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Accurate determination of local blood flow in tissue using the
Kety-Schmidt one-compartment model for freely diffusible trac-
ers requires knowledge of the true arterial input function in tissue.
Because measured input functions are usually delayed and dis-
persed with respect to true influx, a correction of the experimen-
tal input function is necessary. We describe a technique that
uses a fast multilinear least-squares minimization procedure to
determine simultaneously the dispersion, the blood flow and the
partition coefficient as a function of delay. In this approach, a few
multiinear fits are sufficient to determine the complete set of
parameters necessary to describe the data. Because of the high
speed of the procedure, dispersion effects may be taken into
account on a pixel-by-pixel basis in calculating parametric im-
ages of blood flow and partition coefficient. The described pro-
cedure has been used at our institute for about 1 yr in more than
160 investigations and has proven well suited for routine use in
a clinical environment.
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Dynamic positron emission tomography (PET) offers a
unique noninvasive method for reliable quantitative deter-
mination of local blood flow in tissue using tracers such as
150-labeled water or butanol which can be considered as
nearly free diffusible under physiological conditions
(16,17).

In addition to the time-activity curve in tissue derived
from the dynamic PET scan (tissue-response function), the
time-activity curve in arterial blood (arterial-input func-
tion) must also be known. In most cases this information
can only be derived from arterial blood sampling at a pe-
ripheral site such as the radial artery. To enable unbiased
estimations of the interesting physiological parameters,
i.e., blood flow and tissue-blood partition coefficient, one
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must derive the true input function in tissue from the mea-
sured input function. Two related effects have to be con-
sidered in this context (I-6,13-15), namely delay and dis-
persion.

Delay is caused by the differing path lengths the tracer
has to travel from the heart to either sampling site or target
organ. The measured input function is therefore shifted
(usually delayed) with respect to the true input function.
Moreover, the tracer bolus experiences a smearing out
(dispersion) due to inhomogeneous velocity fields in the
vessels which differs for measured and true input function.

Several approaches have been proposed to correct these
effects. These approaches suffer from different drawbacks
in either validity or computing-time efficiency (1-6).

This study describes a numerically, stable and fast pro-
cedure that allows a consistent simultaneous determination
of all parameters in the model and enables simultaneous
calculation of parametric images of blood flow and parti-
tion coefficient.

MATERIALS AND METHODS

Data Acquisition

The PET data were acquired with a Siemens ECAT 951/31 PET
scanner. Thirty-one slices with a plane separation of 3.4 mm were
obtained simultaneously. The axial and transaxial resolution of
the reconstructed image (Hann-filter, cut-off frequency 0.4, 128 X
128 matrix) was about 7-8 mm FWHM.

After a bolus injection of 3.7 GBq *0-H,0, multiple time
frames were taken (12 x 5 sec, 4 X 30 sec). The total scan time
was 3 min. The method for synthesis and the automated proce-
dure for the application of the *O-labeled water has been de-
scribed before (18). All image data were corrected for attenuation
(10 min transmission) and decay during the reconstruction proce-
dure.

Radial artery blood samples (1 ml) were taken according to the
dynamic protocol at midframe times and one immediately before
start of the scan. The samples were counted in a wellcounter
which was cross-calibrated to the PET scanner. The decay-cor-
rected values were transferred to a SUN 4-workstation for further
data processing.
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Theory
The kinetics of a freely diffusible tracer is governed by the

linear differential equation of the Kety-Schmidt model (11). The
relation between the true arterial input function c,(t) and the tissue
response function c(t) is given by:

f
G(t) = fey(t) — = ci(t), Eq.1

where f is blood flow, p is tissue blood partition coefficient and the
time derivative is indicated by a dot. (Decay-corrected quantities
are considered throughout.) The analytic solution of Equation 1 is:

() =fe,t) v e~ K = fe = f c(s)®ds, Eq.2

0

where k = f/p and * denotes convolution. This equation depends
nonlinearily on k, which necessitates the use of time-consuming
iterative minimization procedures (usually of the Levenberg-Mar-
quardt type (7)) in order to derive estimates for f and k directly
from Equation 2.

If on the other hand an integration of Equation 1 is performed,
observing that ¢,(0) = 0), the equivalent integral equation:

qm={rqwm—qusm Eq.3

0 0

is obtained. Equation 3 offers the opportunity to determine f and
k (hence p) from a linear two-parameter fit by treating the time-
dependent integrals as known basis functions in a fit to the model
function:

ci(t) = fa(t) — kii(t), Eq. 4

where:

Lm=qummﬁm=qua

0 0

This possibility was first recognized by Blomqvist (8).

The Influence of Delay and Dispersion

As already noted by Meyer (3), consecutive corrections for
delay and dispersion in general will not be selfconsistent, i.e.,
reversal of the order of corrections will yield different results.
Such procedures can only determine the correct values if the
dependence of the goodness-of-fit parameter x* (the sum of the
squared differences between data and fit) on delay and dispersion
is such that the absolute minimum of x* can be determined by two
independent one-dimensional minimizations. Because in general
this is not the case, a consistent approach is called for in which the
correct relation between experimental and true input function is
taken into account.

It should be noted that only the dispersion of the measured
input function c,(t) relative to the true c,(t) in tissue is of interest,
not the total dispersion of the injected bolus prior to the sampling.
This implies that under reasonable experimental conditions, dis-
persion is a minor effect compared to delay, and the shape of c,,(t)
will always be similar to that of c,(t). Therefore, it is justified to
describe dispersion according to lida et al. (4) by the convolution:
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e ur
Cm(t) = Cy(t) * >
T

Eq.5

so that the effect of dispersion is completely specified by the
dispersion time constant 7. A direct consequence of Equation 5 is:

Ca(t) = Cr(t) + 7Cn(1), Eq.6
as can be seen by performing the convolution in Equation 5 and
computing the time derivative.

