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lterative reconstruction algorithms with markedly different con-
vergence rates have been proposed in single-photon emission
computed tomography (SPECT). Several new iterative recon-
struction methods are described in this investigation. Differences
between the methods include whether a ramp filter was used
during backprojection, the type of backprojection weighting and
whether camera and collimator biur were employed in the pro-
jection step. Simulated and real cylindrical phantoms with rod
inserts were used to compare the properties of convergence and
resolution following reconstruction by maximum likelihood (ML),
iterative-Chang and the newly proposed reconstruction meth-
ods. Resolution was assessed after kemel-sieve regularization
to achieve the same signal-to-noise ratio for all methods. Com-
pared with maximum-likelihood reconstruction, methods em-
ploying a ramp converged much faster. One such method re-
sulted in images with the same resolution and noise as ML, thus
permitting termination of reconstruction at 14 iterations rather
than the 1000 iterations required with ML. The major determi-
nants of resolution were found to be use of an accurate model of
the gamma camera imaging process in the projection step and
inclusion of attenuation weighting and depth-dependent blur in
the backprojection step. In summary, a new iterative reconstruc-
tion method was developed incorporating attenuation and biur
and using a ramp filter that achieved results comparable to
maximum-likelihood reconstruction in a fraction of the time.
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Iterative reconstruction methods have been proposed as
a means of improving image quality in single-photon emis-
sion computed tomography (SPECT) by reducing noise,
enhancing resolution and increasing the accuracy of atten-
uation compensation. These iterative techniques are not
used in clinical practice largely because of the time-con-
suming nature of many of the algorithms, particularly max-
imum-likelihood (ML) reconstruction. In this investiga-
tion, several new rapidly converging iterative techniques
are proposed. Cylindrical resolution phantoms were used
to evaluate the results following reconstruction using the
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new methods, with comparison to the standard techniques
of filtered backprojection, the iterative Chang method and
maximum-likelihood reconstruction.

MATERIALS AND METHODS

Reconstruction Algorithms

Many of the iterative algorithms can be viewed as feedback
loops in which projections are generated from the current estimate
and compared to the measured projections. The difference be-
tween the estimated and measured projections, i.e., the “error,”
is then backprojected and used to update the current estimate.
This feedback loop can be seen schematically in Figure 1 and in
the iterative reconstruction equations presented in the Appendix.

In more detail:

1. The projection step takes the current estimate and passes it
through a simulated gamma camera to produce a series of
estimated projections from multiple angles. Reconstruction
methods differ in the components of the projection process
that are simulated (e.g., attenuation alone or attenuation and
collimator blur).

2. The estimated projections are then compared with the mea-
sured projections from the same angles obtained during the
original gamma camera acquisition. The result of the com-
parison forms a new “‘error’’ projection set. This compari-
son step can consist of computing the difference or ratio of
the pixels in the two data sets, depending on the specific
algorithm.

3. The error projections are then backprojected to form an
error estimate. Options in the backprojection step include
use of a ramp filter and application of weighting factors
during backprojection. Weighting factors can be used to
more heavily emphasize projection angles closest to a point
in the object (potentially improving resolution and noise), to
boost counts from the farthest projections (compensating for
attenuation), or to spread out the effect of the error correc-
tions by simulation of blur.

4. Some methods then apply a multiplicative correction to the
error estimate to partially eliminate attenuation artifacts
present after reconstruction with the above steps. The first-
order Chang correction (1) is an example of a multiplicative
correction which compensates for the attenuation during the
projection step, albeit imperfectly. If attenuation weighting
is explicitly applied during the backprojection step, then a
different multiplicative correction would be appropriate.
Methods that omit this step eventually achieve attenuation
correction through iteration alone.
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FIGURE 1. Diagram of the feedback loop in iterative reconstruc-
tion.

5. The error estimate is then used to update the current esti-
mate. If the comparison consisted of calculating differences,
then the update utilizes addition. If the ratios were com-
puted, then the update consists of multiplying the error
estimate by the current estimate.

