
newmethods,withcomparisonto thestandardtechniques
of ifiteredbackprojection,the iterativeChangmethodand
maximum-likelihood reconstruction.

MATERIALSAND METhODS

Reconstruction Algorithms
Many of the iterative algOrithmscan be viewed as feedback

loops in which projections are generated from the current estimate
and compared to the measured projections. The differencebe
tween the estimated and measured projections, i.e., the â€œerror,â€•
is thenbackprojectedandused to updatethe currentestimate.
Thisfeedbackloopcanbe seen schematicallyin Figure1 andin
theiterativereconstructionequationspresentedintheAppendix.

Inmoredetail:

1. The projectionstep takes the currentestimate and passes it
througha simulatedgammacamerato producea seriesof
estimated projections from multiple angles. Reconstruction
methods differ in the components of the projection process
thataresimulated(e.g.,attenuationaloneorattenuationand
collimator blur).

2. Theestimatedprojectionsarethencomparedwiththemea
sured projections from the same angles obtained during the
original gamma camera acquisition. The result of the corn
parison forms a new â€œerrorâ€•projection set. This cornpari
son step can consistof computingthe differenceor ratio of
the pixels in the two datasets, dependingon the specific
algorithm.

3. The error projectionsare then backprojectedto form an
errorestimate.Optionsin the backprojectionstep include
use of a ramp filter and application of weighting factors
duringbackprojection.Weightingfactorscan be used to
more heavily emphasize projectionangles closest to a point
intheobject(potentiallyimprovingresolutionandnoise),to
boost counts from the farthest projections(cornpensating for
attenuation), or to spread out the effect of the error correc
tionsby simulationof blur.

4. Some methods then apply a multiplicative correction to the
error estimate to partially eliminate attenuation artifacts
present after reconstruction with the above steps. The first
orderChangcorrection(1) is an example of a multiplicative
correction which compensates for the attenuation during the
projectionstep, albeit imperfectly. If attenuationweighting
is explicitly applied duringthe backprojectionstep, then a
different multiplicative correction would be appropriate.
Methods that omit this step eventually achieve attenuation
correction through iteration alone.

fterathtereconstructionalgorfthmswith markedlydifferentcon
vergence rateshave been proposedinsingle-photonemission
computedtomography(SPECT).Several new iterathi'erecon
structionmethodsaredescribedinthisinvestigabon.Differences
between the methods include whether a ramp filter was used
during backprojection, the type of backprojection weighting and
whethercameraand collimatorblurwere employedinthe pro
jection step. Simulated and real c@1indrIcaIphantoms wfthrod
insertswere used to comparethe propertiesofconvergence and
resolutionfollowingreconstructionby madmumlikelihood(ML),
@erathie-Changand the newly proposedreconstiuctionmath

ods. ResolUtiOnwas assessed afterkernsi-sieveregulaiization
to achievethe same signal-to-noiseratioforallmethods.Corn
pared with madmum-likehhoodreconstruction,methods em
pkMnga rampconvergedmuchfaster.One suth methodre
suitedinimageswfththesame resolutionandnoiseas ML,thus
permittingterminationof reconstructionat 14 iterationsrather
thanthe 1000 ftera@onsrequiredw@iML The majordetermi
nantsof resolutionwerefoundto be use ofan accuratemodelof
the gammacameraimagingprocess inthe projectionstep and
indusion of attenuation weightingand depth-dependent blur in
the backprojectionstep. Insummary,a newiterativereconstruc
tion method was developed incorporathg attenuation and blur
and using a rampfilterthat achieved results comparableto
maximum-likelihoodreconstructionin a fractionof the time.
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terative reconstruction methods have been proposed as
a meansof improvingimagequalityinsingle-photonemis
sion computed tomography (SPEC!') by reducing noise,
enhancing resolution and increasing the accuracy of atten
uationcompensation.These iterativetechniquesare not
used in clinical practice largely because of the time-con
suming nature ofmany of the algorithms, particularly max
imum-likelihood (ML) reconstruction. In this investiga
tion, several new rapidly converging iterative techniques
are proposed. Cylindricalresolution phantoms were used
to evaluate the results following reconstructionusing the
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applied,results Infirst-orderChangcorrection.tAft
=Attenuation.tBltr
= GeometriccoNh@@atorand intrinsiccamera blur.

