Carbon-11-Forskolin: A Ligand for Visualization of the Adenylate Cyclase-Related Second Messenger System

Toru Sasaki, Atsuko Enta, Tadashi Nozaki, Shin-ichi Ishii and Michio Senda

Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo; and Faculty of Hygienic Sciences, Kitasato University, Sagamihara, Kanagawa, Japan

To visualize the adenylate cyclase (AC)-related second messenger system, [11C]forskolin, [11C]1-acetyl-7-deacetylforskolin, [11C]1,9-dideoxyforskolin and [11C]1-deoxyforskolin were synthesized by acetylation of the respective deacetyl-precursors using [11C]acetylchloride and dimethylaminopyridine. The radiochemical yield of [11C]forskolin, [11C]1-acetyl-7-deacetylforskolin, [11C]1,9-dideoxyforskolin and [11C]1-deoxyforskolin calculated from trapped [11C]CO2 were 5%, 10%, 15% and 18%, respectively. Since the 1- and 9-OH groups on the forskolin structure are critical for specific binding to AC (active type), we considered [11C]1-acetyl-7-deacetyfforskolin, [11C]1,9-dideoxyforskolin and [¹¹C]1-deoxyforskolin to be nonspecific forskolin analogs. A comparative study of [11C]forskolin and its analogs on the n-octanol/ phosphate buffer (pH 7.4) partition ratio showed that [11C]1acetyl-7-deacetylforskolin has similar physical properties to [¹¹C]forskolin. In the mouse heart, kidneys, liver and lungs, more [¹¹C]forskolin accumulated than [¹¹C]1-acetyl-7-deacetylforskolin. Moreover, simultaneous [¹¹C]forskolin with forskolin (10 μ g) administration reduced the accumulation of [11C]forskolin particularly in the heart to the level of [11C]1-acetyl-7-deacetylforskolin. These results indicate that [11C]forskolin would be a useful imaging agent for the AC-related second messenger system.

J Nucl Med 1993; 34:1944-1948

Signals of certain neurotransmitters and hormones are mediated by second messenger systems. One well-characterized second messenger system is the adenylate cyclase (AC)-related pathway, which catalyzes the receptor-mediated generation of cyclic adenosine monophosphate (cAMP), resulting in the activation of specific phosphorylating enzymes (1). Forskolin, a diterpene isolated from Coleus forskolii, specifically binds to the alpha subunit of stimulatory guanosine nucleotide binding protein (Gs α) and AC, which it then activates (2). Previously, we synthesized $[^{11}C]$ forskolin from 7-deacetylforskolin and $[^{11}C]$ acetic acid using dicyclohexylcarbodiimide (DCC) (3, 4). In this study, $[^{11}C]$ forskolin, $[^{11}C]$ 1-acetyl-7-deacetylforskolin, $[^{11}C]$ 1,9-dideoxyforskolin and $[^{11}C]$ 1-deoxyforskolin were synthesized by acetylation of the respective deacetyl-precursors using $[^{11}C]$ acetylchloride and dimethylaminopyridine. The 1- and 9-OH groups on the forskolin structure are critical for their ability to activate AC (5,6). Therefore, we considered $[^{11}C]$ acetyl-7-deacetylforskolin, $[^{11}C]$ 1,9-dideoxy-forskolin and $[^{11}C]$ 1-deoxyforskolin to be nonspecific forskolin analogs. Their physical properties were compared with those of $[^{11}C]$ forskolin, and the biodistribution in mice was studied for $[^{11}C]$ forskolin and its analogs administered independently or with forskolin (10 μ g).