If SPECT reconstruction is viewed as a feedback loop, then
conventional filtered backprojection (FBP) can be obtained via a
single pass through the loop by starting with an initial estimate of
zero (Table 1). This will result in zero for the estimated projec-
tions and therefore “‘error projections’ that are identical to the
measured projections. Backprojection with a ramp yields the re-
constructed image. An optional first-order Chang correction can
be applied in the correction step.

The iterative Chang algorithm (/) is achieved by multiple
passes through this same type of loop (Table 1). The projection
step models only attenuation, omitting the gamma camera blur.
The multiplicative correction, which compensates for the mean
attenuation of each pixel over all angles, is the same as that used
in the standard first-order Chang correction.

Maximum-likelihood reconstruction seeks to produce an image
that is statistically most likely to yield the observed projections,
allowing for attenuation and the Poisson nature of the acquisition
process. While maximum-likelihood reconstruction is not intrin-
sically defined as an iterative method, no single-step method has
been found to “invert” the projection process and yield recon-
structions directly from the projection data. Iterative methods to

TABLE 1
lterative SPECT Reconstruction Methods
_ Backprojection

Method Project Compare Weightingramp  Comection
FBP (simple) Difference  none yes optional*
-Chang  Aft' Difference  none yes  yes
t-Chang-B At Biur* Difference  none yes  yes
w1 Att, Bur Difference At yes  yes
t-w2 Att, Blur Difference  Aft,Blur  yes yes
ML Att, Biur  Ratio At,Blur no no

*if applied, results in first-order Chang correction.
TAtt = Attenuation.
*Biur = Geometric collimator and intrinsic camera blur.
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approach a maximum-likelihood solution usually employ the ex-
pectation-maximization (EM) algorithms developed by Lange et
al. (2) and Miller et al. (3) for SPECT imaging; the former method
was implemented in this study. Inspection of these EM-based
algorithms show that they can be thought of as feedback loops
even though their development was unrelated to this concept. As
can be seen in Table 1, maximum-likelihood reconstruction uti-
lizes ratios for comparison and the backprojection step employs
weighted backprojection, in which depth-dependent blur is again
applied and projections are further attenuated. Updating is then
performed by multiplying the reconstructed “‘ratio’” image by the
old estimate to give the new estimate. The starting estimate is a
constant array, typically with pixel values of unity, rather than the
zero-valued array used for the methods employing differences in
the comparison step. Unlike the other methods being considered
in this investigation, maximum likelihood does not employ a ramp
in the backprojection step. The effect of this important omission
will be discussed later.

Other reconstruction techniques can be devised that contain
the elements of the above methods in different combinations. It is
possible to incorporate blur into the projection step in the iterative
Chang algorithm (Table 1) with the expectation that this will result
in resolution recovery during the iterative process. An algorithm
similar to this has been recently proposed by Xu et al. (4). In-
cluding attenuation-based weighting during the backprojection
step serves to give greater weight to projection angles in which the
camera is closest, potentially improving resolution and decreasing
noise. Weighting based on attenuation alone can be employed
(Table 1) or both blur and attenuation can be included in the
backprojection weighting as in ML reconstruction (Table 1). The
equations for these methods are supplied in the Appendix. All
algorithms were constructed so as to allow for nonuniform atten-
uation with utilization of an attenuation map.

In ML reconstruction, the images become increasingly
““noisy” with iterations. As we (5) and others (6,7) have shown,
iterations should not be prematurely terminated. Instead, “‘regu-
larization” should be applied to control the noise. This phenom-
enon is also present in the other algorithms evaluated in this work.
Here, regularization is achieved by the kernel-sieve method (6) in
which Gaussian filters are applied to the final reconstruction. The
potential effects of other regularization methods are mentioned in
the Discussion.