approach a maximum-likelihood solution usually employ the cx
pectation-maximization(EM)algorithmsdevelopedby Langeet
al. (2) and Miller et al. (3) for SPECT imaging; the former method
was implementedin this study. Inspection of these EM-based
algorithms show that they can be thought of as feedback loops
eventhoughtheirdevelopmentwasunrelatedto thisconcept.As
can be seen in Table 1, maximum-likelihood reconstruction uti
lizes ratios for comparison and the backprojection step employs
weighted backprojection, in which depth-dependent blur is again
applied and projections are further attenuated. Updating is then
performedby multiplyingthereconstructedâ€œratioâ€•imageby the
old estimateto give the newestimate.Thestartingestimateis a
constant array, typicallywith pixelvalues ofunity, rather than the
zero-valuedarrayusedforthemethodsemployingdifferencesin
thecomparisonstep.Unliketheothermethodsbeingconsidered
inthisinvestigation,maximumlikelihooddoesnotemployaramp
in thebackprojectionstep.Theeffectof thisimportantomission
will be discussed later.

Other reconstruction techniques can be devised that contain
theelementsof theabovemethodsindifferentcombinations.Itis
possible to incorporate blur into the projection step in the iterative
Chang algorithm (Table 1)with the expectation that thiswill result
in resolutionrecoveryduringthe iterativeprocess.An algorithm
similar to this has been recently proposed by Xu et al. (4). In
cluding attenuation-based weighting during the backprojection
stepservestogivegreaterweighttoprojectionanglesinwhichthe
camera is closest, potentially improving resolution and decreasing
noise. Weightingbased on attenuation alone can be employed
(Table1) or both blurand attenuationcan be includedin the
backprojection weighting as in ML reconstruction (Table 1). The
equations for these methods are supplied in the Appendix. All
algorithms were constructed so as to allow for nonuniform atten
uationwithutilizationof anattenuationmap.

In ML reconstruction,the images become increasingly
â€œnoisyâ€•with iterations. As we (5) and others (6,7) have shown,
iterationsshouldnotbe prematurelyterminated.Instead,â€œregu
larizationâ€• should be applied to control the noise. This phenom
enonis alsopresentintheotheralgorithmsevaluatedinthiswork.
Here,regularizationis achievedbythekernel-sievemethod(6) in
which Gaussian ifiters are applied to the final reconstruction. The
potentialeffects of other regularizationmethods are mentionedin
theDiscussion.

Simulations
A computer-simulatedphantomwas createdconsistingof a

slice througha cylindrical,four-quadrantresolutionphantom.
Each quadrant contained square rods alternating between 100%
and50%of peakactivity,arrangedin a â€œcheckerboardâ€•pattern.
This digital phantom is shown in the Results section (Fig. 4). The
rod widths varied from 1 cm (2 pixels) to 2.5 cm (5 pixels). Peak
activitywas set to 75 counts per pixel, chosen to correspond to the
maximum count density in a typical hepatic blood pool study.
This 64 X 64 noise-free phantom of diameter 25 cm was projected
over360Â°using90angleswithsimulateduniformattenuation(@&=
0.15/cm); depth-dependent blur was also included, based on mea
surements from a clinical gamma camera (Multi-SPECF, Siemens
Medical Systems, Hoffman Estates, IL). The projections, consist
ingof 3 milliontotalcounts,werethenduplicatedto form25data
sets andPoissonnoisewasaddedto eachprojectionimagetoform
an ensemble of â€œnoisyâ€•projections. Reconstructions of both the
ensemble and selected noise-free data were then performed using
thevariousmethodsdescribedabove.

Object Space Projection Space

(en@â€•@ Project
[\@st@ate

Error
estimate

Optional
correction

/i;:;;:â€”@@'@@\Backproject
@estimat@@mate@

FIGURE 1. Diagram of the feedbeck kop in fterativereconstruc
tion.

5. Theerrorestimateisthenusedtoupdatethecurrentesti
mate.Ifthecomparisonconsistedofcalculatingdifferences,
thenthe updateutilizesaddition.If the ratioswere corn
puted, then the updateconsists of multiplyingthe error
estimate by the current estimate.

if SPECT reconstruction is viewed as a feedback loop, then
conventional filtered backpr@ection (FBP) can be obtained via a
singlepass throughthe loopby startingwith an Initialestimateof
zero (Table 1). This will result in zero for the estimated projec
tions and therefore â€œerrorprojectionsâ€• that are identical to the
measured projections. Backprojection with a ramp yields the re
constructed image. An optional first-order Chang correction can
be appliedin thecorrectionstep.