MATERIALS AND METHODS

Synthesis of [11C]Forskolin and Its Analogs

The deacetyl-precursors of [¹¹C]forskolin and its analogs, i.e., 7-deacetylforskolin, 7-deacetyl-1,9-dideoxyforskolin and 7deacetyl-1-deoxyforskolin, were synthesized from forskolin (Wako Pure Chemical Co. Ltd.), 1,9-dideoxyforskolin and 1deoxyforskolin (Sigma Chemical Co. Ltd.), respectively, by the method of Pfeuffer (7). Those deacetyl-precursors were acetylated with [¹¹Clacetylchloride in the presence of dimethylaminopyridine (Fig. 1). Five milligrams of deacetyl-precursors were dissolved in 0.5 ml of freshly distilled toluene, then 8 mg of dimethylaminopyridine was added. Thereafter [¹¹C]acetylchloride, produced according to the procedures of Le Bars et al. (8), was introduced into the mixture at room templeture. The toluene was evaporated and the residue was dissolved in a small volume of acetonitrile:water = 1:1 and purified on a Shimadzu HPLC system (reversed-phase column; Megapak SIL-C18, 10 mm i.d. × 250 mm, Nihon Bunkko Co. Ltd.; UV absorbance was monitored with a Shimadzu UV detector SPD-6AV) under elution with acetonitrile:water = 1:1, at the flow rate of 5 ml/min for $[^{11}C]$ forskolin and [¹¹C]1-acetyl-7-deacetylforskolin, and 8 ml/min for [¹¹C]1,9dideoxyforskolin and [¹¹C]1-deoxyforskolin. The retention times of [¹¹C]forskolin, [¹¹C]1-acetyl-7-deacetylforskolin, [¹¹C]6-acetyl-7-deacetylforskolin, [11C]1,9-dideoxyforskolin and [11C]1-deoxyforskolin, were confirmed by authentic (forskolin, 6-acetyl-7deacetylforskolin, 1,9-dideoxyforskolin and 1-deoxyforskolin;

Received Apr. 15, 1993; revision accepted Jun. 23, 1993.

For correspondence or reprints contact: Dr. Toru Sasaki, Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi, Tokyo, 173, Japan.

FIGURE 1. Synthesis scheme of [¹¹C]forskolin and its analogs.

Sigma Chemical Co. Ltd.) and synthesized standards (forskolin and 1-acetyl-7-deacetylforskolin). To determine the mass of ¹¹C]forskolin and its analogs, absorbance of UV detector (310 nm) in the analytical HPLC (reversed-phase column, Finepak SIL-C18S, 4.6 mm I.D. × 150 mm, Nihon Bunkko Co. Ltd., elution with acetonitrile:water = 1:1, at the flow rate of 1 ml/min) was pre-calibrated with corresponding mass of cold forskolin and its analogs. Specific activity of [11C]forskolin and its analogs was calculated from radioactivity determined by a dose calibrator (Capintec) and mass. Nonradiolabeled forskolin and 1-acetyl-7deacetylforskolin were synthesized in a similar manner as described above with 5 mg of deacetylforskolin, 9.7 μ l of acetylchloride and 16.6 mg of dimethylaminopyridine. These products were identified by ¹H-NMR as follows. The ¹H NMR spectra were measured in solutions of CDCl₃ with a JEOL, GSX-400V spectrometer (Me₄Si as internal standard): Forskolin; ¹H NMR δ 1.04 (s, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.71 (s, 3H, CH₃), 2.17 (s, 3H, acetyl), 2.20 (d, 1H, H-5), 2.47 (d, 1H, H-12), 3.09 (d, 1H, H-12), 4.46 (ddd, 1H, H-6), 4.58 (ddd, 1H, H-1), 4.99 (dd, 1H, vinylic-H), 5.30 (dd, 1H, vinylic-H), 5.48 (d, 1H, H-7), 5.94 (dd, 1H, vinylic-H). 1-Acetyl-7-deacetylforskolin; ¹H NMR δ 1.05 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 1.49 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 2.03 (s, 3H, acetyl), 2.11 (d, 1H, H-5), 2.48 (d, 1H, H-12), 3.08 (d, 1H, H-12), 4.17 (d, 1H, H-7), 4.51 (ddd, 1H, H-6), 4.97 (dd, 1H, vinylic-H), 5.16 (ddd, 1H, H-1), 5.58 (ddd, 1H, H-1), 6.09 (dd, 1H, vinylic-H).

The [¹¹C]forskolin, [¹¹C]1-acetyl-7-deacetylforskolin, [¹¹C]1,9dideoxyforskolin and [¹¹C]1-deoxyforskolin, obtained were evaporated to dryness and dissolved in 0.9% NaCl.

