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comparing serial PET images, as with serial medical
images in general, image registration is often performed
visually. In most cases, this visual registration is facilitated
by using known structural landmarks or object contours as
anatomical references. In quantitating serial PET studies,
accurate image registration is important to allow applica
tion of a common region of interest (ROI). Significanter
rors in the estimates of the glucose metabolic rate by ROI
analysis have been shown to occur with only a 1-pixel (2.8
mm) shift in ROl placement (1). The capability to register
PET images is also importantfor correcting patient move
ment in between serial emission studies so that a single
transmission scan can be applied in the reconstruction of
both emission scans. It has been recently reported, that
even 0.5-cm misalignments between the transmission im
age andthe emission imagecan cause significantchanges in
the apparentdistributionof radiotraceractivity in the myo
cardium (Z3).

Various methods of iterative image registration have
been described (4â€”8).In most algorithms, one image is
kept stationaryas a reference image while the image to be
registered is resampled (resliced) into a new spatial orien
tationdeterminedby a set of registrationparameters:three
translational (x, y, z) and three rotational (inplane: @,corn
nal: p; and sagittal: o-)movements. The basic components
of image registrationconsist of: (1) resamplingone of the
image sets using a set of registrationparameters;(2) mea
swing of the amount of similarity between the resamphed
image andthe reference image;and (3) findingthe optimum
set of registrationparametersby maximizingthe similarity
measure between the two images.

The sum of absolute difference (SAD) is a simple image
similarity measure, where after subtraction of the two im
age sets, the absolute difference of all the pixels in the
subtractionimage is summed (4). Lower SAD values rep
resent more similar image sets, and a zero SAD represents
exactly similar images.

Another, perhaps more robust method for measuring
image similarity is the stochastic sign change (SSC), orig
inally described by Venot (6). This similarity measure has

Two types of image similaritymeasures, the sum of absolute
differences (SAD)and the stochastic sign change (SSC), were
compared for three-dimen@onalre@strabonof images from
PET. To test the aceursoy of both registration methods, 30 FDG
brainstudies, 40 â€˜3N-ammonsacard@cst@es and 20 FDGliver
tumor studies (where each im@e set contalned 15 image
planes, 128 x 128 @sper plane) were made into worse case
conditionsby creatingimagesetsof low countsand extreme
defects. These images were then registered to the reference
imagesthat had been moved in three dimensionsintoa random
set of knowntranSlatiOnS,rotationsand normalizationfactors (x,
y, z, 0, p, o@n1@.Neithermethodrequiredany externalfiduaary
markers or operator interverthonstore@stera setofimages. The
optimiza@onof the image similarity (using the SAD or SSC) was
performed w@ithe simplex method and reg@tra@onwas com
pleted within10 mmof computationtime on a low-endworksta
tion. Overall, the SAD method had an average inpiane (x, y)
re@stra@onerror of 0.5 Â±0.5 mm, a z-a,ds reg@trationerror of
1.1 Â±limm,aninplanerofatlonalerrorofO.5Â±O.4degrees,
an Out-Of-planerotationalerror of 1.1 Â±1.2 degreesand a
normal@a@onfactor error of 0.015 Â±0.016. The SSC method
had an average inplane(x,y) registrationerrorof0.6 Â±0.5 mm,
a z-axis registrationerrorof 1.1 Â±1.1 mm, an inpiane rotational
errorof0.7 Â±0.5 degrees, an Out-Of-planerotationalerrorof 1.0
Â± 1 .2 degrees and a normalization f@tor errorofo.014 Â±0.014.

This study demonstrates that eitherthe SADor SSC methodfor
measuring image slmilarfty,combined @Mththe simplex method
forfunctionoptimization,are accurate methodsforregistrationof
a w@e@ of PE@images induding low count studies and
those w@imarked intervalchanges in the pattern of count dis
tilbution.
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been applied to the normalization and registration of digital
subtraction angiograms (9), planar scintigraphic images
(10,11) and the registration of two-dimensional electron
micrographs (12). Recently, this method has been de
scnibed for the correction of translational and inphane and
coronal rotationalmisalignmentsof PET brainimages (13).
However, this implementation of the SSC measure did not
account for rotational misalignments in the sagittal (o)
plane.

To apply the SSC method, at least one of the images is
required to contain a significant amount of poisson distrib
uted noise, or that a small (5%) periodic change in grey
scale intensities is added to each pixel along each horizon
tal row ofone of the image sets, similarto the deterministic
sign change (DSC) described by Venot (14). After subtrac
tion of the two image sets, the SSC is determined by
searching along each pixel row and counting the number of
times the pixel grey scale goes from negative to positive or
from positive to negative. At optimum registration there is
a maximum total sign change (14).

