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Two types of image similarity measures, the sum of absolute
differences (SAD) and the stochastic sign change (SSC), were
compared for three-dimensional registration of images from
PET. To test the accuracy of both registration methods, 30 FDG
brain studies, 40 '*N-ammonia cardiac studies and 20 FDG liver
tumor studies (where each image set contained 15 image
planes, 128 x 128 pixels per plane) were made into worse case
conditions by creating image sets of low counts and extreme
defects. These images were then registered to the reference
images that had been moved in three dimensions into a random
set of known translations, rotations and normalization factors (x,
Y, 2, 6, p, o, nf). Neither method required any extemal fiduciary
markers or operator interventions to register a set ofimages. The
optimization of the image similarity (using the SAD or SSC) was
performed with the simplex method and registration was com-
pleted within 10 min of computation time on a low-end worksta-
tion. Overall, the SAD method had an average inplane (x, y)
registration error of 0.5 + 0.5 mm, a z-axis registration error of
1.1 = 1.1 mm, an inplane rotational error of 0.5 + 0.4 degrees,
an out-of-plane rotational error of 1.1 + 1.2 degrees and a
normalization factor error of 0.015 + 0.016. The SSC method
had an average inplane (x, y) registration error of 0.6 + 0.5 mm,
a z-axis registration error of 1.1 + 1.1 mm, an inplane rotational
error of 0.7 + 0.5 degrees, an out-of-plane rotational error of 1.0
+ 1.2 degrees and a normalization factor error of 0.014 + 0.014.
This study demonstrates that either the SAD or SSC method for
measuring image similarity, combined with the simplex method
for function optimization, are accurate methods for registration of
a wide variety of PET images including low count studies and
those with marked interval changes in the pattem of count dis-
tribution.
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In comparing serial PET images, as with serial medical
images in general, image registration is often performed
visually. In most cases, this visual registration is facilitated
by using known structural landmarks or object contours as
anatomical references. In quantitating serial PET studies,
accurate image registration is important to allow applica-
tion of a common region of interest (ROI). Significant er-
rors in the estimates of the glucose metabolic rate by ROI
analysis have been shown to occur with only a 1-pixel (2.8
mm) shift in ROI placement (7). The capability to register
PET images is also important for correcting patient move-
ment in between serial emission studies so that a single
transmission scan can be applied in the reconstruction of
both emission scans. It has been recently reported, that
even 0.5-cm misalignments between the transmission im-
age and the emission image can cause significant changes in
the apparent distribution of radiotracer activity in the myo-
cardium (2 3).

Various methods of iterative image registration have
been described (4-8). In most algorithms, one image is
kept stationary as a reference image while the image to be
registered is resampled (resliced) into a new spatial orien-
tation determined by a set of registration parameters: three
translational (x, y, z) and three rotational (inplane: 6; coro-
nal: p; and sagittal: o) movements. The basic components
of image registration consist of: (1) resampling one of the
image sets using a set of registration parameters; (2) mea-
suring of the amount of similarity between the resampled
image and the reference image; and (3) finding the optimum
set of registration parameters by maximizing the similarity
measure between the two images.

The sum of absolute difference (SAD) is a simple image
similarity measure, where after subtraction of the two im-
age sets, the absolute difference of all the pixels in the
subtraction image is summed (¢). Lower SAD values rep-
resent more similar image sets, and a zero SAD represents
exactly similar images.

Another, perhaps more robust method for measuring
image similarity is the stochastic sign change (SSC), orig-
inally described by Venot (6). This similarity measure has
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been applied to the normalization and registration of digital
subtraction angiograms (9), planar scintigraphic images
(10,11) and the registration of two-dimensional electron
micrographs (12). Recently, this method has been de-
scribed for the correction of translational and inplane and
coronal rotational misalignments of PET brain images (13).
However, this implementation of the SSC measure did not
account for rotational misalignments in the sagittal (o)
plane.

To apply the SSC method, at least one of the images is
required to contain a significant amount of poisson distrib-
uted noise, or that a small (5%) periodic change in grey
scale intensities is added to each pixel along each horizon-
tal row of one of the image sets, similar to the deterministic
sign change (DSC) described by Venot (14). After subtrac-
tion of the two image sets, the SSC is determined by
searching along each pixel row and counting the number of
times the pixel grey scale goes from negative to positive or
from positive to negative. At optimum registration there is
a maximum total sign change (14).