Comparison of [¹¹C]Forskolin and its Analogs on the n-Octanol/Phosphate Buffer Partition Ratio

Synthesized $[1^{17}C]$ forskolin, $[1^{11}C]$ 1-acetyl-7-deacetylforskolin, $[1^{11}C]$ 1,9-dideoxyforskolin and $[1^{11}C]$ 1-deoxyforskolin, (370 kBq each) were shaken for 30 sec with 2 ml of n-octanol and 2 ml of 0.1 *M* phosphate buffer (pH 7.4) in a tightly sealed tube. The mixtures were then incubated under shaking at 37°C for 30 min and centrifuged at 1000× g for 5 min. The n-octanol/phosphate buffer partition ratio was calculated from the radioactivity between the n-octanol and phosphate buffer layer.

Biodistribution of [¹¹C]Forskolin and its Analogs in Mice

Groups of four mice were injected i.v. with 1.85 MBq of $[^{11}C]$ forskolin, $[^{11}C]$ 1-acetyl-7-deacetylforskolin, $[^{11}C]$ 1,9-dideoxyforskolin and $[^{11}C]$ 1-deoxyforskolin. Five, ten and thirty minutes thereafter, the animals were killed and the radioactivity levels in various tissues were measured using a well-type scintillation counter (Pharmacia Co. Ltd.). In another experiment, mice were given either $[^{11}C]$ forskolin or $[^{11}C]$ 1-acetyl-7-deacetylforskolin with 10 μ g of forskolin and the levels in various tissues were examined.

RESULTS

Synthesis of [11C]Forskolin and Its Analogs

Preparative-HPLC profiles of synthesized [¹¹C]forskolin, [¹¹C]1-acetyl-7-deacetylforskolin, [¹¹C]1,9-dideoxyforskolin and [¹¹C]1-deoxyforskolin are shown in Figure 2. Carbon-11-forskolin and [¹¹C]1-acetyl-7-deacetylforskolin

FIGURE 2. Purification of [¹¹C]forskolin, [¹¹C]1-acetyl-7-deacetylforskolin (A), [¹¹C]1,9-dideoxyforskolin (B) and [¹¹C]1-deoxyforskolin (C) using a preparative HPLC system.

were eluted at 14.6 and 11.9 min, respectively. A smaller peak consisting of [11C]6-acetyl-7-deacetylforskolin was observed at 8.7 min. The retention times of [¹¹C]forskolin, ^{[11}C]1-acetyl-7-deacetylforskolin and ^{[11}C]6-acetyl-7-deacetylforskolin, were confirmed by comparison with nonlabeled forskolin and 1-acetyl-7-deacetylforskolin synthesized from 7-deacetylforskolin and nonlabeled acetylchloride, or nonlabeled authentic forskolin and 6-acetyl-7deacetylforskolin. The retention times of [¹¹C]1.9dideoxyforskolin and [11C]1-deoxyforskolin were 18.0 and 18.5 min, respectively, which were in agreement with those of nonlabeled authentic 1,9-dideoxyforskolin and 1-deoxyforskolin. The synthesis of [¹¹C]forskolin and its analogs will be reported in detail later. The radiochemical yields of ^{[11}C]forskolin, ^{[11}C]1-acetyl-7-deacetylforskolin, ^{[11}C]1,9dideoxyforskolin and [¹¹C]1-deoxyforskolin, calculated from trapped $[^{11}C]CO_2$ at the end of bombard, were 4.1%-5.7%, 8.2%-13.0%, 14.5%-15.2% and 17.5%-18.0%, respectively. The specific activities of purified [¹¹C]forskolin, [¹¹C]1-acetyl-7-deacetylforskolin, [¹¹C]1,9-dideoxyforskolin and [¹¹C]1-deoxyforskolin at the end of synthesis, were about 37–55.5 GBq/ μ mol. The radiochemical purity of ^{[11}C]forskolin, ^{[11}C]1-acetyl-7-deacetylforskolin, ^{[11}C]1,9dideoxyforskolin and [11C]1-deoxyforskolin were 98%, 97%, 99% and 99%, respectively. The total amount of time required for the synthesis and purification of [¹¹C]forskolin and its analogs was about 35-45 min.