In this study, we implemented and compared the accu
racy of the SAD and SSC methods as image similarity
measures to account for all possible movements in three
dimensions (x, y, z, 0, p, a), as well as the normalization
factor (nf).

MATERIALSAND METHODS

E@msnthl@
Theoverallexperimentaldesignwas to evaluatethe two reg

istration algorithms applied to brain, cardiac and liver PET im
ages. Two separatebut consecutiveacquisitionswere utilized,
which were then misaligned with known parameters in three
dimensional space.

In orderto test the robustnessof the algorithms,low-count
images were used for registration. In addition, in a subset of
experiments,largedefectsweresimulatedinoneofthe imagesets
inorderto createdissimilaritiesbetweentheimagesbeforeregis
tration. In order to assess the effectsof smoothing,registrationof
brain studies were done with and without nine-pointsmoothed
images.

PET lm@
All isotopes(FDGand 13N-ammonia)were producedat the

biomedical cyclotron facility at UCLA. The labeling of 2-deoxy
glucosewith 18F(substitutionof hydrogenwith 18Fin the 2 posi
tion)providedthepositronemittingformof theglucoseanalog.

AllPEr imageswererandomlyselectedamongclinicalstudies
which were acquired on a Siemens/CFI 931/08-12 whole-body
PET system (Cr1, Inc., Knoxville,TN). This is an eight-ring
system, which simultaneously acquires 15 transaxial image planes
(128 x 128 pixels per phase; 6.75-mm plane separation).

&&n@
Thebrainstudieswereperformedwith10mO of FDO.Atten

uation correction was provided by a threshold detection algorithm
(15), eliminatingthe need for transmissionimagingof the brain
images. Followinga 40-misuptake period after intravenousad
ministration of FDO, emission images were acquired in eight
5-mÃ¼@frames.
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FiGURE1. Exam@ of FDG-PETbrainimagesetsextr@ted
froma dynamicacquisition.E@himageset containsa totalof 15
image @s.Only one representath@eimage p@ne (p@ne 7) is
shownfromthesimulatedhemispherectomyImageset QeftImage)
andfromthe referenceimageset (nghtimage).Sinceeachframe
was5 mminduration,therewas less than1.5 milliontotalcountsIn
eachextractedimage.Sincenovisiblemovementoccurredbetween
the two Imageframes,quantificationof the registrationerrorwas
possIt:@ewhenknownthree-cimensionalmovementswereapplied
tothereferenceimageset.

Registrntion of Ten Low-Count PET-FDG Brain Image Sets.
Thehow-countPETbrainimageswerecreatedby extractingtwo
5-mill frame acquisitions from a patient study where no visually
detectablemovementsoccurredbetweenthe twoadjacentframes.
Thisextractedbrainimageset (15planes)hadapproximately6.7
million total counts. These images were reconstructed with a 0.30
cycles/pixelShepp-Loganfilter,andzoomedto 2.55givinga tran
saxial pixel width of 1.84 mm. One of the image frames was
resamphed into ten random but known sets of misalignments, and
then the other image framewas registeredonto these misaligned
images.

Registration of Ten Low-Count PET-FDG Brnin Images with
Pi@v@gLctrnfionSmoothÃ *g.To test the effect of image smoothing
prior to registration, the low-count brain images in one set were
nine-pointsmoothedwith a (3 x 3)filterkernelthat containedall
ones. The referencebrainimageswere not smoothedwith this
filter since they were already smoothed by the misalignment re
samplingprogram. The smoothed imageswere then registered
onto these misalignedimages.

Registration of Ten Low-Count FDG-PET Brain Image Sets
W7ze:@One Set Contained a Simulated Hemispherectomy and a
DifferentReconstruction Filter. To test the effect ofa severe brain
defect and a dissimilar reconstruction filter on the accuracy of
registration,a single5-mmbrain imagewas reconstructedto a
128 x 128 by 15-plane image matrix with a ramp 0.30 cycle/pixel
filterandzoomof 2.55.Thecorrespondingreferenceimageframe
was reconstructed with a 0.30 cycle/pixel Shepp-Logan filter and
resampled into ten known but random misalignments. In the im
age set with the ramp ifiter, a hemispherectomy was simulated by
usingthe interactivedrawing/paintingprogramwhich allowedan
operator-drawn region that encompassed the entire left hemi
sphereto decreasepixelgreyscalevaluesto zero (Fig. 1). This
processwasappliedtoallimageplanescontainingtheheftcerebral
hemisphere. These â€œhemispherectomyâ€•images were then regis
teredto theresampledreferenceimageset.

Cardiac Studies
Rest and stress ammoniamyocardialperfusionstudieswere

performedwith 20mCiof sterile â€˜3N-ammonia.Attenuationcor
rectionwas accomplishedwith a 20-mmtransmissionscan. Each



imagewas acquiredfor 20min, beginning7 miiiafter injectionof
ammonia. Pharmacologic stress was induced by constant infusion
of adenosine(at a rate of 140 @g/kg/min)for 6 mm and â€˜3N-
ammonia was injected 3 min into adenosine infusion.