The iterativeChangalgorithm(1) is achievedby multiple
passes throughthis same type of loop (Table 1). The projection
step modelsonly attenuation,omittingthe gammacamerablur.
The multiplicativecorrection,whichcompensatesfor the mean
attenuationof each pixel over all angles, is the same as that used
in thestandardfirst-orderChangcorrection.

Maximum-likelihood reconstruction seeks to produce an image
thatis statisticallymostlikelyto yieldtheobservedprojections,
allowing for attenuation and the Poisson nature of the acquisition
process. While maximum-likelihood reconstruction is not intrin
sicallydefinedas aniterativemethod,no single-stepmethodhas
been found to â€œinvertâ€•the projection process and yield ream
structions directly from the projectiondata. Iterativemethods to

TABLE 1
Iterative SPECT Reconstruction Methods
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The contrastbetweenthe low and highactivityrods in the
phantomwas measuredas an indicationof resolution.Thisap
proachwasviewedasamoreaccuratemeasureof resolutionthan
the full-width half-maximum(FWHM) of a line-spreadfunction
because of the tendency of some reconstruction algorithms to en
hance edges, artifuctually narrowing the line-spread function (7).

An accurate comparison of algorithms must include measures
of both resolution and noise, since one can typically be â€œtraded
offâ€•fortheotherby thechoiceof ifiterorregularizer.Thesignal
to-noise ratio (SNR) for each pixel was measured from the mean
andstandarddeviationof thevaluesat thatpixellocationin the
ensemble of reconstructed images. A mean SNR was then corn
putedfor the entirephantomin a mannersimilarto thatemployed
in our previouswork (5). Gaussianifitersor regularizerswere
thenchosensuchthatmeanSNRwas heldconstantforallnum
bers of iterations and for all methods. The SNR in the images
reconstructed using ML after 50 iterations without regularization
was arbitrarilychosenas the level of noiseto be achievedafter
ffltenngfor allmethods.Afterifiteringeach imagein the ensemble
with the chosenifiter, the imagesin the ensemblewere averaged
toproduceameanimage.Resolutionwasthenmeasuredfromthe
mean regularizedimage. Images producedby the iterative-Chang
(It-Chang) method were also analyzed following smoothing with a
fifth-order Butterworth filter (rather than a Gaussian filter) in order
to compare the results with the method widely accepted in clinical
practice.

To assessthedepthdependenceof resolution(5) as a function
of themethodandthenumberof iterations,resolutionwas men
suredseparatelyin thecentralregionof thephantom(r < 0.5 x
radius)andtheouterregionofthephantom(r> 0.5 x radius).The
contrastvalueswerecalculatedfromtheentirewidthof therods
andrepresentthe meancontrastover rods in the centralor outer
areas. A two-pixel border around each quadrant was excluded
fromanalysisto avoidinclusionof â€œspilloverâ€•fromthe adjacent
quadrants. The digital phantom used to generate the projections
hadacontrastvalueof0.5. Measuredcontrastvalueswereplotted
as the fractionof this idealcontrastvalue versus iterationnumber,
with noise held constant.

For illustrativepurposes,contrastwas also computedfor se
lectedregionsfromnonregularizednoise-freereconstructions.

Phantom Data
Projections of a Jaszczak phantom (Data Spectrum Corp.,

Chapel Hill, NC) filled with 20 mQ of @Tcwere obtained using
a single-headrotatinggammacamera(SiemensOrbiter,Siemens
Medical Systems, Hoffman Estates, IL) equipped with a high
resolutioncollimator.Halfof thephantomcontainedonlyradio
active water and half contained a rod phantomfor assessment of
resolution.Therodsizesrangedindiameterfrom4.8to 12.7mm.
Data were acquired at 90 angles over 360 degrees into a 128 x 128
pixel matrix with a pixel size of 3.1 x 3.1 mm. Several rows of
projection datawere summedprior to reconstructionto yield a
high-count,low-noisestudy. In therod portion, thisyielded atotal
of2,870,000countsin the 90projectionimages.Reconstructionof
thecentral80 x 80pixelregioncontainingthephantomwas then
performed with each of the methods descrfted above.