Comparison of [¹¹C]Forskolin and its Analogs on the n-Octanol/Phosphate Buffer Partition Ratio

The n-octanol/phosphate buffer partition ratios of $[^{11}C]$ forskolin, $[^{11}C]$ 1-acetyl-7-deacetylforskolin, $[^{11}C]$ 1,9-dideoxyforskolin and $[^{11}C]$ 1-deoxyforskolin were 56.9 \pm 12.5, 66.8 \pm 22.9, 377 \pm 64 and 582 \pm 270, respectively. Among these analogs, $[^{11}C]$ 1-acetyl-7-deacetylforskolin had the nearest n-octanol/phosphate buffer partition ratio to $[^{11}C]$ forskolin. Carbon-11-1,9-dideoxyforskolin and $[^{11}C]$ 1-deoxyforskolin than the $[^{11}C]$ 1-deoxyforskolin were more lipophilic than the $[^{11}C]$ forskolin.

Biodistribution of [11C]Forskolin and its Analogs in Mice

Table 1 presents a comparison of [¹¹C]forskolin, [¹¹C]1acetyl-7-deacetylforskolin, [11C]1,9-dideoxyforskolin and ¹¹Cl1-deoxyforskolin biodistribution in mice 30 min after injection. The biodistribution of $[^{11}C]1,9$ -dideoxyforskolin and [¹¹C]1-deoxyforskolin differed from that of [¹¹C]forskolin and [¹¹C]1-acetyl-7-deacetylforskolin, in particular, in fat tissue and the brain. More [¹¹C]forskolin than [¹¹C]1acetyl-7-deacetylforskolin accumulated in the heart and other organs. This tendency was significant in the heart. Loading of 10 μ g of forskolin reduced the accumulation of ^{[11}C]forskolin in the heart and other tissues, but accumulation did not significantly affect the [¹¹C]1-acetyl-7deacetylforskolin accumulation in any tissue. Figure 3 shows the time-course of accumulation in the heart for ^{[11}C]forskolin and ^{[11}C]1-acetyl-7-deacetylforskolin administered alone or with 10 μ g of forskolin. There was less ^{[11}C]1-acetyl-7-deacetylforskolin in the heart than ^{[11}C]forskolin and level of [¹¹C]forskolin radioactivity in the heart co-administered with forskolin was significantly lower at 30 min than at 5 or 10 min after injection.

DISCUSSION

We have previously reported the synthesis of $[^{11}C]$ forskolin from 7-deacetylforskolin using $[^{11}C]$ acetic acid and dicyclohexylcarbodiimide (3, 4). Of the four OH groups on 7-deacetylforskolin, the 7-OH group was selectively acetylated by this method. However, because the DCC method comprises the process of obtaining $[^{11}C]$ acetic acid free from water, it is not suitable for automation or remote operation. The present study showed the synthesis of $[^{11}C]$ forskolin from 7-deacetylforskolin using $[^{11}C]$ acetylchloride. Acetylation using $[^{11}C]$ acetylchloride is suitable for automation or remote operation. However, this $[^{11}C]$ acetylchloride method produced nonselective acetylation of the four OH groups on 7-deacetylforskolin: $[^{11}C]$ forsko-