Cardiac images were reconstructed into a 128 x 128 by 15-
plane image matrix using a 0.15 cycle/sec Shepp-Logan ifiter and
werezoomedto 3.0 givinga transaxialpixelwidthof L56mm.

To accountfor any movementbetweenthe rest and stress
images,we recordedthebaselinemisregistrationbetweenthetwo
image sets as measured by the SAD and SSC technique, and
assumed that any additional misalignments thatwere induced with
theresamplingprogramwouldbe a linearadditionto thebaseline
misregistrations.

RegLctration of Ten Rest and Stn'.ss Nitrogen-13-Ammonia
Cardiac PETImage Sets. The rest image was moved with respect
to the stress imageby resamplingit in ten differentrandombut
known sets of misalignments. The stress image was registered
ontothe tenmisalignedrestimages.

Re@jstration ofThÃ¼iy Nitrogen-13-Arnmonia Cardiac PETIm
age Sets W7zei@the Stress Images Contained Laige Simulated
(Anterior,n =1O;Latera4n =10; andlnferior,n=10) Perfusion

Defrcts. Simulated stress perfusion defects were created on the
adenosinestressimagesof one set usingan interactivedrawing/
paintingprogram which allowedoperator-drawnregions to de
crease enclosed pixel grey scale values by 50%. These regions
were drawnon all imageplanescontaininganterior,lateralor
inferior myocardial activity of the stress studies so that three
abnormal studies were generated: one study with a large anterior
wall perfusion defect, one with a large inferior wall perfusion
defect and another with a large lateral wall perfusion defect (Fig.
2). These simulateddefect imageswere then registeredto the
restingimagesets whichhad been resampledinto 10randomsets
of misalignments.

FiGURE2. Examplesof13N-ammonlacardiacimagesetsused
for simulating the registration of card@c images wfthsevere perfu
slondefects.The perfusiondefectswere created witha user-gen
erated ROl program on several Image planes of each stress image
set which contains a total of 15 Image planes. One representative
imageplaneis shownfora simuietedanteriorperfusiondefect(left
upper image), almulated lateral perfusion defect (upper middle im
age) and a simulated Inferiorperfusion defect (lower left image).
Plane9 (upperrightImage)andplane10 (lowerrightimage)from
the resting study showthe corresponding reference images used for
registration.

FIGURE3. ExamplesoflowcountFOGlniertumorimagesets
extractedfroma dynamicFDG-PETliveracquisition.A 15-plane
Image881;of4-miiiduration,was created by extr@tingone image
frame from a dynamic acquisition.This image contalned less than I
mIlliontotalcounts.One representativeImageplane is shownfrom
theimageset ofa metastatictumor(leftimage)andfromtheimage
set contalning a simulated resection (middle image). The reference
image(rI@itimage)was extr@ed fromanotherimageframeofthe
dynamicacquisitlon. Novisible movementoccurred between the two
Imageframes,sothat knownthree-dimensionalmovementsapplied
toframe 30 permIttedthe quantificationofthe errorwhen registeting
frame 29toframe 30.

Liver Studies
Theliverstudieswereperformedwith10mCiof FDG.Atten

uation correction was accomplished with a 20-min transmission
scan. The last two 4-mm frames from a 60-mm dynamic FDG
study of a patient with metastatic melanoma of the liver were
extracted to create two low-count FDG liver images (approxi
mately 4.5 million counts in each image set). The liver images
were reconstructedto a 128 x 128by a 15-planeimagematrix
usinga 0.30cycle/secShepp-Loganfilterandwere zoomedto 1.5,
giving a transaxial pixel width of 3.13 mm.

Registration ofTen FDG-PETLiverlmage Sets. The last frame
of the liverstudywas assignedas the referenceimageandwas
resamphed into ten random but known sets of misalignments. The
second-to-last frame was then registered onto the ten misaligned
reference images.

Registration ofTen FDG-PETLiverlmage Sets W7zen@One of
the Image Sets HadBoth the TumorLesions and a Portion of the
LiverRemove@L Large liver defects (>20% of liver volume) were

simulated in the last image frame using the interactive drawing/
painting program, such that both tumor and a large portion of liver
pixelswereset tozero(Fig.3).Thisimagewasthenregisteredto
the referenceliverimagewhichwas resampledintoten random
sets of parametersusingthe resamplingprogram.