Simulations

A computer-simulated phantom was created consisting of a
slice through a cylindrical, four-quadrant resolution phantom.
Each quadrant contained square rods alternating between 100%
and 50% of peak activity, arranged in a ‘‘checkerboard” pattern.
This digital phantom is shown in the Results section (Fig. 4). The
rod widths varied from 1 cm (2 pixels) to 2.5 cm (5 pixels). Peak
activity was set to 75 counts per pixel, chosen to correspond to the
maximum count density in a typical hepatic blood pool study.
This 64 x 64 noise-free phantom of diameter 25 cm was projected
over 360° using 90 angles with simulated uniform attenuation (x =
0.15/cm); depth-dependent blur was also included, based on mea-
surements from a clinical gamma camera (Multi-SPECT, Siemens
Medical Systems, Hoffman Estates, IL). The projections, consist-
ing of 3 million total counts, were then duplicated to form 25 data
sets and Poisson noise was added to each projection image to form
an ensemble of “noisy’” projections. Reconstructions of both the
ensemble and selected noise-free data were then performed using
the various methods described above.
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The contrast between the low and high activity rods in the
phantom was measured as an indication of resolution. This ap-
proach was viewed as a more accurate measure of resolution than
the full-width half-maximum (FWHM) of a line-spread function
because of the tendency of some reconstruction algorithms to en-
hance edges, artifactually narrowing the line-spread function (7).

An accurate comparison of algorithms must include measures
of both resolution and noise, since one can typically be ““traded
off”’ for the other by the choice of filter or regularizer. The signal-
to-noise ratio (SNR) for each pixel was measured from the mean
and standard deviation of the values at that pixel location in the
ensemble of reconstructed images. A mean SNR was then com-
puted for the entire phantom in a manner similar to that employed
in our previous work (5). Gaussian filters or regularizers were
then chosen such that mean SNR was held constant for all num-
bers of iterations and for all methods. The SNR in the images
reconstructed using ML after 50 iterations without regularization
was arbitrarily chosen as the level of noise to be achieved after
filtering for all methods. After filtering each image in the ensemble
with the chosen filter, the images in the ensemble were averaged
to produce a mean image. Resolution was then measured from the
mean regularized image. Images produced by the iterative-Chang
(It-Chang) method were also analyzed following smoothing with a
fifth-order Butterworth filter (rather than a Gaussian filter) in order
to compare the results with the method widely accepted in clinical

To assess the depth dependence of resolution (5) as a function
of the method and the number of iterations, resolution was mea-
sured separately in the central region of the phantom (r < 0.5 x
radius) and the outer region of the phantom (r > 0.5 X radius). The
contrast values were calculated from the entire width of the rods
and represent the mean contrast over rods in the central or outer
areas. A two-pixel border around each quadrant was excluded
from analysis to avoid inclusion of “spillover’” from the adjacent
quadrants. The digital phantom used to generate the projections
had a contrast value of 0.5. Measured contrast values were plotted
as the fraction of this ideal contrast value versus iteration number,
with noise held constant.

For illustrative purposes, contrast was also computed for se-
lected regions from nonregularized noise-free reconstructions.

Phantom Data

Projections of a Jaszczak phantom (Data Spectrum Corp.,
Chapel Hill, NC) filled with 20 mCi of **™Tc were obtained using
a single-head rotating gamma camera (Siemens Orbiter, Siemens
Medical Systems, Hoffman Estates, IL) equipped with a high-
resolution collimator. Half of the phantom contained only radio-
active water and half contained a rod phantom for assessment of
resolution. The rod sizes ranged in diameter from 4.8 to 12.7 mm.
Data were acquired at 90 angles over 360 degrees into a 128 x 128
pixel matrix with a pixel size of 3.1 x 3.1 mm. Several rows of
projection data were summed prior to reconstruction to yield a
high-count, low-noise study. In the rod portion, this yielded a total
of 2,870,000 counts in the 90 projection images. Reconstruction of
the central 80 x 80 pixel region containing the phantom was then
performed with each of the methods described above.

Since multiple acquisitions of the rod phantom were not avail-
able to permit quantitation of noise in the phantom, reconstruc-
tions were also performed of the uniform portion of the phantom,
and data from an annulus of the uniform portion of the phantom at
a mid-radial position was used to assess noise (5). Data from this
annular region would be expected to have uniform counts even in
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the absence of perfect attenuation correction, permitting compu-
tation of the signal-to-noise ratio. A regularizer or filter was then
chosen to permit evaluation of each method at the same noise
level. The signal-to-noise ratio in images produced by 50 iterations
of maximum-likelihood reconstruction without regularization was
arbitrarily chosen to be the “standard” noise level; images pro-
duced by all other methods were regularized to this same signal-
to-noise ratio. This level of noise resulted in visually acceptable
images, as will be seen below.