		Biodistribution	n of [11C]Forsk	TABLE 1 olin and Its Anak	ogs 30 Minutes P	ostinjection			
					%Dose/g tissue				
	Serum	Liver	Kidneys	Spleen	Heart	rugs	Fat	Muscle	Brain
[¹¹ C]forskolin	0.539 ± 0.083	6.82 ± 0.60	2.19 ± 0.35	0.642 ± 0.053	0.553 ± 0.056	0.604 ± 0.075	1.86 ± 0.21	0.476 ± 0.130	0.162 ± 0.026
$[^{11}C]$ forskolin + forskolin (10 μ g)	0.587 ± 0.047	5.89 ± 1.01	1.90 ± 0.46	0.486 ± 0.059	0.378 ± 0.045	0.468 ± 0.042	1.84 ± 0.21	0.336 ± 0.044	0.151 ± 0.019
[11C]1-acetyl-7-deacetyfforskolin	0.406 ± 0.142	4.24 ± 0.59	1.10 ± 0.12	0.511 ± 0.022	0.245 ± 0.017	0.395 ± 0.063	1.88 ± 0.49	0.375 ± 0.069	0.219 ± 0.034
[¹¹ C]1-acetyl-7-deacetyfforskolin + fryskolin (10)	0.385 ± 0.077	4.27 ± 0.38	1.09 ± 0.04	0.571 ± 0.077	0.260 ± 0.011	0.488 ± 0.061	1.60 ± 0.25	0.344 ± 0.004	0.174 ± 0.857
[¹¹ C]1,9-dideoxyforskolin	0.212 ± 0.020	6.75 ± 1.21	1.83 ± 0.49	0.306 ± 0.020	0.809 ± 0.340	1.39 ± 0.44	5.04 ± 1.75	0.282 ± 0.025	0.236 ± 0.026
[¹¹ C]1-deoxyforskolin	0.333 ± 0.048	8.84 ± 1.19	1.35 ± 0.29	0.436 ± 0.067	0.805 ± 0.153	0.804 ± 0.383	12.6 ± 3.8	0.308 ± 0.057	0.344 ± 0.037
Each value represents the mean ±	s.d. for four mice.								

Figure 3. Time-course of radioactivity in heat and serum for

heart

3

FIGURE 3. Time-course of radioactivity in heart and serum for [¹¹C]forskolin (\blacksquare), [¹¹C]forskolin (\blacksquare), [¹¹C]forskolin (\blacksquare), and [¹¹C]1-acetyl-7-deacetylforskolin (\blacksquare) and [¹¹C]1-acetyl-7-deacetylforskolin plus 10 μ g of forskolin (\blacksquare). Each value represents the mean ± s.d. of four mice. Asterisks signify values that are significantly (p < 0.05, Student's t-test) decreased from that of [¹¹C]forskolin value.

lin, $[^{11}C]$ 1-acetyl-7-deacetylforskolin and $[^{11}C]$ 6-acetyl-7-deacetylforskolin (Fig. 2).

Forskolin has high- and low-affinity sites for AC in human platelets and in the rat brain (6, 7). High-affinity sites for forskolin are associated with the Gs α and AC (9, 10). The specific binding of various forskolin analogs to Gs α and AC is consistent with their ability to activate AC (7). The 1- and 9-OH groups on the forskolin structure are critical for their ability to activate AC (5, 6). This led to our initial hypothesis that [¹¹C]1-acetyl-7-deacetylforskolin, [¹¹C]1,9-dideoxyforskolin and [¹¹C]1-deoxyforskolin might serve as "nonspecific forskolin analogs" that possess similar structures to that of forskolin.

The results of the n-octanol/phosphate buffer partition ratio indicated that [¹¹C]1-acetyl-7-deacetylforskolin was

most similar to [¹¹C]forskolin, but [¹¹C]1,9-dideoxyforskolin or [¹¹C]1-deoxyforskolin was different from [¹¹C]forskolin. The biodistribution of [¹¹C]1,9-dideoxyforskolin or ¹¹Cl1-deoxyforskolin was different from that of ¹¹Clforskolin and [¹¹C]1-acetyl-7-deacetylforskolin (Table 1), particularly in lipophilic tissues, such as fat and the brain, reflecting the n-octanol/phosphate buffer partition ratio. More $[^{11}C]$ forskolin accumulated in the heart, kidneys, liver and lungs than [¹¹C]1-acetyl-7-deacetylforskolin. Moreover, loading of 10 μ g of forskolin reduced the levels of [¹¹C]forskolin in these tissues. This tendency was significant in the heart (Table 1 and Fig. 3). Rat myocardium has high affinity sites for forskolin with a Kd of 250 nM and a maximal binding capacity of 5 pmole/mg protein, as determined using $[^{3}H]$ forskolin (11). These results indicate that $[^{11}C]$ forskolin specifically binds to Gs α and AC in the heart and other tissues. Similarly, there are high affinity sites for forskolin in the brain, with a Kd and maximal binding capacity of about 10-40 nM and 40-900 fmole/mg protein (6,7,9), respectively. However, significant specific-binding of [¹¹C]forskolin was not observed in vivo in the brain (Table 1). This may be due to the low transfer constant of the $[^{11}C]$ forskolin from the blood circulation to the brain.