Th@ Methods
Creation of M&saligned Images with Known Misregistnztion

Pammete,@s. To test the accuracyofthe SAD and SSC registration
algorithms, known misalignments between two similar image sets
wereneeded,so thatthe misregistrationvaluesdetectedby the
automatedregistrationprogramscouldbe comparedto the known
actual values. For FDO-PET brain and liver images, this was
accomplishedby extracting two image frames from a dynamic
study and confirming there was no visible evidence of movement
after subtraction of the two image frames. For the rest and ade
nosinestress 13N-ammoniacardiac studies, it was expected that
smallmisalignmentsprobablyhad occurred due to the lengthof@
the cardiac PET acquisition protocol which typically spanned
over 2 hr even though no misregistrationwas visible after sub
traction. These subpixel â€œbaselineâ€•misalignments were also
taken into account in the analysis of the results of simulated
movements.Since normalcardiac studies were selected, it was
assumed that there was no change in cardiac size.

7)
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SAD1=@ ( x1,y1,z1,9@,p1,a1,nf1)
SAD2=f(x@,y2,z@,O2,p2,a2, nf2)

SAD3= f ( x@,y@,z,@,O@,p@,;, nf@)

By using a resampling program, the reference image (Fig. 4)
was created by trilinearly interpolatingeach pixel in an entire
15-plane image dataset to a known set of misaligned reference
parameters(x, y, z, 8,p. u, nf).The resamplingprogramallowed
all parametersto be simultaneouslyand randomlyalteredso that
complexthree-dimensionalmovementscouldbe accuratelysim
ulated. The random generation of misalignmentvalues ranged
from Â±8pixels (Â±25mm to Â±12mm depending on the image
zoom) in the x and y directions; Â±6.75mm in the z direction; Â±12
degrees in the 0, p and a rotational directions; and from 0.82 to
1.34 normalization factors. In the registration algorithm, these
misaligned reference images were kept stationary while the sec
ond image, the â€œimageto registerâ€•in Figure 4, was iteratively
resampled(withtrilinearinterpolation)to a new set of estimated
registration parameters (x, y, z, 0, p, o, nf) until there was a
convergenceto a minimumSAD or maximum5CC value. The
errors in the automatedregistrationprogramswere definedas the
absolute differences between the known and detected misregistra
tion parameters.

Iterative OptirnizationAlgo@ithrn. Since the SSC is a stochastic
function of the registration parameters, it is a nonlinear and non
differentiablefunction.This makes the maximizationof the SSC
more difficult than discrete parametric measures of image similar
ity, such as the SAD,the correlationcoefficientor the correlation

function (14). The nondifferentiablecharacteristics of the SSC
function prevented the implementation of rapid gradient type
search algorithmsto maximize the SSC and special optimization
algorithms were required (14).

Although the SAD similarity measure is known to be not as
accurate as the SSC similaritymeasure (16), we expected the
SAD method to converge to a set of registration parameters (x, y,
z, 0, p, o@,a!) such that it was possible to then switch to the SSC
method for further convergenceto the true registrationvalues.
This would avoid a global parameterspace optimizationusing the
SSC similaritywhich could converge onto a local rather than a
glObalSSC maximum. At the same time, we could compare the
differences in the registration errors of the two methods.

The overall registrationalgorithmis shown in Figure 5. For a
givenset of registrationparameters(x,y, z, 0,p, a, ni) a function
value (SADor SSCvalue)was calculated.By initiallycreatinga
collectionof 17sets of randomregistrationparameterswith their
17 correspondingsimilarityfunctionvalues (SAD or SSC), a
â€œcloudâ€•of points in seven-dimensionalspace was formed, from
which the simplex method for function optimization could be used
(17). The simplex method was selected for both the SAD and SSC
methods since this optimization method was easy to imphement,
(only one function evaluationwas required for each algorithm
iteration).FortheSADmethod,thebestregistrationparameters
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FiGURE4. DiegramoftheprocessingalgorithmforfterativeregistrationusingtheSADmethodofimagesimilarity.FortheSSCmethod,
a similardiagramcan be mede wherethe SSC methodrepIet@esthe SAD methodforimage similaritymeasure. Inbothmethods,the image
to beregisteredwasreslicedbya setofparameters(x@y,z, 0,p,oand ni)sothatItcouldbecomparedtothereferenceImageset After
a pixelby pixalsubtr@ion and detem@nationof the SimilarItymeasure of each correspondog image plane, a totalsimilaritymeasure Is
generatedbysummingofthe simllarftymeasures frome@h plane.E@hset of resliceparameters(x,y, z, 0,p, oand ni)gave a SADor
ssc value,whichallowedthesimplexmethodtodetermineanewsetofestimatedparametersforreshcing.