Following reconstruction by each method and regularization to
equivalent noise levels, images were presented in a blinded man-
ner to five board-certified nuclear medicine physicians, along with
a diagram of the ““true’’ rod pattern in the phantom. They were
requested to rank the images based on resolution. Ties were permit-
ted, and tied images were given the average of the ranks they would
have if they were separable. Results of the blinded rankings were
assessed for inter-observer agreement and likelihood of chance oc-
currence using the Kendall coefficient of concordance (8).

RESULTS

Simulations

The graphs in Figure 2 depict contrast in the reconstruc-
tion of the noisy data with regularizers applied to achieve
identical noise levels. With more iterations, a smoother
Gaussian filter had to be applied to achieve a constant
noise level. Nearly all methods resulted in reconstructed
images with better resolution peripherally than centrally,
as described for maximum likelihood reconstruction in our
previous work (5). (Slight crossing of the inner and outer
lines for the 2.0-cm rods in ML and It-W?2 at later iteration
numbers is due to minimal spillover of counts from adja-
cent quadrants, despite the 2-pixel border excluded from
the region used for calculation.) No method was able to
resolve the smallest (1.0 cm) rods at this noise level, and
those data were therefore omitted from the graphs.

The graphs for ML and It-W?2 are nearly identical, aside
from a dramatic difference in convergence rate. The con-
trast levels achieved by ML after 1000 iterations are com-
parable to that of It-W?2 after 10-12 iterations. The initial
contrast values achieved by It-W1 are nearly as good as
those with ML, but they decline with successive iterations.
Contrast levels achieved by It-Chang-B and It-Chang after
Gaussian regularization are inferior to that of ML. Use of
a Butterworth filter improved image contrast for It-Chang
reconstructions to nearly that of ML, with the exception of
the smaller (1.5 cm) central rods.

The resolutions achieved following regularization,
shown in Figure 2, depend upon two properties of each
algorithm: the ability of the method to deconvolve the
camera blurring function and the noise propagation prop-
erties of the algorithm. It is useful to examine the former
component separately by comparing methods in the ab-
sence of noise. Figure 3 depicts the contrast for all methods
in the central 1.5-cm rod region of the phantom at succes-
sive iterations following reconstruction (without regular-
ization) of noise-free data. All methods which include the
model of the camera blur in the projection step yield pro-
gressively increasing contrast to approximately the same
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FIGURE 2. Graphs of rod contrast versus iteration number for each of the reconstruction methods. For each of the three different size
rods, the smaller symbol represents the central region and the larger symbol corresponds to the outer region. All images were regularized
to equivalent noise levels prior to computing contrast. Gaussian filters were used, uniess otherwise specified.

value, while little improvement is seen in the method which
does not model camera blur (It-Chang). In addition, it can
be seen that the algorithms employing a ramp filter con-
verge much more rapidly than those without the ramp

Inner 1.5 cm rods
No regularization

- —O— It-Chang
I-W1
- ---@--- It-Chang-B

L. ——&— [t-W2

Se--0---  [t-W2 (no ramp)
—o0— ML

Iteration

FIGURE 3. Graph of contrast versus iteration for the central
1.5-cm rods, computed from noise-free data without regularization.
The difference in convergence rates between algorithms is evident.
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filter. For comparison, the It-W2 algorithm is also shown
with the ramp filter omitted.

Figure 4 contains images corresponding to reconstruc-
tions of a single (noisy) instance for each method at a
selected number of iterations, as well as an image of the
digital phantom used to create the projection data. A min-
imum of four iterations was chosen for methods that con-
verged rapidly in order to allow time for the attenuation
correction to be substantially completed. For the remain-
ing methods, an iteration number was chosen based upon
the peak resolution achieved by the method. When there
was a difference in convergence rate between the large and
small rods, the iteration number was chosen so as to have
greatest resolution in the smaller (1.5 cm) quadrant of the
phantom.