Sincemultipleacquisitionsof therodphantomwerenotavail
ableto permitquantitationof noise in the phantom,reconstruc
tions were also performedof the uniformportionof the phantom,
anddatafromanannulusofthe uniformportionofthe phantomat
a mid-radialposition was used to assess noise (5). Data fromthis
annular region would be expected to have uniform counts even in

theabsenceof perfectattenuationcorrection,permittingcompu
tationof thesignal-to-noiseratio.A regularizeror ifiterwas then
chosen to permit evaluation of each method at the same noise
level.Thesignal-to-noiseratioinimagesproducedby 50iterations
ofmaximum-likeihood reconstruction without regularization was
arbitrarilychosen to be the â€œstandardâ€•noise level; imagespro
ducedby allothermethodswereregularizedto thissamesignal
to-noise ratio. This level of noise resulted in visually acceptable
images, as will be seen below.

Following reconstruction by each method and regularization to
equivalent noise levels, images were presented in a blinded man
ncrto five board-certifiednuclearmedicinephysicians, alongwith
a diagramof the â€œtrueâ€•rod pattern in the phantom. They were
requested to rank the imagesbased on resolution. Ties were permit
ted, and tied images were given the average ofthe ranks they would
have if they were separable. Results of the blinded ranl@ngswere
assessed for inter-observer agreement and likelihood of chance oc
currence using the Kendall coefficientof concordance (8).

RESULTS

SImulations
The graphsin Figure 2 depict contrast in the reconstruc

tion of the noisy data with regularizersapplied to achieve
identical noise levels. With more iterations, a smoother
Gaussian ifiter had to be applied to achieve a constant
noise level. Nearly all methods resulted in reconstructed
images with better resolution peripherally than centrally,
as described for maximumlikelihood reconstructionin our
previous work (5). (Slight crossing of the inner and outer
lines for the 2.0-cm rods in ML and It-W2 at later iteration
numbers is due to minimal spillovcr of counts from adja
cent quadrants, despite the 2-pixel border excluded from
the region used for calculation.) No method was able to
resolve the smallest (1.0 cm) rods at this noise level, and
those data were therefore omitted from the graphs.

The graphsfor ML and It-W2 are nearly identical, aside
from a dramatic difference in convergence rate. The con
trast levels achieved by ML after 1000 iterations arc com
parable to that of It-W2 after 10â€”12iterations. The initial
contrast values achieved by It-Wi arc nearly as good as
those with ML, but they decline with successive iterations.
Contrast levels achieved by It-Chang-B and It-Chang after
Gaussian regularizationare inferiorto that of ML. Use of
a Butterworth ifiter improved image contrast for It-Chang
reconstructions to nearly that of ML, with the exception of
the smaller (1.5 cm) central rods.

The resolutions achieved following regularization,
shown in Figure 2, depend upon two properties of each
algorithm: the ability of the method to deconvolvc the
camera blurring function and the noise propagation prop
erties of the algorithm. It is useful to examine the former
component separately by comparing methods in the ab
sence ofnoisc. Figure3 depicts the contrastfor allmethods
in the central 1.5-cm rod region of the phantom at succes
sive iterations following reconstruction (without regular
ization) of noise-free data. All methods which include the
model of the camera blur in the projection step yield pro
gressively increasing contrast to approximately the same
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FIGURE 3. Graphof contrastversusfteratlonfor the central
I.5-cmrods,computedfromnoise-freedatawithoutregulaiizatlon.
ThedifferenceinconvergenceratesbetweenalgorithmsIsevident
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FIGURE2. Graphsof rodcontrastversusfterationnumberforeachofthereconstructionmethods.Foreachofthethreedifferentsize
rods,the smallersymbolrepresentsthe centralregionand the largersymbolcorrespondsto the outerregion.AllImageswere regularized
to equivalentnoise levelspriorto computingcontrast Gaussianfifterswere used, unlessotherwisespecified.

value, while little improvement is seen in the method which
does not model camera blur (It-Chang). In addition, it can
be seen that the algorithms employing a ramp ifiter con
verge much more rapidly than those without the ramp

ifiter. For comparison, the It-W2 algorithmis also shown
with the rampfilter omitted.