SAD1

simplexmethodof optimization



measure over all image planes. To improve the speed of each
iteration,selectedimagepixelswere omittedfromboth the image
reslicing and image similarity calculations, by using a binary im
age mask which had the same image matrix size and plane num
hers as the reference PET image. Each pixel in this volumetric
image mask referred to corresponding image pixel in the reference
image. Each mask pixel contained either a value of 0 or 1, where
the value of 0 flaggedan omitted pixel, and the value 1 flaggeda
pixel to be includedin the reslicingandsimilaritycalculations. For
a mask pixel to be 1, the grey scale intensity value of this pixel
location in the reference image (Fig. 4) had to be above a prede
termined background threshold level. A mask pixel had its value
set to 0 if that same pixel location in the reference image was
below the threshold. The threshold was visually selected at a level
which defined the target organs/objects above background.This
thresholdwas foundto be about 15%ofthe maximumimagepixel
value for the brain studies, 20% for the cardiac studies and 10%
for the tumor liver studies. From this volumetric image mask, a
minimum and maximum starting and ending pixel row and pixel
columnwas determinedfor each imageplanefurtherreducingthe
number of pixels involved with reslicing and similarity calcula
tions.

To furtherimprovethe speed ofthe registrationalgorithm,pixel
rows were skippedin both the reslicingand similaritycalculations
definedby Equation1:

ystep = integer (3 x (ymax â€”ymin)/64), Eq.!

where ystep was the numberof consecutive pixel rows skipped
(i.e., not involved in the registration),ymax was the maximum
row number and ymin was the minimum row number with a
nonzero flag in the imagemask. After an initialparameter and
similarity measure convergence, the registration was restarted
with only half of the rows skipped to improve the y direction
â€œresolutionâ€•of the registration.At the end of each convergence,
the numberof skippedrows was reducedby one-halfuntilall rows
were includedto â€œfinetuneâ€•the registration.

RESULTS

All results are described in mean and Â±1 s.d.

Registration of Brain Images
Using the nine-point smoothed brain images in both the

SAD and the SSC registration methods, there was im
proved registration shown as a decrease in the interplane
translational error (z), and inphane rotational error (0), (p <
0.05, Table 1). With the nine-point smoothed images, there
was no significant difference in the registration errors be
tween the SAD and SSC methods (Fig. 6).

The registration of ten simulated hemispherectomy brain
images to a normal brain study are shown in Table 2. No
significant differences in the registration errors in x, y, z, 0,
p, o@andnfwere found between the SAD and SSC methods
(p > 0.05). In two simulations, the error of rotational mis
registration was larger than 5 degrees and visual assess
ment ofthe subtraction images showed that the registration
failed. Restarting these two cases with different initial pa
rameters registered the images to maximum errors of: x =
1.5 mm, y = 1.5 mm, z = 4.2 mm and rotational = 2.0
degrees.

regi
parameters

from SSC method I

FiGURE5. Dlagramshowingtheoverallregistrationalgordhmto
test the SADand SSC methodsof registration.A collectionof 17
sets of random registration parameters and their 17 corresponding
SAD simllarfty function values were formed by adding and subtract
ing various combinationsof i@x, @y,&, i@8,isp, i@uand &if to a
central starting parameter. The simplex method minimizedthe SAD
sumilarfty measure to find the optimum parameters for registration.
The imageswere preprocessedbyaddinga periodicpvalue (adding
to each ongunalpixalgrey scale value, a rowalternatingposftWeor
negativevalue whichwas 5% of the originalpixelvalue).A new
simplexwas formedaroundthe finalparameterobtainedfromthe
SAD method by using @x,i@y,&,@ @p,@uand&if which were
5%ofthevalues used inthe SADmethod.The simplexmethodthen
madmized the SSC similadty measure to find any improvement in
the optimum registration parameters over the SAD method.

were optimized based on the minimizationof the SAD similarity
measure, whereas the similarity measure was maximized for the
SSCmethod.In theSSCmethod,theimageswerepreprocessed
by adding a periodic p value (addingto each originalpixel grey
scale value, a row alternating positive or negative value which was
5%of the originalpixel value). The additionof this periodicvalue
providedsignchangesrequiredfor registration(13).Althoughthe
SSCmethodwe implementedwasmoresimilarto thedetermin
istic sign change (DSC) described by Venot (14), we will refer to
the method as the SSC.

Implementation of the Overnil Registration Algorithm@ The
registrationprogramwas written in the C languageand compiled
usingthe standard C compilerprovidedon a SPARCIPC work
station (Sun Microsystems, Inc., MountainView, CA).