Phantom Data

The results following reconstruction of the Jaszczak
phantom are shown prior to regularization in Figure 5 and
after regularization in Figure 6. The methods depicted are
ML (1000 iterations), It-W1 (4 iterations), FBP with first-
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FIGURE 4. Regularized images at the iteration corresponding to
maximal resolution for each method, computed from a single (noisy)
instance of the simulated phantom. All methods are shown at four
iterations with the exception of It-W2 (14 iterations) and ML (1000
iterations). The original image used to generate the projections is
also shown.

order Chang, It-W2 (14 iterations), It-Chang-B (4 itera-
tions) and It-Chang (4 iterations). The number of iterations
for each method was chosen based upon the previous sim-
ulation study. For comparison with conventional recon-
struction techniques, the first-order Chang and It-Chang
reconstructions are also shown following reconstruction
with a fifth-order Butterworth filter, with the filter cutoff
chosen to achieve a noise level equivalent to the other
methods. The equivalence in noise levels can be confirmed
visually by inspection of the upper right sections of the
phantom, which contained rods too small to resolve by any
of the methods.

The unregularized images (Fig. 5) demonstrate a differ-
ence in noise quality between methods employing blur in
both the projection and backprojection steps (left), in only
the projection step (center) and methods omitting blur

1t-W2 It-Chang-B  It-Chang
FIGURE 5. Images of the Jaszczak phantom reconstructed by
various without . The methods

algorithms,
are: ML (1000 iterations), it-W1 (4 iterations), FBP with first-order
Chang, It-W2 (14 iterations), it-Chang-B (4 iterations) and it-Chang
(4 tterations).
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° Chang
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FIGURE 6. images of the Jaszczak phantom as described in
Figure 5, presented after regularization to equivalent noise levels.
Images marked “Butter” were smoothed with a fifth-order Butter-
worth filter; all other images were with a Gaussian filter
(slight truncation at the image edge is due to the FIR filter employed).
Note the similarity of the ML and t-W2 images in this and the
preceding figure, despite the markedly fewer iterations required by
t-w2.

It-w2

It-Chang

(right). The similar appearance between ML and It-W2 is
likely due to the fact that they share the same projection
and backprojection blur and weighting factors. The
“‘sharpening” effect of incorporating blur into the projec-
tion step (center) resulted in increased noise compared to
methods without the projection blur (right), thus requiring
smoother filters during regularization to achieve compara-
ble noise levels.

Following blinded evaluation of the regularized images
in Figure 6, observers selected images produced by It-W2
and ML as having the highest image quality. The methods,
arranged from highest ranked to lowest, were as follows
(closely ranked methods are listed together, with mean
rank in brackets): It-W2 [1.0], ML [2.2]; It-W1 [3.3];
1°Chang(Butter) [4.1], It-Chang(Butter) [4.9]; It-Chang-B
[6.0]; and It-Chang [6.9], 1°Chang [7.6]. This order of image
quality was quite consistent between observers (coefficient
of concordance 0.88) and was unlikely to have arisen by
chance (p < 0.001). It-W2 was scored by all observers as
superior to the conventional Butterworth-filtered Chang
methods.

DISCUSSION

There are two principle conclusions of this work: (1) A
ramp-based algorithm with features similar to ML results
in convergence speeds that are approximately 80 times
faster than ML, yet this faster algorithm produces images
that are nearly identical (visually and quantitatively) to
those produced by the maximum-likelihood technique; and
(2) Inclusion of depth-dependent blur in the projection step
and weighting during backprojection result in more optimal
use of the available information during iteration, leading to
improved resolution.

The first conclusion suggests that the advantages of max-
imum-likelihood reconstruction may be obtained in clini-
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cally practical computation times. A more thorough dis-
cussion of our findings is presented below.

What Factors Affect Resolution of the Reconstructed
image?