In this study, we implemented and compared the accu-
racy of the SAD and SSC methods as image similarity
measures to account for all possible movements in three
dimensions (x, y, z, 6, p, o), as well as the normalization
factor (nf).

MATERIALS AND METHODS
Experimental Design

The overall experimental design was to evaluate the two reg-
istration algorithms applied to brain, cardiac and liver PET im-
ages. Two separate but consecutive acquisitions were utilized,
which were then misaligned with known parameters in three-
dimensional space.

In order to test the robustness of the algorithms, low-count
images were used for registration. In addition, in a subset of
experiments, large defects were simulated in one of the image sets
in order to create dissimilarities between the images before regis-
tration. In order to assess the effects of smoothing, registration of
brain studies were done with and without nine-point smoothed
images.

PET images

All isotopes (FDG and *N-ammonia) were produced at the
biomedical cyclotron facility at UCLA. The labeling of 2-deoxy-
glucose with '8F (substitution of hydrogen with 'F in the 2 posi-
tion) provided the positron emitting form of the glucose analog.

All PET images were randomly selected among clinical studies
which were acquired on a Siemens/CTI 931/08-12 whole-body
PET system (CTI, Inc., Knoxville, TN). This is an eight-ring
system, which simultaneously acquires 15 transaxial image planes
(128 x 128 pixels per plane; 6.75-mm plane separation).

Brain Studies

The brain studies were performed with 10 mCi of FDG. Atten-
uation correction was provided by a threshold detection algorithm
(15), eliminating the need for transmission imaging of the brain
images. Following a 40-min uptake period after intravenous ad-
ministration of FDG, emission images were acquired in eight
5-min frames.
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FIGURE 1. Examples of FDG-PET brain image sets extracted
from a dynamic acquisition. Each image set contains a total of 15
image planes. Only one representative image plane (plane 7) is
shown from the simulated hemispherectomy image set (left image)
and from the reference image set (right image). Since each frame
was 5 min in duration, there was less than 1.5 million total counts in
each extracted image. Since no visible movement occurred between

the two image frames, quantification of the registration error was
possible when known three-dimensional movements were applied
to the reference image set.

Registration of Ten Low-Count PET-FDG Brain Image Sets.
The low-count PET brain images were created by extracting two
S-min frame acquisitions from a patient study where no visually
detectable movements occurred between the two adjacent frames.
This extracted brain image set (15 planes) had approximately 6.7
million total counts. These images were reconstructed with a 0.30
cycles/pixel Shepp-Logan filter, and zoomed to 2.55 giving a tran-
saxial pixel width of 1.84 mm. One of the image frames was
resampled into ten random but known sets of misalignments, and
then the other image frame was registered onto these misaligned
images.

istration of Ten Low-Count PET-FDG Brain Images with
Preregistration Smoothing. To test the effect of image smoothing
prior to registration, the low-count brain images in one set were
nine-point smoothed with a (3 x 3) filter kernel that contained all
ones. The reference brain images were not smoothed with this
filter since they were already smoothed by the misalignment re-
sampling program. The smoothed images were then registered
onto these misaligned images.

Registration of Ten Low-Count FDG-PET Brain Image Sets
Where One Set Contained a Simulated Hemispherectomy and a
Different Reconstruction Filter. To test the effect of a severe brain
defect and a dissimilar reconstruction filter on the accuracy of
registration, a single 5-min brain image was reconstructed to a
128 x 128 by 15-plane image matrix with a ramp 0.30 cycle/pixel
filter and zoom of 2.55. The corresponding reference image frame
was reconstructed with a 0.30 cycle/pixel Shepp-Logan filter and
resampled into ten known but random misalignments. In the im-
age set with the ramp filter, a hemispherectomy was simulated by
using the interactive drawing/painting program which allowed an
operator-drawn region that encompassed the entire left hemi-
sphere to decrease pixel grey scale values to zero (Fig. 1). This
process was applied to all image planes containing the left cerebral
hemisphere. These ‘“‘hemispherectomy’” images were then regis-
tered to the resampled reference image set.

Cardiac Studies

Rest and stress ammonia myocardial perfusion studies were
performed with 20 mCi of sterile "*N-ammonia. Attenuation cor-
rection was accomplished with a 20-min transmission scan. Each
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image was acquired for 20 min, beginning 7 min after injection of
ammonia. Pharmacologic stress was induced by constant infusion
of adenosine (at a rate of 140 ug/kg/min) for 6 min and °N-
ammonia was injected 3 min into adenosine infusion.