The most computationallyconsuming steps in the registration
algorithm were in the resampling of the three-dimensional volume
of pixel dataand the pixel by pixel determinationof the similarity
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1.1

Detected vs true misregistratlon using the SAD and SSC methods on FDG PET brain Images
( n = 30images)

Translational (x,y,z) mlsregistratlon RothtIO@al @.@,@ ) mIsr.glstratton Normallutlon factor (nfl

I
C@ C
C .2

.@C

@ 21

@ 1.â€¢.a
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1.,

0.I
0.? 0.5 0.21 1.1 1.1 1.3 1.4

True normNzafton factor
__.I$.I. .1 â€¢ S IS IS

Th* rolbonal mirgistrafton (d.gr@s)

FIGURE 6. ResultsofdetectedversustruemisregistrationvaluesinFDG-PETbrainImageswhere10imagesetsweresmoothedwith
a nine-pointsmoothing filter,10 image sets were nonsmoothed and 10 Image sets where one set contalned a &mulatedhemispherectomy.
The diagonal line in all three graphs is the line of Identity.

sults show that there was no significant difference in reg
istration errors of one method over the other (p > 0.05).

Registration of FDG Uver Images
The registration errors of ten how-count FDG liver im

ages are shown in Table 5. There was less registration error
in the x direction using the SAD method than the SSC
method (p < 0.001). In the other parameters, there was no
significant difference between the errors in registration
(Fig. 8).

The registration errors of liver images where one of the
image sets contained large simulated defects is shown in
Table 6. There was no significant difference in the errors of

RegIstration of Cardiac Images
The results of the registration of ten normal rest/stress

13N-ammonia cardiac perfusion images are shown in Table
3. The truenormalizationfactorsare not shownbetween
the rest and stress studies because different radiotracer
doses were injected for the rest and stress images, and the

exact physiologic augmentation.of myocardial perfusion in
the adenosine stress image was not known. No significant
differences in the registration errors in x, y, z, 0, p, a and
nf were found between the SAD and SSC methods on
normal cardiac studies (p > 0.05) (Fig. 7).

The comparison of the registration errors using the SAD
and SSC methods for registering the 30 cardiac studies with
simulated perfusion defects is shown in Table 4. The re

Detected vs true misreglstratlon using the SAD and SSC methods
on N13 ammonia myocardial perfusion Images.

( n = 40 images)

Translational (x,y,z) mlsrglstradon @otationaI(e,p,t,) mI.r.glstratlon

I

I

I

I
IFiGURE7. Resuftsof de

tected versus true misregistra
lion values In 40 13N-ammonla
cardiac images where 10 image
sets contain no perfusion de
fects, 10 image sets contain an
tenor perfusiondefects, 10 im
age sets contain posterior
perfusion defects and 10 image
sets con@n interior pe@
defects. The diagonal line in
both graphs is the line of iden
thy.

In.. tvanslalionalmisrgistration (mm) True rotational mtsr.gistratton (dogr@s)
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AverageerrorÂ±s.d.p

< 0.05Maximum

errorNonsmoothed

SmoothedNonsmocthedSmoothedx

SAD(mm)0.1 1 Â±0.08 0.14 Â±0.080.220.24ySAD(mm)0.23Â±0.13
022Â±0.120.410.39z

SAD (mm)0.86 Â±0.13 0.44 Â±0.070.980.54OSAD(deg)0.85Â±0.09
0.12Â±0.0541.010.17pSAD(deg)0.18Â±0.14
0.12Â±0.070.400.20o!SAD(deg)0.24Â±0.13
0.10Â±0.080.430.26nf

SAD0.02 Â±0.01 0.01 Â±0.000.020.01x
SSC(mm)0.31 Â±0.21 0.24 Â±0.130.530.32y
SSC (mm)0.20 Â±0.13 0.28 Â±0.150.470.60zSSC(mm)0.88Â±0.10

0.41Â±0.071.000.510
SSC (deg)0.77 Â±0.23 0.25 Â±0.201.070.38p
SSC (dog)0.22 Â±0.14 0.32 Â±0.210.540.63tiSSC

(deg)0.31 Â±0.21 0.18 Â±0.150.680.47nf
SSC0.01 Â±0.01 0.01 Â±0.000.020.01s.d.

= one standarddeviationand n = 10 nonsmoothedand 10 smoothedImages, *p < 0.05.

Detected vs true misregistration using the SAD and SSC methods on FDG PET liver Images.
( n= 20images)
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all parameters (x, y, z, 0, p, o, and nf) between the SAD
and SSC methods.

DISCUSSION

Comparison of SAD and SSC Similarity Measuresfor
Three-DImensional Image Registration

Although the SSC similarity measure is reported to be
more accurate than the SAD method for registration, we
have found that both methods were comparable in terms of
registration accuracy. Moreover, both methods gave aver
age errors of misregistration that were clinically accept
able, typically 0.5 Â±0.5 mm in the inpiane direction, 1.1 Â±
1.1 mm in the interphane direction and 0.9 Â±1.1 degrees for
all rotational directions. The maximum registration error
occurred in two hemispherectomy brain images where the

error of rotational registration was larger than 5 degrees.
The final subtraction images allowed a final visual check on
the registration. The occurrence of misregistration was not
due to a failure in the property of the similarity measures
but in the simplex optimization algOrithmwhich converged
on a local maximum rather than on a global maximum of
the similarity measure. By making a small change (2%) in
the threshold for creating the binaty image mask, correct
convergence was achieved due to the slightly different
initial parameter created by the mask.