Forskolin has not only specific binding to $Gs\alpha$ and AC, but also nonspecific binding to the AC and membrane transport proteins (7, 12–14), including the glucose transporter, nicotinic acetylcholine receptor, the gamma aminobutyric acid receptor, voltage-dependent K⁺ channels and possibly the P-glycoprotein multidrug transporter. However, adding inhibitors such as D-glucose, cytochalasin B and vinblastine, to the above membrane transport proteins, does not inhibit the high-affinity binding of [³H]forskolin to bovine brain membranes (7, 12, 14). These results indicate that $Gs\alpha$ and AC can be evaluated in vivo by using [¹¹C]forskolin.

This study indicated that [¹¹C]forskolin will be a useful imaging agent for the AC-related second messenger system. Moreover, [¹¹C]1-acetyl-7-deacetylforskolin might be

useful as a "nonspecific forskolin analog" to evaluate the proportion of nonspecific uptake in $[^{11}C]$ forskolin.

ACKNOWLEDGMENT

This work was supported in part by a grant-in-aid from the Japanese government (no. 03770716).

REFERENCES

- Robinson GA, Butcher RW, Sutherland EW. Cyclic AMP. Academic Press; 1971.
- De Souza NJ, Dohadwalla AN, Forskolin RJ. A labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties. *Medicinal Res Rev* 1983;3:201–219.
- Sasaki T, Ogihara-Umeda I, Nishigori H, et al. Rapid synthesis of ¹⁴C forskolin by a route suitable for ¹¹C labeling. J Lab Compd Radiopharm 1991;29:557-565.
- Sasaki T, Yokota A, Ishiwata K, Senda M, Nozaki T, Nishigori H. Potentiality of C-11 forskolin for imaging of cAMP related second messenger system [Abstract]. J Nucl Med 1992;33:1025.
- Santana CS, Guerrero JM, Reiter RJ. Effects of either forskolin, the 1,9dideoxy derivative of forskolin, or 8-bromocyclic AMP on cyclic AMP and melatonin production in the Syrian hamster pineal gland in organic culture. *Neurosci Letters* 1989;103:338-342.
- Seamon KB, Vaillancourt R, Edwards M, Daly JW. Binding of [³H]forskolin to rat brain membranes. *Proc Natl Acad Sci USA* 1984;81:5081–5085.
- Pfeuffer T. Synthesis of forskolin-agarose affinity matrices. Methods Enzymol 1991;195:44–65.
- Le Bars D, Luthra SK, Pike VW, Lu Duc C. The preparation of a carbon-11 labelled neurohormone-[¹¹C]melatonin. *Appl Radiat Isot* 1987;38:1073– 1077.
- Nelson CA, Seamon KB. Binding of [³H]forskolin to solubilized preparations of adenylate cyclase. *Life Sci* 1983;42:1375–1383.
- Valverius P, Hoffman PL, Tabakoff B. Brain forskolin binding in mice dependent on and tolerant to ethanol. *Brain Res* 1989;503:38-43.
- Schmidt K, Kukovetz WR. Evidence for forskolin binding sites in rat heart. J Cyclic Nucleotide Protein Phosphorylation 1985;10:425-438.
- Joost HG, Habberfield AD, Simpson IA, Laurenza A, Seamon KB. Activation of adenylate cyclase and inhibition of glucose transport in rat adipocytes by forskolin analoges: structural determinations for distinct sites of action. *Molecular Pharmacol* 1988;33:449-453.
- Morris DI, Robbins JD, Ruoho AE, Sutkowski EM, Seamon KB. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter. J Biol Chem 1990;13377–13384.
- Laurenza A, Robbins JD, Seamon KB. Interaction of aminoalkylcarbamates of forskolin with adenytyl cyclase: synthesis of an iodinated derivative of forskolin with high affinity for adenytyl cyclase. *Molecular Pharmacol* 1991;41:360-368.