Cardiac images were reconstructed into a 128 x 128 by 15-
plane image matrix using a 0.15 cycle/sec Shepp-Logan filter and
were zoomed to 3.0 giving a transaxial pixel width of 1.56 mm.

To account for any movement between the rest and stress
images, we recorded the baseline misregistration between the two
image sets as measured by the SAD and SSC technique, and
assumed that any additional misalignments that were induced with
the resampling program would be a linear addition to the baseline
misregistrations.

Registration of Ten Rest and Stress Nitrogen-13-Ammonia
Cardiac PET Image Sets. The rest image was moved with respect
to the stress image by resampling it in ten different random but
known sets of misalignments. The stress image was registered
onto the ten misaligned rest images.

Registration of Thirty Nitrogen-13-Ammonia Cardiac PET Im-
age Sets Where the Stress Images Contained Large Simulated
(Anterior, n = 10; Lateral, n = 10; and Inferior, n = 10) Perfusion
Defects. Simulated stress perfusion defects were created on the
adenosine stress images of one set using an interactive drawing/
painting program which allowed operator-drawn regions to de-
crease enclosed pixel grey scale values by 50%. These regions
were drawn on all image planes containing anterior, lateral or
inferior myocardial activity of the stress studies so that three
abnormal studies were generated: one study with a large anterior
wall perfusion defect, one with a large inferior wall perfusion
defect and another with a large lateral wall perfusion defect (Fig.
2). These simulated defect images were then registered to the
resting image sets which had been resampled into 10 random sets
of misalignments.
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FIGURE 2. Examples of '*N-ammonia cardiac image sets used
for simulating the registration of cardiac images with severe perfu-
sion defects. The perfusion defects were created with a user-gen-
erated ROI program on several image planes of each stress image
set which contains a total of 15 image planes. One representative
image plane is shown for a simulated anterior perfusion defect (left
upper image), simulated lateral perfusion defect (upper middle im-
age) and a simulated inferior perfusion defect (lower left image).
Plane 9 (upper right image) and plane 10 (lower right image) from
the resting study show the corresponding reference images used for
registration.
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FIGURE 3. Examples of low count FDG liver tumor image sets
extracted from a dynamic FDG-PET liver acquisition. A 15-plane
image set, of 4-min duration, was created by extracting one image
frame from a dynamic acquisition. This image contained less than 1
million total counts. One representative image plane is shown from
the image set of a metastatic tumor (left image) and from the image
set containing a simulated resection (middie image). The reference
image (right image) was extracted from ancther image frame of the
dynamic acquisition. No visible movement occurred between the two
image frames, so that known three-dimensional movements applied
to frame 30 permitted the quantification of the error when registering
frame 29 to frame 30.

Liver Studies

The liver studies were performed with 10 mCi of FDG. Atten-
uation correction was accomplished with a 20-min transmission
scan. The last two 4-min frames from a 60-min dynamic FDG
study of a patient with metastatic melanoma of the liver were
extracted to create two low-count FDG liver images (approxi-
mately 4.5 million counts in each image set). The liver images
were reconstructed to a 128 X 128 by a 15-plane image matrix
using a 0.30 cycle/sec Shepp-Logan filter and were zoomed to 1.5,
giving a transaxial pixel width of 3.13 mm.

Registration of Ten FDG-PET Liver Image Sets. The last frame
of the liver study was assigned as the reference image and was
resampled into ten random but known sets of misalignments. The
second-to-last frame was then registered onto the ten misaligned
reference images.

Registration of Ten FDG-PET Liver Image Sets Where One of
the Image Sets Had Both the Tumor Lesions and a Portion of the
Liver Removed. Large liver defects (>20% of liver volume) were
simulated in the last image frame using the interactive drawing/
painting program, such that both tumor and a large portion of liver
pixels were set to zero (Fig. 3). This image was then registered to
the reference liver image which was resampled into ten random
sets of parameters using the resampling program.