Figure 4 contains images corresponding to reconstruc
tions of a single (noisy) instance for each method at a
selected number of iterations, as well as an image of the
digital phantom used to create the projection data. A min
imum of four iterations was chosen for methods that con
verged rapidly in order to allow time for the attenuation
correction to be substantially completed. For the remain
ing methods, an iteration number was chosen based upon
the peak resolution achieved by the method. When there
was a differencein convergence ratebetween the largeand
small rods, the iteration number was chosen so as to have
greatest resolution in the smaller (1.5 cm) quadrant of the
phantom.

Phantom Data
The results following reconstruction of the Jaszczak

phantom are shown prior to regularizationin Figure 5 and
after regularizationin Figure 6. The methods depicted arc
ML (i000 iterations), It-Wi (4 iterations), FBP with first
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1Â°Chana
ML It-Wi 1Â°Chang (Butter@

lt-Chang ltâ€”Changâ€”BltChang
(Butter) It-Chang
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lt-W2 It-Chang-B It-Chang

ma,dmalresolutionforeach method,computedfroma singla(noisy)
instance of the simulated phantom. Allmethods are shown at four
fterationswfththeexceptionof ft-W2(14iterations)andML(1000
fterations).Theoriginalimageusedto generatetheprojectionsis
also shown.
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Figure 5, presented after regulahzaflon to eqtthialent noise levels.
Images markedâ€œButterâ€•were smoothedwitha fifth-orderButter
worthfilter;allother imageswere regularizedwitha GaussianMar
(si@httruncationatthe imageedgeIsduetothe FiRfifterempbyed).
Notethe similarityof the ML and ft-W2imagesin thisand the

@ingfigure, des@ the markecfly fewer fterations required by
lt-W2.order Chang, It-W2 (i4 iterations), It-Chang-B (4 itera

tions) and It-Chang(4 iterations).The numberof iterations
for each method was chosen based upon the previous sim
ulation study. For comparison with conventional rccon
struction techniques, the first-order Chang and It-Clang
reconstructions are also shown following reconstruction
with a fifth-orderButterworth filter, with the filter cutoff
chosen to achieve a noise level equivalent to the other
methods. The equivalence in noise levels can be confirmed
visually by inspection of the upper right sections of the
phantom,which containedrodstoo smallto resolveby any
of the methods.

The unregularizedimages (Fig. 5) demonstrate a differ
ence in noise quality between methods emplo@ngblur in
both the projection and backprojectionsteps (left), in only
the projection step (center) and methods omitting blur

variousalgorithms,presentedwithoutregularlzation.The methods
are: ML(1000fterations),It-Wi (4 iterations),FBPwithfirst-order
Chang, ft-W2 (14 fterations), ft-Chang-B (4 iterations) and ft-Chang
(4 fterations).

(tight). The similar appearance between ML and It-W2 is
likely due to the fact that they share the same projection
and backprojection blur and weighting factors. The
â€œsharpeningâ€•effect of incorporatingblur into the projec
tion step (center) resulted in increased noise compared to
methods without the projectionblur (right),thus requiring
smoother ifiters during regularization to achieve compara
ble noise levels.

Following blinded evaluation of the regularized images
in Figure 6, observers selected images produced by It-W2
and ML as havingthe highest image quality. The methods,
arranged from highest ranked to lowest, were as follows
(closely ranked methods are listed together, with mean
rank in brackets): It-W2 [i.O], ML [2.2]; It-Wi [3.3];
iÂ°Chang(Butter) [4.i], It-Chang(Buttcr) [4.9]; It-Clang-B
[6.0]; and It-Clang [6.9], iÂ°Chang[7.6]. This order of image
quality was quite consistent between observers (coefficient

of concordance 0.88) and was unlikely to have arisen by
chance (p < O.OOi).It-W2 was scored by all observers as
superior to the conventional Butterworth-ffltered Clang
methods.

DISCUSSION

There are two principle conclusions of this work: (i) A
ramp-based algorithm with features similar to ML results
in convergence speeds that are approximately 80 times
faster than ML, yet this faster algorithmproduces images
that arc nearly identical (visually and quantitatively) to
those producedby the maximum-likelihoodtechnique; and
(2) Inclusion of depth-dependent blur in the projection step
andweighting duringbackprojectionresult in more optimal
use of the availableinformationduringiteration, leading to
improved resolution.

The firstconclusionsuggeststhat the advantagesof max
imum-likelihood reconstruction may be obtained in clini
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cally practical computation times. A more thorough dis
cussion of our findings is presented below.