If the physics of the imaging situation, including gamma-
ray attenuation and collimator blur, is modeled correctly,
the feedback loop allows the algorithms to recover resolu-
tion. With progressive iterations, the feedback loop gener-
ates a reconstructed image which, if blurred using the
gamma camera response function, yields projections
matching the observed projections. Methods that omit the
blur during the projection step would not be expected to
recover resolution because those algorithms have no
knowledge of the blurring function. This difference can be
seen most easily by comparison of It-Chang and It-
Chang-B in Figure 3, which depicts contrast in the noise-
free data. Substantial gain in resolution is seen with itera-
tion for the It-Chang-B method. Minimal improvement
seen with the It-Chang method during early iterations is
likely associated with attenuation correction.

In the presence of noise, it also becomes critical for the
algorithm to have optimal noise properties. If an algorithm
amplifies noise with successive iterations, then smoother
regularizers need to be applied to maintain a constant noise
level. These smoother filters may partially offset the im-
proved resolution achieved by the algorithm. Thus, meth-
ods that reach markedly different resolutions in the ab-
sence of noise (Fig. 3) may result in only slightly different
resolutions when noise is present (Fig. 2). This can be seen
by a comparison of It-Chang and It-Chang-B in the two
figures.

Introducing weighting in the backprojection step (as is
done in ML, It-W1 and It-W2) more heavily weights the
“better quality’” data from the closer camera angles and
will lead to better resolution in the peripheral regions of the
image. This effect is most marked in ML and It-W2, which
utilize weighting based upon both depth dependent blur
and attenuation during backprojection. Including blur in
the backprojection weighting slightly slowed convergence
but resulted in superior resolution as can be seen by com-
paring It-W2 and It-W1 (Fig. 2). Including blur while back-
projecting also slightly increases the nonuniformity of res-
olution within the image during early iterations, as
observed by us previously for ML reconstructions (5).
Variable resolution is present to a lesser degree in 1t-W1,
which only employs attenuation weighting. Conventional
filtered backprojection also results in mild nonuniformity in
the reconstructed image due to the weighting introduced
into the projections by the physical attenuation of the emit-
ted gamma rays (9,10). Other iterative algorithms using
alternate attenuation-based backprojection weighting
schemes, such as that proposed by Nowak (11), might be
expected to yield images similar in quality to It-W1.
Tanaka has also proposed a weighted backprojection
method (2) that could be evaluated using similar tech-
niques.
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The type of noise in the unregularized images varies be-
tween reconstruction techniques, as is evident from Figure 5.
In conventional filtered backprojection, noise is known to
be greatest in the higher spatial frequencies, while there is
little image content at the high frequencies. This permits
use of a “low-pass’ Butterworth filter to achieve accept-
able noise levels. Use of Butterworth filters in the first-
order Chang and It-Chang reconstructions resulted in sub-
stantially improved resolution compared to that achieved
by Gaussian regularization; this can be seen both visually
and quantitatively by comparison of It-Chang to It-Chang
(Butterworth) in Figures 2, 4 and 6. In the simulations, use
of a Butterworth filter also improved resolution for the
It-W2 method (data not shown); however, further investi-
gation is needed to decide whether the Butterworth filter is
appropriate, given the different noise content.

Which Algorithm Yielded the Best Resolution?

The simulation study employing rod phantoms sug-
gested that I1t-W2 and ML had the highest resolution, fol-
lowed by It-W1 and It-Chang (Butterworth). The measure-
ment of camera resolution using bar phantoms (for planar
gamma cameras) and rod phantoms (for tomographic im-
aging) is well established, and is especially appropriate in
this situation where point-spread-functions may be mis-
leading due to potential edge artifact. Typically, examina-
tion of the smallest resolvable bar or rod yields the best
indication of image resolution. The gain in resolution when
comparing It-W2 to It-Chang (Butterworth) is most evident
in the simulations when examining the contrast in the cen-
tral 1.5-cm rods (Fig. 2). The contrast achieved by It-W2
was comparable to the contrast present after filtering the
original digital phantom with a 12-mm Gaussian filter,
while that of It-Chang (Butterworth) was comparable to
that after filtering the digital phantom with a 14-mm Gaus-
sian filter. This gain in resolution was also apparent to all of
the observers during the blinded evaluation of the real
phantom data. The slight (apparent) superiority of It-W2
over ML in the observer experiment likely reflects the fact
that 1000 iterations of ML may not yet have converged as
much as 14 iterations of It-W2. This is also suggested in the
simulations by the graphs in Figure 2.

