABLE 1

<table>
<thead>
<tr>
<th>Organ</th>
<th>Dose (mrad/mCi)</th>
<th>±s.d.† (mrad/mCi)</th>
<th>Dose (µGy/MBq)</th>
<th>±s.d.\ddagger (µGy/MBq)</th>
<th>λ (µGy-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder wall</td>
<td>210</td>
<td>46</td>
<td>57</td>
<td>12</td>
<td>600</td>
</tr>
<tr>
<td>Bone Marrow2</td>
<td>60</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Brain</td>
<td>18</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4000</td>
</tr>
<tr>
<td>Colon: Distal</td>
<td>670</td>
<td>100</td>
<td>180</td>
<td>28</td>
<td>2700</td>
</tr>
<tr>
<td>Colon: Proximal</td>
<td>660</td>
<td>100</td>
<td>180</td>
<td>28</td>
<td>370</td>
</tr>
<tr>
<td>Heart wall</td>
<td>80</td>
<td>15</td>
<td>22</td>
<td>4</td>
<td>4000</td>
</tr>
<tr>
<td>Intestine, Small</td>
<td>270</td>
<td>42</td>
<td>73</td>
<td>11</td>
<td>370</td>
</tr>
<tr>
<td>Kidneys2</td>
<td>50</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Liver</td>
<td>340</td>
<td>41</td>
<td>92</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Lungs</td>
<td>70</td>
<td>14</td>
<td>19</td>
<td>4</td>
<td>4000</td>
</tr>
<tr>
<td>Ovaries2</td>
<td>150</td>
<td>17</td>
<td>41</td>
<td>5</td>
<td>4000</td>
</tr>
<tr>
<td>Spleen2</td>
<td>31</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>4000</td>
</tr>
<tr>
<td>Stomach2</td>
<td>110</td>
<td>17</td>
<td>30</td>
<td>4</td>
<td>370</td>
</tr>
<tr>
<td>Testes2</td>
<td>18</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2200</td>
</tr>
<tr>
<td>Thyroid</td>
<td>50</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>9.4</td>
</tr>
<tr>
<td>Remainder of the body</td>
<td>50</td>
<td>7</td>
<td>14</td>
<td>2</td>
<td>9.4</td>
</tr>
</tbody>
</table>

*Dose was estimated indirectly from measurements of activity in nearby source organs.

*Dose was calculated in order to indicate the range of values.

*All values are the sum of the self dose and the dose from the source organs, which have been rounded to two significant figures.

Dosimetry of TISCH • Mozley et al.
times varied by more than 20%. This problem was dealt with by multiplying the mean activity per pixel in the center of an organ on the delayed images by the total number of pixels in the ROI around the earliest image of it. The effect of this technique was quantified on the early images of 17 organs. It resulted in an overestimation of the total counts by an average of 4.7% when compared to values obtained from the measurements that were made with the whole organ boundary.

These measurements were used to calculate the dosimetry for each subject individually before the results were averaged. The biodistribution of activity over time is shown for one subject in Figure 1. The average dose of radiation received by each organ is listed in Table 1. Visual inspection of the images shown in Figure 2 seems to validate the assumptions and corroborate the calculated results.

TISCH is excreted primarily by the renal system. The

highest concentration of activity occurs within the liver. However, because the transit time through the bowel is much longer than the residence times in the kidney and the liver, the target organ that will limit the amount of activity that can be administered is the proximal colon. It receives about 0.67 rad/mCi (180 μGy/MBq).

DISCUSSION

TISCH appears to be a safe SPECT agent. No signs of pharmacological toxicity could be found in rabbits who were administered doses of TISCH which were three orders of magnitude greater than the 20–200 pmole doses that were used in this human study. These doses did not produce any subjective or objective pharmacological effects in the volunteers. The lack of an effect is consistent with a substantial body of medical experience, which sug-
gests that pharmacological doses of dopaminergic drugs in this range do not have a perceptible effect on humans (25).

The MIRD formalism was adapted to the resources that were available for the study. The protocol used to acquire the images resulted in an overestimation of the radiation dose to most organs. The relatively large energy window of 20% centered on 159 keV permitted scattered radiation to contribute to the count rates and increase the apparent radiation burden. However, the increased sensitivity that resulted increased the precision with which an operator could demarcate the organ boundaries on the delayed images.

Placement of small ROIs on the delayed images of most organs also inflated the measurement of the total counts in them. This occurred because these small ROIs were placed in the center of each organ over its region of maximum intensity. The mean activity per pixel in this central ROI was multiplied by the total number of pixels in the ROI enclosing the whole organ on its earliest image, even though the peripheral aspect of most organs contained significantly less activity than the central region. This effect decreased as the relative size of the ROI increased. Because the edges of most organs became progressively more obscure as time passed due to the elimination of the tracer, the size of the ROI tended to become smaller and smaller on the delayed images.

Placement of small ROIs on the transmission scans also increased the dosimetry estimates. The effective linear attenuation for a whole organ was determined from a measurement that was made in its center where it tended to be the thickest.

The method used to calculate the dose to the source organs accounted for any delayed uptake of recirculating activity that had been washed out of another organ up until the time the last image was taken. After the last image was obtained, the effective half-life of elimination in the source organs was assumed to result exclusively from physical decay, as if there was no further biological washout. This assumption obviated the need for curve fitting and prevented the dose from being underestimated in organs with prolonged retention times.

Despite these conservative assumptions, the findings suggest that TISCH can be used safely in clinical investigations of the D1 dopamine receptor. The amount of activity that can be given will be limited by the dose to the colon. Federal guidelines for research in human subjects who do not directly benefit from the investigation will permit 7.5 mCi to be administered during each study. This will make it feasible to image the D1 DA receptor in patients with neuropsychiatric disorders before and after treatment.

ACKNOWLEDGMENTS

This work was supported by NIH grant NS-24538 and NIMH grant MH-43880. Special thanks go out to Medi-Physics for providing the funding to conduct the toxicology studies.

REFERENCES