What Factors Affect ResOlutIOn of the Reconstructed
Image?

if the physics of the imagingsituation, includinggamma
ray attenuation and collimator blur, is modeled correctly,
the feedback loop allows the algorithmsto recover resolu
tion. With progressive iterations, the feedback loop gener
ates a reconstructed image which, if blurred using the
gamma camera response function, yields projections
matchingthe observed projections. Methods that omit the
blur during the projection step would not be expected to
recover resolution because those algorithms have no
knowledge of the blurring function. This difference can be
seen most easily by comparison of It-Clang and It
Clang-B in Figure 3, which depicts contrast in the noise
free data. Substantialgain in resolution is seen with itera
tion for the It-Clang-B method. Minimal improvement
seen with the It-Clang method during early iterations is
likely associated with attenuation correction.

In the presence of noise, it also becomes critical for the
algorithm to have optimal noise properties. If an algorithm
amplifies noise with successive iterations, then smoother
regularizers need to be applied to maintain a constant noise
level. These smoother filters may partially offset the im
proved resolution achieved by the algorithm.Thus, meth
ods that reach markedly different resolutions in the ab
sence of noise (Fig. 3) may result in only slightly different
resolutions when noise is present (Fig. 2). This can be seen
by a comparison of It-Clang and It-Clang-B in the two
figures.

Introducingweighting in the backprojection step (as is
done in ML, It-Wi and It-W2) more heavily weights the
â€œbetterqualityâ€•data from the closer camera angles and
will lead to better resolution in the peripheral regions of the
image. This effect is most markedin ML and It-W2,which
utilize weighting based upon both depth dependent blur
and attenuation during backprojection. Including blur in
the backprojectionweighting slightly slowed convergence
but resulted in superiorresolution as can be seen by com
paring It-W2 and It-Wi (Fig. 2). Including blur while back
projectingalso slightly increases the nonuniformityof res
olution within the image during early iterations, as
observed by us previously for ML reconstructions (5).
Variable resolution is present to a lesser degree in It-Wi,
which only employs attenuation weighting. Conventional
ffltcrcdbackprojectionalso results in mildnonuniformityin
the reconstructed image due to the weighting introduced
into the projectionsby the physical attenuationof the emit
ted gamma rays (9,10). Other iterative algorithms using
alternate attenuation-based backprojection weighting
schemes, such as that proposed by Nowak (11), might be
expected to yield images similar in quality to It-Wi.
Tanaka has also proposed a weighted backprojection
method (12) that could be evaluated using similar tech
niques.

The type of noise in the unregularizedimagesvaries be
tween reconstruction techniques, as is evident from Figure 5.
In conventional ifiteredbackprojection, noise is known to
be greatest in the higherspatial frequencies, while there is
little image content at the high frequencies. This permits
use of a â€œlow-passâ€•Butterworthifiter to achieve accept
able noise levels. Use of Buttcrworth ifiters in the first
order Chang and It-Clang reconstructions resulted in sub
stantially improved resolution compared to that achieved
by Gaussian regularization;this can be seen both visually
and quantitatively by comparisonof It-Chang to It-Clang
(Butterworth) in Figures 2, 4 and 6. In the simulations, use
of a Butterworth filter also improved resolution for the
It-W2 method (data not shown); however, further invcsti
gation is needed to decide whether the Buttcrworthifiteris
appropriate,given the differentnoise content.

Which Algorithm YIelded the Best Resolution?
The simulation study employing rod phantoms sug

gested that It-W2 and ML had the highest resolution, fol
lowed by It-Wi and It-Clang (Buttcrworth). The measure
ment of camera resolution using bar phantoms (for planar
gamma cameras) and rod phantoms (for tomographic im
aging) is well established, and is especially appropriate in
this situation where point-spread-functions may be mis
leading due to potential edge artifact. Typically, examina
tion of the smallest resolvable bar or rod yields the best
indicationof image resolution. The gain in resolutionwhen
comparing It-W2 to It-Clang (Buttcrworth) is most evident
in the simulationswhen examiningthe contrast in the cen
tral 1.5-cm rods (Fig. 2). The contrast achieved by It-W2
was comparable to the contrast present after filteringthe
original digital phantom with a i2-mm Gaussian ifiter,
while that of It-Clang (Butterworth) was comparable to
that after ifiteringthe digitalphantomwith a 14-mmGaus
sian ifiter.This gain in resolutionwas also apparentto allof
the observers during the blinded evaluation of the real
phantom data. The slight (apparent)superiority of It-W2
over ML in the observer experiment likely reflects the fact
that i000 iterationsof ML may not yet have converged as
much as 14iterationsof It-W2.This is also suggested in the
simulations by the graphs in Figure 2.