Theoretical Methods
Creation of Misaligned Images with Known Misregistration

Parameters. To test the accuracy of the SAD and SSC registration
algorithms, known misalignments between two similar image sets
were needed, so that the misregistration values detected by the
automated registration programs could be compared to the known
actual values. For FDG-PET brain and liver images, this was
accomplished by extracting two image frames from a dynamic
study and confirming there was no visible evidence of movement
after subtraction of the two image frames. For the rest and ade-
nosine stress *N-ammonia cardiac studies, it was expected that
small misalignments probably had occurred due to the length of-
the cardiac PET acquisition protocol which typically spanned
over 2 hr even though no misregistration was visible after sub-
traction. These subpixel “‘baseline” misalignments were also
taken into account in the analysis of the results of simulated
movements. Since normal cardiac studies were selected, it was
assumed that there was no change in cardiac size.
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FIGURE 4. Diagram of the processing algorithm for iterative registration using the SAD method of image similarity. For the SSC method,
a similar diagram can be made where the SSC method replaces the SAD method for image similarity measure. In both methods, the image
to be registered was resliced by a set of parameters (x, y, z, 6, p, o and nf) so that it could be compared to the reference image set. After
a pixel by pixel subtraction and determination of the similarity measure of each corresponding image plane, a total similarity measure is
generated by summing of the similarity measures from each plane. Each set of reslice parameters (x, y, 2, 6, p, o and nf) gave a SAD or
SSC value, which allowed the simplex method to determine a new set of estimated parameters for reslicing.

By using a resampling program, the reference image (Fig. 4)
was created by trilinearly interpolating each pixel in an entire
15-plane image dataset to a known set of misaligned reference
parameters (X, Y, z, 0, p, o, nf). The resampling program allowed
all parameters to be simultaneously and randomly altered so that
complex three-dimensional movements could be accurately sim-
ulated. The random generation of misalignment values ranged
from +8 pixels (+25 mm to =12 mm depending on the image
zoom) in the x and y directions; +6.75 mm in the z direction; +12
degrees in the 6, p and o rotational directions; and from 0.82 to
1.34 normalization factors. In the registration algorithm, these
misaligned reference images were kept stationary while the sec-
ond image, the ‘“‘image to register”’ in Figure 4, was iteratively
resampled (with trilinear interpolation) to a new set of estimated
registration parameters (x, y, z, 6, p, o, nf) until there was a
convergence to a minimum SAD or maximum SCC value. The
errors in the automated registration programs were defined as the
absolute differences between the known and detected misregistra-
tion parameters.

Iterative Optimization Algorithm. Since the SSC is a stochastic
function of the registration parameters, it is a nonlinear and non-
differentiable function. This makes the maximization of the SSC
more difficult than discrete parametric measures of image similar-
ity, such as the SAD, the correlation coefficient or the correlation

2012

function (14). The nondifferentiable characteristics of the SSC
function prevented the implementation of rapid gradient type
search algorithms to maximize the SSC and special optimization
algorithms were required (14).

Although the SAD similarity measure is known to be not as
accurate as the SSC similarity measure (16), we expected the
SAD method to converge to a set of registration parameters (x, y,
z, 0, p, o, nf) such that it was possible to then switch to the SSC
method for further convergence to the true registration values.
This would avoid a global parameter space optimization using the
SSC similarity which could converge onto a local rather than a
global SSC maximum. At the same time, we could compare the
differences in the registration errors of the two methods.

The overall registration algorithm is shown in Figure 5. For a
given set of registration parameters (x, y, z, 6, p, o, nf) a function
value (SAD or SSC value) was calculated. By initially creating a
collection of 17 sets of random registration parameters with their
17 corresponding similarity function values (SAD or SSC), a
“cloud” of points in seven-dimensional space was formed, from
which the simplex method for function optimization could be used
(17). The simplex method was selected for both the SAD and SSC
methods since this optimization method was easy to implement,
(only one function evaluation was required for each algorithm
iteration). For the SAD method, the best registration parameters
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FIGURE 5. Diagram showing the overall registration algorithm to
test the SAD and SSC methods of registration. A collection of 17

sets of random registration parameters and their 17 corresponding
SAD similarity function values were formed by adding and subtract-
ing various combinations of Ax, Ay, Az, A6, Ap, Acand Anfto a
central starting parameter. The simplex method minimized the SAD
similarity measure to find the optimum parameters for registration.
The images were preprocessed by adding a periodic p value (adding
to each original pixel grey scale value, a row altemating positive or
negative value which was 5% of the original pixel value). A new
simplex was formed around the final parameter obtained from the
SAD method by using Ax, Ay, Az, A6, Ap, Ao and Anf which were
5% of the values used in the SAD method. The simplex method then
maximized the SSC similarity measure to find any improvement in

the optimum registration parameters over the SAD method.