A receiver-operating characteristic (ROC) study involv-
ing patient images will be needed to determine if ML and
It-W2 have superior diagnostic performance compared to
other methods.

Why Are Some Algorithms Slower to Converge Than
Others?

The key factor affecting the speed of convergence of the
iterative algorithms appears to be use of the ramp filter in
the backprojection of the error term. The slowest algorithm
(ML) lacked a ramp filter during the backprojection step.
Omitting the ramp filter will produce a blurred image after
backprojection, as observed in the original backprojection
reconstruction employed by Kuhl (13). Thus, in these it-
erative methods, the ramp acts to “‘sharpen’ or “focus”
the error into the correct region of the reconstructed slice
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leading to faster convergence. Without the ramp, the feed-
back loop eventually compensates for the 1/R blurring in-
troduced by the backprojection operation, but many itera-
tions are required. This can be seen in Figure 3 which
shows that omission of the ramp filter from It-W2 results in
slowing of the convergence rate by a factor of 50. Omission
of blur from the backprojection step also speeds conver-
gence to a minor degree (see It-W1 versus It-W2 in Fig. 3),
though at some loss in resolution (Fig. 2).

Other Considerations

A frequently mentioned advantage of maximum-likeli-
hood reconstruction is the non-negativity of the recon-
structions (14,15). The other iterative methods evaluated
here can lead to negative pixel values because of the pres-
ence of the ramp filter. To avoid this possibility, negative
values were set to zero at each iteration; omission of this
non-negativity constraint in simulations resulted in in-
creased image noise.

Here, kernel sieve regularization was employed; other
forms of regularization (e.g., use of Gibb’s priors
(16,17,18) or Good’s roughness penalty (19, 20)) may yield
improved results for all the iterative reconstruction meth-
ods. However, their use would have hindered the type of
noise analysis employed in this investigation since the reg-
ularization could not be performed interactively after re-
construction to achieve comparable noise levels. It is un-
likely that these other forms of regularization (applied in
the same way to all methods) would significantly change
the relative ordering of the various algorithms, although
further work will be required to confirm this conjecture.

Although the simulations employed in this study did not
include scatter, this fact should not bias the results in favor
of any particular algorithm, since none modeled scatter in
the reconstruction process. Additionally, the nonsimulated
Jaszczak phantom data containing significant scatter
yielded reconstructed images supporting the conclusions
generated from the computer simulations. Addition of scat-
ter correction to the reconstruction algorithms would likely
improve the results with real data without altering the
fundamental conclusions of this work.

Several reconstruction methods were omitted from this
analysis (e.g., ART, SIRT); a complete survey of all exist-
ing and possible methods is beyond the scope of this in-
vestigation. To the extent that these other methods can be
thought of as feedback loops, the basic conclusions of this
work may well apply.

CONCLUSION

This comparison of iterative reconstruction algorithms
in SPECT suggests that camera and collimator blur and
attenuation should be employed in both the projection and
backprojection steps to achieve optimal results. A new
algorithm employing a ramp filter as part of each iteration
is proposed which yields images equivalent in resolution
and noise to maximum likelihood, while dramatically in-
creasing the convergence rate of the algorithm. Use of a
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very fast iterative algorithm, such as conventional itera-
tive-Chang, or a slowly converging algorithm, such as max-
imum likelihood, will lead to inferior images or slow recon-
struction compared to the new method.

APPENDIX

The equations for the reconstruction algorithms employ the
terminology of McCarthy and Miller (21). The equations below
assume a two-dimensional image with reconstruction of a single
slice. The slice to be reconstructed consists of points x = (x, y)
€ &2, where A(x) is the source distribution. The detector rotates
in a circular orbit about the center of the slice. At each angle 6,
events are measured at points u on the detector, and the number
of detected events at each point is M(, 6).