The process of registering only pixels above a selected
grey scale threshold was similar to contouring (segmenta
tion). In the Chen-Pellazari method, all object pixels
(above a threshold i.e., within the contours) are conceptu
ally reassigned a common pixel value, regardless of the

TABLE I
Average and Maximum Errors In Registration of Low Count FDG Brain images and Effect of a NIne-POint Smoothing After

Three-Dimensional PET Image Registration â€¢Hoh at al. 2015



AverageerrorÂ±s.d.Maximu

0.05 SADm

error

SSCSADSSC p<x

(m)0.79 Â±0.500.72 Â±0.552.081.80y
(mm)0.34 Â±0.180.44 Â±0.320.771.17z
(mm)2.83 Â±1.772.66 Â±1.787.757.550
(degrees)0.42 Â±0.600.42 Â±0.601.702.02p
(degrees)2.42 Â±1.802.43 Â±1.787.387280@
(degrees)I .63 Â±3.001 .70 Â±2.9410.19.94nf0.006

Â±0.0040.005 Â±0.0050.010.02s.d.

= onestandarddeviation;n = 10 images.

TABLE 2
Errors in Registration of FDG Brain Images Where One Image Was a Simulated Hemispherectomy

original pixel grey scale value, such that intense brain
activity is assigned the same value as noise or reconstruc
tion artifactswhich may also be above the contour thresh
old. On the other hand, by including the SAD method
within the contour, the grey scale intensity of the pixel was
used as an additionalfactor in the similaritymeasure. The
advantage of combining a threshold segmentation and a
pixel intensity subtraction in a similarity measure can be
illustrated in the situation of registering exact spherical
objects. With the Chen-Pellazari method, spheres cannot
be rotationallyregistered;however, if the spheres contain
a nonuniformgrey scale intensity patternwithin theirvol
umes, they can be registered using the SAD or SSC meth
ods.

The SSC method relied on the amount of similar image
surfaces. During the calculation ofthe SSC, image surfaces

that are outside the range of the noise fluctuations are
treated the same regardlessof the magnitudeof their pixel
value differences. Therefore, a dissimilar image area con
sisting of extreme grey scale pixel values will result in the
same SSC measure as the same sized area which has only
a mild difference in pixel values, i.e., where the magnitude
of the differences is just above the noise and intensity
surface overlaps. Although linear measures of image sim
ilarity such as the SAD will try to minimize these extreme
differences and possibly result in a misregistration, we did
not find this occurringin our results. In addition, the noise
in the reconstructed PET images is not truly poisson in
distribution, and it may be possible that the addition of the
periodic change in grey scale intensities (5% of pixel grey
scale value) was not sufficient to overlap the filtered back
projection reconstruction artifacts in the PET images.

Sharp interfaces in one of the images did not affect the
performance of the registration since it is the absolute
difference in the image sets that contributes to the SAD
measure. On the other hand, the SSC method which de
pends on the number of changes in the subtraction image,
will result in a higherSSC measure if there are more sharp
interfaces in a given pair of images when compared to
images with smooth grey scale intensity interfaces. Al
though this will increase the SSC in a given pair of images,

at optimumregistrationthere should still exist a maximum
SSC measure.

The SAD algorithmthatwe implementedwas computa
tionally fast in that only floating point subtractions and
additions were required. The SAD method also had the
advantage of being a continuous and differential function
so that the simplex method of function optimization could
be used, and most registrationsconverged to a result usu
ally within 10 mm using a how-end workstation. More effi
cient numerical methods of function optimization (18) and
a faster computer could be used to improve the speed of
registration. The speed of the algorithm was due to the
systematic omission of pixels which were zero in the bi
naiy image mask. The advantage ofthe row skipping rather
than interpolation of the image data into a smaller matrix
was in the ease of programimplementationaccomplished
by simply skipping rows in the image data matrix. Al
though the row skipping caused a nonuniform sampling of
data in the y direction, reasonably accurate registration
was achieved. It should be noted that the plane separation
of 6.75 mm was an even largerinterval in the z direction.

In noisy images, exact registration will still produce a
nonzero SAD. Improved registration was achieved by pre
processing of an image with a nine-point smoothing filter.

Potential Registration Applications
The ability to register brain, cardiac and liver PET im

ages demonstrates the general purpose utility of the
method we implemented and should allow accurate com
parison of previously acquired images of the same patient.
No symmetiy in the object contour is necessary, as re
quired by other proposed methods (13).