were optimized based on the minimization of the SAD similarity
measure, whereas the similarity measure was maximized for the
SSC method. In the SSC method, the images were preprocessed
by adding a periodic p value (adding to each original pixel grey
scale value, a row alternating positive or negative value which was
5% of the original pixel value). The addition of this periodic value
provided sign changes required for registration (13). Although the
SSC method we implemented was more similar to the determin-
istic sign change (DSC) described by Venot (14), we will refer to
the method as the SSC.

Implementation of the Overall Registration Algorithm. The
registration program was written in the C language and compiled
using the standard C compiler provided on a SPARC IPC work-
station (Sun Microsystems, Inc., Mountain View, CA).

The most computationally consuming steps in the registration
algorithm were in the resampling of the three-dimensional volume
of pixel data and the pixel by pixel determination of the similarity

Three-Dimensional PET Image Registration ¢ Hoh et al.

measure over all image planes. To improve the speed of each
iteration, selected image pixels were omitted from both the image
reslicing and image similarity calculations, by using a binary im-
age mask which had the same image matrix size and plane num-
bers as the reference PET image. Each pixel in this volumetric
image mask referred to corresponding image pixel in the reference
image. Each mask pixel contained either a value of 0 or 1, where
the value of 0 flagged an omitted pixel, and the value 1 flagged a
pixel to be included in the reslicing and similarity calculations. For
a mask pixel to be 1, the grey scale intensity value of this pixel
location in the reference image (Fig. 4) had to be above a prede-
termined background threshold level. A mask pixel had its value
set to 0 if that same pixel location in the reference image was
below the threshold. The threshold was visually selected at a level
which defined the target organs/objects above background. This
threshold was found to be about 15% of the maximum image pixel
value for the brain studies, 20% for the cardiac studies and 10%
for the tumor liver studies. From this volumetric image mask, a
minimum and maximum starting and ending pixel row and pixel
column was determined for eaci image plane further reducing the
number of pixels involved with reslicing and similarity calcula-
tions.

To further improve the speed of the registration algorithm, pixel
rows were skipped in both the reslicing and similarity calculations
defined by Equation 1:

ystep = integer (3 X (ymax — ymin)/64), Eq. 1
where ystep was the number of consecutive pixel rows skipped
(i.e., not involved in the registration), ymax was the maximum
row number and ymin was the minimum row number with a
nonzero flag in the image mask. After an initial parameter and
similarity measure convergence, the registration was restarted
with only half of the rows skipped to improve the y direction
““resolution” of the registration. At the end of each convergence,
the number of skipped rows was reduced by one-half until all rows
were included to ““fine tune” the registration.

RESULTS
All results are described in mean and +1 s.d.

Registration of Brain Images

Using the nine-point smoothed brain images in both the
SAD and the SSC registration methods, there was im-
proved registration shown as a decrease in the interplane
translational error (z), and inplane rotational error (6), (p <
0.05, Table 1). With the nine-point smoothed images, there
was no significant difference in the registration errors be-
tween the SAD and SSC methods (Fig. 6).

The registration of ten simulated hemispherectomy brain
images to a normal brain study are shown in Table 2. No
significant differences in the registration errors in x, y, z, 6,
p, o and nf were found between the SAD and SSC methods
(p > 0.05). In two simulations, the error of rotational mis-
registration was larger than 5 degrees and visual assess-
ment of the subtraction images showed that the registration
failed. Restarting these two cases with different initial pa-
rameters registered the images to maximum errors of: x =
1.5 mm, y = 1.5 mm, z = 4.2 mm and rotational = 2.0
degrees.
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FIGURE 6. Results of detected versus true misregistration values in FDG-PET brain images where 10 image sets were smoothed with
a nine-point smoothing fitter, 10 image sets were nonsmoothed and 10 image sets where one set contained a simulated hemispherectomy.

The diagonal line in all three graphs is the line of idenity.