If there were perfect collimation, for each angle 8 the point x
would project onto the detector at a unique point P4(x). Due to
blur, the actual detected events are spread out over multiple
points u, where the position error e is given by e = u — Py(x).
The error in position, which represents the camera blur, conforms
to a distribution p(e|x, @) that is approximately Gaussian in
shape.

The recorded counts M(u, 6) are also a function of attenuation
B(x, u, 6). The attenuation term represents the probability of
measurement of a photon traveling from point x towards detector
point u at angle 6, where

B(xaua 0)= e@(‘“[ }L(I)dl). Eq.A].
Lix u)

The line L(x, u) corresponds to the path from x to point 4 on the
detector, and p(/) is the linear attenuation coefficient at point /
along the path. The overall detection probability B(x) for a colli-
mated photon emanating from x may be obtained by computing
the mean of B(x, u, 8) for points u = P4(x) over the angles 6.

Thus, a discrete model of the projection step, incorporating
both attenuation and blur is:

1¥w, )= 3 plelx, 0)B(x, u, )A¥(x), Eq. A2

where A®)(x) is the estimated source distribution at iteration k,
and p®(u, 6) is the estimated projection at the k iteration.
Methods that omit blur employ a modified delta function instead
of p(e|x, 8) to provide linear interpolation:

ek, 0)=0 ife|> |1,
=1 ifl=0,
=1-l| if0<l<1,

where e is in units of pixels.

The iterative ML algorithm utilizes Equation A2 for projection,
and the complete algorithm for the estimated source distribution
at iteration k + 1, A%**1)(x), is given by

Ak+ l)(x) =AM,
1

® 5 203 ?p(elx, 0)Bx, u, 0)
M(u, 6)
2P, 0)[ Eq. A3
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TABLE A1
Equation Components of the Iterative Methods

Method (o] Blur Att
It-Chang* 1/B(% 5elx, &) 1
I-Chang-B 1/B(X) elx &) 1
W1 (1/B(¥)? 5(elx, ) Blx u, &
It-w2 (1/B(%)? plelx, &) Blx, u, )

*In projection step (Eq. A2) p(elx, u, 6) is replaced by 5(e|x, &)

or, in English,
1
A%+ D) = A0 ———— Blur - At -
@ ) Mean_An ; ?

Measured_ projection
E - !—pmj . td

Eq. A4

where the summation (23) performs the backprojection opera-
tion.

In this form, it is easy to see that the ratio of the measured and
estimated projection values are being backprojected (with blur
and attenuation) to update the current estimate. The term
1/Mean_Att serves to ‘“‘compensate’ for the attenuation intro-
duced by the attenuation in the backprojection step; it is not
commonly considered to be a multiplicative correction, although
it is in some ways analogous to C(x), described below.

The general form for the iterative methods utilizing differences
(rather than ratios) for the comparison step is:

x(k+1)=)"‘(k)(x)+K - Ckx) - (2 ZBIw' - An

0 u

- R® [Measured_proj.-Estimated pmj]) Eq. AS

where RE) represents one-dimensional convolution with a ramp
filter prior to backprojection, C(x) indicates a (spatially varying)
multiplicative correction and K represents a scale factor em-
ployed to compensate for scaling introduced by our implementa-
tion of the backprojection operation and ramp convolution. K was
determined after the first iteration by comparison of the total
counts in a projection of A) with the total counts in the measured
projections. Optionally, a “‘relaxation factor” could be incorpo-
rated into K to help prevent divergence of the algorithm, although
that was not done in this implementation. Differences rather than
ratios were chosen for the comparison step of It-W1 and It-W2 in
order to accommodate negative values that might be generated by
ramp filtering of the error projections. Following each iteration, in
order to introduce a nonnegativity constraint, all negative values
in the estimate were set to zero.

Using this general form, the other algorithms that were evalu-
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ated were constructed as shown in Table 1A. They all include the
ramp and employ Equation 2A for the projection step to produce
the estimated projections.

All methods were implemented on a DECstation 5000/200
workstation (Digital Equipment Corp., Maynard, MA) using the
acceleration techniques described by us previously (22).
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