A receiver-operatingcharacteristic(ROC)study involv
ing patient images will be needed to determine if ML and
It-W2 have superior diagnostic performance compared to
other methods.

Why Are Some Algorfthms Slower to Converge Than
Others?

The key factor affectingthe speed of convergence of the
iterative algorithms appears to be use of the ramp ffltcr in
the backprojectionofthe errorterm. The slowest algorithm
(ML) lacked a ramp filter during the backprojection step.
Omitting the ramp ifiter will produce a blurred image after
backprojection,as observed in the originalbackprojection
reconstruction employed by Kuhl (13). Thus, in these it
erative methods, the ramp acts to â€œsharpenâ€•or â€œfocusâ€•
the error into the correct region of the reconstructedslice
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very fast iterative algorithm, such as conventional itera
tive-Clang, or a slowly converging algorithm, such as max
imumlikelihood, will lead to inferiorimages or slow rccon
struction compared to the new method.

APPENDIX

The equationsfor the reconstructionalgorithmsemploythe
terminologyof McCarthyandMiller(21). The equationsbelow
assume a two-dimensional image with reconstruction of a single
slice.The sliceto be reconstructedconsistsof pointsx = (x, y)
E @2,whereA(x) is the sourcedistribution. The detectorrotates
in a circularorbitaboutthe centerof the slice. At eachangle0,
eventsaremeasuredatpointsu on thedetector,andthenumber
of detected events at each point is M(u, 0).

If there were perfect collimation, for each angle 0 the pointx
wouldprojectontothedetectorat a uniquepointP9(x). Dueto
blur, the actualdetectedevents are spreadout over multiple
pointsU, wherethepositionerrore is givenby e = u â€”Pe(x).
Theerrorinposition,whichrepresentsthecamerablur,conforms
to a distributionp(elx, 0) that is approximatelyGaussianin
shape.

TherecordedcountsM(u, 0) arealsoafunctionof attenuation
@(x,u, 0). The attenuationtermrepresentsthe probabilityof

measurementof a photon travelingfrompointx towardsdetector
pointu at angle0, where

@ u,0)= exp â€”@@ â€œ- Eq.Al
JL(z,u)

The lineL(x, u) correspondsto the path fromx to point u on the
detector,andp@(l)is the linearattenuationcoefficientat point1
along the path. The overall detection probability @(x)for a colli
mated photon emanatingfromx may be obtained by computing
the mean of @(x,u, 0) for points u = P8(x) over the angles 0.

Thus, a discretemodelof the projectionstep, incorporating
both attenuation and blur is:

j(k)(@0) = @.:p(e@x,0)@3(x,u, 0)A@(r), Eq. A2

x

whereA(k)(x)is the estimatedsourcedistributionat iterationk,
and p@@(u,0) is the estimated projection at the kâ€•iteration.
Methodsthatomitbluremploya modffieddeltafunctioninstead
ofp(elx, 0) to provide linear interpolation:

&(ek,0)=0 if eI>l1,

=1 iflel=0,

=1â€”IeI if0<@eI<1,

wheree is inunitsof pixels.
The iterativeML algorithmutilizes EquationA2 forprojection,

andthecompleteal@orith.mfortheestimatedsourcedistribution
at iterationk + 1, A(k+1@(x),is givenby

A(k+ 1)@) = A(k).

1
@@:)@ :@::@:p(ek, 0)@, u, 0)@

M(u 0)
@(k)(u,0) â€˜ Eq. A3

leading to faster convergence. Without the ramp, the feed
back loop eventually compensates for the i/R blurringin
troduced by the backprojectionoperation, but many itcra
tions are required. This can be seen in Figure 3 which
shows that omission of the rampfilterfrom It-W2results in
slowing ofthe convergence rate by a factor ofSO. Omission
of blur from the backprojection step also speeds conver
gence to a minor degree (see It-Wi versus It-W2 in Fig. 3),
though at some loss in resolution (Fig. 2).