Registration of Cardiac Images

The results of the registration of ten normal rest/stress
3N-ammonia cardiac perfusion images are shown in Table
3. The true normalization factors are not shown between
the rest and stress studies because different radiotracer
doses were injected for the rest and stress images, and the
exact physiologic augmentation of myocardial perfusion in
the adenosine stress image was not known. No significant
differences in the registration errors in X, y, z, 6, p, o and
nf were found between the SAD and SSC methods on
normal cardiac studies (p > 0.05) (Fig. 7).

The comparison of the registration errors using the SAD
and SSC methods for registering the 30 cardiac studies with
simulated perfusion defects is shown in Table 4. The re-

sults show that there was no significant difference in reg-
istration errors of one method over the other (p > 0.05).

Registration of FDG Liver images

The registration errors of ten low-count FDG liver im-
ages are shown in Table 5. There was less registration error
in the x direction using the SAD method than the SSC
method (p < 0.001). In the other parameters, there was no
significant difference between the errors in registration
(Fig. 8).

The registration errors of liver images where one of the
image sets contained large simulated defects is shown in
Table 6. There was no significant difference in the errors of

Detected vs true misregistration using the SAD and SSC methods
on N13 ammonia myocardial perfusion Iimages.
( n = 40 images )
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Detected vs true misregistration using the SAD and SSC methods on FDG PET liver images.
( n = 20 images )
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FIGURE 8. Results of detected versus true m

values in 20 low-count FDG liver images, where 10 of the image sets

contained simulated liver defects. The diagonal line in all three graphs is the line of identity.

all parameters (x, y, z, 6, p, o, and nf) between the SAD
and SSC methods.

DISCUSSION

Comparison of SAD and SSC Similarity Measures for
Three-Dimensional image Registration

Although the SSC similarity measure is reported to be
more accurate than the SAD method for registration, we
have found that both methods were comparable in terms of
registration accuracy. Moreover, both methods gave aver-
age errors of misregistration that were clinically accept-
able, typically 0.5 + 0.5 mm in the inplane direction, 1.1 +
1.1 mm in the interplane direction and 0.9 * 1.1 degrees for
all rotational directions. The maximum registration error
occurred in two hemispherectomy brain images where the

error of rotational registration was larger than 5 degrees.
The final subtraction images allowed a final visual check on
the registration. The occurrence of misregistration was not
due to a failure in the property of the similarity measures
but in the simplex optimization algorithm which converged
on a local maximum rather than on a global maximum of
the similarity measure. By making a small change (2%) in
the threshold for creating the binary image mask, correct
convergence was achieved due to the slightly different
initial parameter created by the mask.

The process of registering only pixels above a selected
grey scale threshold was similar to contouring (segmenta-
tion). In the Chen-Pellazari method, all object pixels
(above a threshold i.e., within the contours) are conceptu-
ally reassigned a common pixel value, regardless of the

TABLE 1
Average and Maximum Errors in Registration of Low Count FDG Brain Images and Effect of a Nine-Point Smoothing Filter
Average error + 8.d. Maximum error
Nonsmoothed Smoothed p < 0.05 Nonsmoothed Smoothed
x SAD (mm) 0.11 = 0.08 0.14 = 0.08 0.22 0.24
y SAD (mm) 0.23 +0.13 0.2 +0.12 0.41 0.39
z SAD (mm) 0.86 = 0.13 0.44 = 0.07 ¢ 0.98 0.54
6 SAD (deg) 0.85 + 0.09 0.12 £ 0.05 * 1.01 0.17
p SAD (deg) 0.18 + 0.14 0.12 £ 0.07 0.40 0.20
o SAD (deg) 0.24 = 0.13 0.10 = 0.08 043 0.26
nf SAD 0.02 + 0.01 0.01 = 0.00 0.02 0.01
x SSC (mm) 0.31 = 0.21 0.24 +0.13 0.53 0.32
y SSC (mm) 0.20 £ 0.13 0.28 = 0.15 047 0.60
Z SSC (mm) 0.88 = 0.10 0.41 = 0.07 * 1.00 0.51
0 SSC (deg) 0.77 £ 0.23 0.25 +0.20 * 1.07 0.38
p SSC (deg) 0.2 = 0.14 032 = 0.21 0.54 0.63
o SSC (deg) 0.31 £ 0.21 0.18 £ 0.15 0.68 0.47
nf SSC 0.01 = 0.01 0.01 = 0.00 0.02 0.01
s.d. = one standard deviation and n = 10 nonsmoothed and 10 smoothed images, *p < 0.05.
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TABLE 2
Errors in Registration of FDG Brain Images Where One Image Was a Simulated Hemispherectomy