The potential applications of this programinclude the
ability to accurately register all acquired frames of a dm1-
cal brain study, where the patient may have moved be
tween the frames. The registrationof all frames will pre
serve a high-count brain image, given that the correct
attenuation can be applied to each frame as described by
Dahibom (15).

Another application of this program is the detection and
quantificationof patientmovement between rest and stress
image myocardial perfusion images. This may be used for
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Average error Â±s.d. MaximumerrorSAD

SSC p < 0.05 SADSSCx

(mm) 0.47Â±0.30 0.35Â±0.23 0.740.77y
(mm) 0.43Â±0.40 0.42Â±0.27 1.251.012
(mm) 0.83 Â±0.38 0.75 Â±0.39 1.521.13O(degrees)

0.70Â±024 0.39Â±0.34 1.111.44p(degrees)
1.52Â±0.46 1.19Â±0.55 2.141.83@@(degrees)
1.58Â±0.57 1.16Â±0.57 2.582.05s.d.

= onestandarddeviation;n = 10Images.TABLE

4Average
and MwdmumErrors in Registrationof AbnormalNftrogen-13-AinmonlaStress-to-Rest CardiacImagesAverage

error Â±s.d. MaximumerrorSAD

SSC p < 0.05 SADSSCx

(mm) 0.71Â±0.37 0.57Â±0.34 1.331.26y
(mm) 0.51Â±0.48 0.61Â±0.55 1.762.22z(mm)

1.10Â±0.84 1.22Â±0.88 3.313.350
(degrees) 0.65 Â±0.32 0.99 Â±0.44 1.492.01p(degrees)

1.52Â±0.88 1.61 Â±0.88 2.992.57@@degrees)
I .73 Â±1.00 1.03 Â±0.94 4.834.07s.d.

= onestandarddeviation;n = 30 Images.TABLE

5Average
andMaAnumErrorsin Registrationof FDGLiverImagesAverage

error Â±s.d. Maximumerror

SAD SSC p < 0.05 SADSSCx(mm)

0.53Â±0.16 1.25Â±0.34 0 0.771.88y
(mm) 0.31 Â±0.23 0.57 Â±0.31 0.930.74z
(mm) 0.36 Â±0.17 0.36 Â±0.16 0.640.598
(degrees) 0.09 Â±0.07 0.22 Â±0.13 * 0210.38p
(degrees) 0.20 Â±0.31 0.26 Â±0.26 1.070.91o@degrees)

0.27 Â±0.11 0.36 Â±0.27 0.400.79nf
0.008 Â±0.006 0.018 Â±0.009 * 0.020.@s.d.

= onestandarddeviation;n â€”10Images.TABLE

6Average
and MwdmumErrors in Registrationof FDGUver Images withSimulatedDefectsAverage

error Â±s.d. Maximum error

SAD SSC p < 0.05 SADSSCx

(mm) 0.86Â±0.59 0.73Â±0.66 1.941.89y(mm)
0.82Â±0.87 1.10Â±1.02 2.683.48z(mm)
1.25Â±1.14 1.25Â±1.13 3.923.848

(degrees) 0.65 Â±0.57 0.64 Â±0.51 1.531.37p
(degrees) 0.78 Â±0.89 0.77 Â±0.82 3.002.67o@(degrees)

1.12 Â±I .03 1.43 Â±1.33 2.893.95nt
0.032 Â±0.027 0.024 Â±0.024 0.080.07s.d.

= onestandarddeviation;n = 10images.

TABLE 3
Average and Ma,dmum Errors in Registration of Normal Nitrogen-13-Ammonla Rest-to-Stress Card@ Images

Three-Dirnenalonal PEI Image Registration â€¢Hoh et al. 2017



quality control. In addition, the quantifiedmovements can
be transformedinto the movement parametersrequiredto
register the unreconstructed sinogram data to the transmis
sion scan for accurate attenuationcorrection duringimage
reconstruction (3), assuming that no patient movement
occurred between the transmission and first emission scan.
Moreover, if patient mispositioning (between transmission
and the second emission scanning) can be corrected, then
treadmill exercise imaging with PET would be potentially
feasible, where the stress emission scan can be registered
to the resting emission scan so that the same attenuation
correction can be used during reconstruction. Likewise,
cardiacviabifity studies using FDG may have their uptake
periods outside the scanner, thus allowing another proce
dure to be performed on the scanner during this time.
Another application of cardiac registration is that the same
set of reslice parametersmay be used for generatingshort
axis rest and stress images without operator variability.

CONCLUSION

We have implementedand comparedboth the SAD and
SSC methods for three-dimensionalautomatedregistration
of low count and dissimilar PET images. No significant
advantage in the accuracy of registration was found using
the SSC methodover the SAD method. Both methods gave
average errors in registration that were less than 1 Â±1 mm
in the translationaldirections and less than 1 Â±1 degree in
the rotationaldirections.
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