Other Considerations
A frequently mentioned advantage of maximum-likei

hood reconstruction is the non-negativity of the recon
structions (14, 15). The other iterative methods evaluated
here can lead to negative pixel values because of the pres
ence of the ramp ifiter. To avoid this possibility, negative
values were set to zero at each iteration;omission of this
non-negativity constraint in simulations resulted in in
creased image noise.

Here, kernel sieve regularizationwas employed; other
forms of regularization (e.g., use of Gibb's priors
(16,17,18)orGood'sroughnesspenalty(19,20))mayyield
improved results for all the iterative reconstruction meth
ods. However, their use would have hindered the type of
noise analysis employed in this investigationsince the reg
ularization could not be performed interactively after rc
construction to achieve comparable noise levels. It is un
likely that these other forms of regularization (applied in
the same way to all methods) would significantly change
the relative ordering of the various algorithms, although
further work will be required to confirm this conjecture.

Although the simulations employed in this study did not
include scatter, this fact should not bias the results in favor
of any particularalgorithm, since none modeled scatter in
the reconstructionprocess. Additionally, the nonsimulated
Jaszczak phantom data containing significant scatter
yielded reconstructed images supporting the conclusions
generated from the computer simulations. Addition of scat
ter correction to the reconstructionalgorithmswould likely
improve the results with real data without altering the
fundamentalconclusions of this work.

Several reconstruction methods were omitted from this
analysis (e.g., ART, SIRT); a complete survey of all exist
ing and possible methods is beyond the scope of this in
vestigation. To the extent that these other methods can be
thought of as feedback loops, the basic conclusions of this
work may well apply.

CONCLUSION

This comparison of iterative reconstruction algorithms
in SPEC!' suggests that camera and collimator blur and
attenuationshould be employed in both the projectionand
backprojcction steps to achieve optimal results. A new
algorithm employing a ramp filter as part of each iteration
is proposed which yields images equivalent in resolution
and noise to maximum likelihood, while dramatically in
creasing the convergence rate of the algorithm. Use of a
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Method Cix) Blur AU

atedwereconstructedas showninTable1A.Theyallincludethe
ramp and employ Equation 2A for the projection step to produce
the estimated projections.

All methods were implemented on a DECstation 5000i200
workstation (DigitalEquipmentCorp., Maynard,MA) using the
accelerationtechniquesdescribedby us previously(22).
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TABLE Al
Equa@onComponents of the fterativeMethods

or, in English,

A(k+ 1)@) = A(k)@) n..Att@@ Blur . AltO
Mea

[Measur@d...pmjectionl

IErtÃ¼nated_projectionj'â€˜@.
wherethe summation(@) performsthe backprojectionopera
tion.

In this form, it is easy to see that the ratioof the measuredand
estimated projection values are being backprojected (with blur
and attenuation)to update the currentestimate. The term
1/Mean.4tt serves to â€œcompensateâ€•for the attenuationintro
ducedby the attenuationin the backprojectionstep; it is not
commonlyconsideredto be a multiplicativecorrection,although
it is in someways analogousto C(x), describedbelow.

Thegeneralformfortheiterativemethodsutilizingdifferences
(ratherthanratios)forthecomparisonstepis:

A(k + 1)= A(k)@) + K . C(c) . (@ @:Blur . Aa

. R Â®[Measure&proj.â€”Erthnated @mJ.J). i@q.@

whereRÂ®representsone-dimensionalconvolutionwitha ramp
filter prior to backprojection, C(x) indicates a (spatially varying)
multiplicative correction and K represents a scale factor em
ployed to compensate for scaling introduced by our implementa
tionof thebackprojectionoperationandrampconvolution.K was
determinedafterthe first iterationby comparisonof the total
counts in a projection of A@1@with the total counts in the measured
projections.Optionally,a â€œrelaxationfactorâ€•could be incorpo
ratedintoK to helppreventdivergenceof thealgorithm,although
thatwas notdonein thisimplementation.Differencesratherthan
ratios were chosen for the comparison step of It-Wi and It-W2 in
orderto accommodatenegativevaluesthatmightbegeneratedby
ramp filtering ofthe error projections. Following each iteration, in
order to introducea nonnegativityconstraint,all negativevalues
in theestimatewereset to zero.

Using this general form, the other algorithmsthatwere evalu