Average error + s.d. Maximum error

SAD SSC p < 0.05 SAD SSC
x (mm) 0.79 + 0.50 0.72 + 0.55 2.08 1.80
y (mm) 0.34 +0.18 0.44 + 0.32 0.77 1.17
z (mm) 283+ 1.77 2,66 + 1.78 7.75 755
6 (degrees) 0.42 + 0.60 0.42 + 0.60 1.70 202
p (degrees) 242 +1.80 243 = 1.78 7.38 7.28
o (degrees) 1.63 + 3.00 1.70 + 294 10.1 9.94
nf 0.006 + 0.004 0.005 + 0.005 0.01 0.02

s.d. = one standard deviation; n = 10 images.

original pixel grey scale value, such that intense brain
activity is assigned the same value as noise or reconstruc-
tion artifacts which may also be above the contour thresh-
old. On the other hand, by including the SAD method
within the contour, the grey scale intensity of the pixel was
used as an additional factor in the similarity measure. The
advantage of combining a threshold segmentation and a
pixel intensity subtraction in a similarity measure can be
illustrated in the situation of registering exact spherical
objects. With the Chen-Pellazari method, spheres cannot
be rotationally registered; however, if the spheres contain
a nonuniform grey scale intensity pattern within their vol-
umes, they can be registered using the SAD or SSC meth-
ods.

The SSC method relied on the amount of similar image
surfaces. During the calculation of the SSC, image surfaces
that are outside the range of the noise fluctuations are
treated the same regardless of the magnitude of their pixel
value differences. Therefore, a dissimilar image area con-
sisting of extreme grey scale pixel values will result in the
same SSC measure as the same sized area which has only
a mild difference in pixel values, i.e., where the magnitude
of the differences is just above the noise and intensity
surface overlaps. Although linear measures of image sim-
ilarity such as the SAD will try to minimize these extreme
differences and possibly result in a misregistration, we did
not find this occurring in our results. In addition, the noise
in the reconstructed PET images is not truly poisson in
distribution, and it may be possible that the addition of the
periodic change in grey scale intensities (5% of pixel grey
scale value) was not sufficient to overlap the filtered back-
projection reconstruction artifacts in the PET images.

Sharp interfaces in one of the images did not affect the
performance of the registration since it is the absolute
difference in the image sets that contributes to the SAD
measure. On the other hand, the SSC method which de-
pends on the number of changes in the subtraction image,
will result in a higher SSC measure if there are more sharp
interfaces in a given pair of images when compared to
images with smooth grey scale intensity interfaces. Al-
though this will increase the SSC in a given pair of images,
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at optimum registration there should still exist a maximum
SSC measure.

The SAD algorithm that we implemented was computa-
tionally fast in that only floating point subtractions and
additions were required. The SAD method also had the
advantage of being a continuous and differential function
so that the simplex method of function optimization could
be used, and most registrations converged to a result usu-
ally within 10 min using a low-end workstation. More effi-
cient numerical methods of function optimization (18) and
a faster computer could be used to improve the speed of
registration. The speed of the algorithm was due to the
systematic omission of pixels which were zero in the bi-
nary image mask. The advantage of the row skipping rather
than interpolation of the image data into a smaller matrix
was in the ease of program implementation accomplished
by simply skipping rows in the image data matrix. Al-
though the row skipping caused a nonuniform sampling of
data in the y direction, reasonably accurate registration
was achieved. It should be noted that the plane separation
of 6.75 mm was an even larger interval in the z direction.

In noisy images, exact registration will still produce a
nonzero SAD. Improved registration was achieved by pre-
processing of an image with a nine-point smoothing filter.

Potential Registration Applications

The ability to register brain, cardiac and liver PET im-
ages demonstrates the general purpose utility of the
method we implemented and should allow accurate com-
parison of previously acquired images of the same patient.
No symmetry in the object contour is necessary, as re-
quired by other proposed methods (13).

The potential applications of this program include the
ability to accurately register all acquired frames of a clini-
cal brain study, where the patient may have moved be-
tween the frames. The registration of all frames will pre-
serve a high-count brain image, given that the correct
attenuation can be applied to each frame as described by
Dahlbom (15).

Another application of this program is the detection and
quantification of patient movement between rest and stress
image myocardial perfusion images. This may be used for
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TABLE 3
Average and Maximum Errors in Registration of Normal Nitrogen-13-Ammonia Rest-to-Stress Cardiac Images

Average error + s.d. Maximum error

SAD SSC p <0.05 SAD SSC
X (mm) 0.47 + 0.30 0.35 + 0.23 0.74 0.77
y (mm) 043 = 040 042 = 0.27 125 1.01
z (mm) 0.83 + 0.38 0.75 = 0.39 1.52 1.13
0 (degrees) 0.70 + 0.24 0.96 + 0.34 mn 1.4
p (degrees) 1.52 + 0.46 1.19 £ 0.55 214 1.83
o (degrees) 1.58 + 0.57 1.16 £ 0.57 258 2,05

s.d. = one standard deviation; n = 10 images.

TABLE 4
Average and Maximum Errors in Registration of Abnormal Nitrogen-13-Ammonia Stress-to-Rest Cardiac Images
Average error + s.d. Maximum error
SAD SSC p <0.05 SAD SSC
x (mm) 0.71 £ 037 057 £ 0.34 1.33 1.26
y (mm) 0.51 + 048 0.61 £ 0.55 1.76 222
z (mm) 1.10 + 0.84 122 +0.88 3.31 3.35
8 (degrees) 0.65 + 0.32 0.99 + 0.44 1.49 201
p (degrees) 1.52 + 0.88 1.61 £ 0.88 299 257
o (degrees) 1.73 + 1.00 1.03 = 0.94 4.83 4.07
s.d. = one standard deviation; n = 30 images.
TABLE §
Average and Maximum Errors in Registration of FDG Liver Images
Average error + s.d. Maximum error
SAD SSC p < 0.05 SAD S§SC
X (mm) 0.53 £ 0.16 125 +0.34 * 0.77 1.88
y (mm) 0.31 + 0.23 0.57 = 0.31 0.93 0.74
Z (mm) 0.36 £ 0.17 0.36 + 0.16 0.64 059
0 (degrees) 0.09 + 0.07 0.22 +0.13 * 0.21 0.38
p (degrees) 0.20 + 0.31 0.26 + 0.26 1.07 0.91
o (degrees) 0.27 £ 0.1 0.36 + 0.27 0.40 0.79
nf 0.008 + 0.006 0.018 + 0.009 * 0.02 0.03
s.d. = one standard deviation; n = 10 images.
TABLE 6
Average and Maximum Ermrors in Registration of FDG Liver Images with Simulated Defects
Average error + s.d. Maximum error
SAD SSC p < 0.05 SAD SSC
X (mm) 0.86 + 0.59 0.73 + 0.68 194 1.89
y (mm) 0.82 + 0.87 1.10 £ 1.02 268 348
z (mm) 125+ 1.14 125+1.13 392 384
0 (degrees) 0.65 + 0.57 0.64 + 0.51 1.53 1.37
p (degrees) 0.78 + 0.89 0.77 + 0.82 3.00 267
o (degrees) 112+ 1.03 143 +133 2.89 3.95
nf 0.032 + 0.027 0.024 + 0.024 0.08 0.07

s.d. = one standard deviation; n = 10 images.
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quality control. In addition, the quantified movements can
be transformed into the movement parameters required to
register the unreconstructed sinogram data to the transmis-
sion scan for accurate attenuation correction during image
reconstruction (3), assuming that no patient movement
occurred between the transmission and first emission scan.
Moreover, if patient mispositioning (between transmission
and the second emission scanning) can be corrected, then
treadmill exercise imaging with PET would be potentially
feasible, where the stress emission scan can be registered
to the resting emission scan so that the same attenuation
correction can be used during reconstruction. Likewise,
cardiac viability studies using FDG may have their uptake
periods outside the scanner, thus allowing another proce-
dure to be performed on the scanner during this time.
Another application of cardiac registration is that the same
set of reslice parameters may be used for generating short
axis rest and stress images without operator variability.

CONCLUSION

We have implemented and compared both the SAD and
SSC methods for three-dimensional automated registration
of low count and dissimilar PET images. No significant
advantage in the accuracy of registration was found using
the SSC method over the SAD method. Both methods gave
average errors in registration that were less than 1 = 1 mm
in the translational directions and less than 1 + 1 degree in
the rotational directions.
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