Delay is taken into account by shifting the time scale of c,(t) in
Equation 6 by the delay time A (by convention A is positive if c,(t)
is delayed with respect to c,(t)):

Ca(t) = cy(t + A) + 7yt + A). Eq. 7
This is the required relation between measured and true input
function. The most straightforward way to proceed is to insert

Equation 7 in Equation 2 and perform a nonlinear least-squares fit
for the set of parameters (f, p, 7, A), as described by Meyer (3).

The Multilinear Approach

The ultimate goal of investigating regional differences of blood
flow is generation of parametric images for blood flow and parti-
tion coefficient. Nonlinear fitting is too slow to allow calculation of
parametric images even if the parameters 7 and A are fixed ac-
cording to results obtained on a representative region. One there-
fore has to resort to some other procedure, such as weighted
integration techniques (9) once 7and A have been determined by
the nonlinear fit.

We investigated whether a unified procedure could be found
that enables sufficiently fast fits even on a pixel-by-pixel basis. We
found that this can be achieved by combining Equation 7 and
Equation 3. This yields (observing that c,(A) = 0):

q(t)=sc,,,(t+A)+fJ'cm(s+A)ds—kJ'ci(s)ds
0 0

= gCp(t + A) + fin(t, A) — kji(t), with & = fr. Eq. 8
Comparison with Equations 3 and 4 show that dispersion intro-
duces an additional term &<, in the model equation. Given the
experimental determined functions c,(t) and c(t), Equation 8
allows fast simultaneous determination of parameters &, f and k
for any fixed delay A by means of a three-parameter linear least-
squares fit. One can proceed by performing a series of fits to
Equation 8 in which the whole range of possible values for A is
scanned. The minimum of the function x*(4, &(4), f(A), k(A)) thus
found yields the best estimates for the complete set of parameters.

Graphical Quality Control

We introduced elsewhere (10) a linearized representation of
data that enables a sensitive check with respect to possible errors
in delay and dispersion corrections: dividing both sides of Equa-
tion 3 by [f} c,(s) ds], the equation is transformed to a straight
line:

y(x) = f - kx, Eq.9

where y(t) and x(t) are defined by:
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FIGURE 1. BExperimental input function and tissue response from
agrey matter region of the human brain. Different scales are used for

input and response function.

f ofs) ds
ci(t) c(t) 0 _i0
Ja®)”

y(t)=t_=m'x(t)= )
jc.(s)ds Jc,(s)ds
0 0
Eq. 10

In this representation blood flow appears as the y-intercept and
the partition coefficient as the x-intercept of the straight line y(x).
(This transformation has been introduced independently by Yokoi
et al. (12,19)).

Using the experimental input function and assuming delay and
dispersion according to Equation 7, the definition of x(t) and y(t)
can be reformulated to yield:

jilt)
jm(t, 8) + 7 cy(t + )’

)
YO = e+ raesra) 0

where

it 4) = f " s + ) ds. Eq. 11
0

If one plots experimental data in the form y(x) according to Equa-
tion 11 using the values of delay and dispersion as determined by
the above described fitting procedure, the data will follow the
straight line of Equation 9 only if 7 and A values are correct.

Computer Simulations
It is understood that temporal sampling both for the arterial
input function and tissue response is sufficiently fine so that un-

certainties connected with interpolation and numerical integration
of the discretely sampled data are insignificant. Then, as is obvi-
ous from the derivation of Equation 8, the described procedure is
exact as far as noiseless data are concerned. The multilinear
approach therefore gives unbiased estimates of the underlying
true parameters of the data set.

Presence of statistical noise in the data alters this situation:
noise might lead to systematic errors in parameter estimates be-
cause in least-squares fitting it is presupposed that the basis func-
tions of the model (Cy, jm, j; in Equation 8) are exact. This
assumption is fulfilled to a good approximation for c,,(t) and j(t).
However, ji(t) exhibits substantial noise if individual pixels are
involved, even if one recognizes that the relative uncertainties in
ji(t) are much smaller than those of c(t), due to the smoothing
effect of the involved integration. We therefore investigated the
influence of noisy data on the parameter estimates by means of
Monte Carlo simulations. For this purpose we superimposed
Gaussian-shaped noise distributions of varying width on theoret-
ical tissue response curves which were generated via Equation 2
for several values of parameters f and k from a typical experimen-
tal input function.

RESULTS

Performance of the Multilinear Approach

A typical experimental input function with the tissue
response from a grey matter region in brain is shown in
Figure 1. Both curves are drawn at a different scale to show
the onset of tissue response. Figure 2A shows the tissue-
response data and the optimal fit to Equation 8, assuming a
fixed value of 7 = 0. Figure 2B shows the linearized rep-
resentation of the data (input plus response) in the form
y(x) along with the straight line according to Equation 9
using the fitted values of f and k. The values of blood flow
and partition coefficient can be read as axes intercepts.
Systematic deviation of the data from the line at small x
(corresponding to early times) is obvious and indicates that
dispersion has not been adequately considered. In Figure
2A the corresponding deviations at early times are much
more difficult to detect.

Using the correct procedure of fitting the complete set of
parameters leads to the results presented in Figures 3A and
3B where data points follow the theoretical expected be-
havior much better. Figure 4 shows the corresponding true
input function that results from the explicit deconvolution

A 000 B o7 — v v
= flow— K g:n.':we!.: 83 )
g woor o5} J
£ g o4l
& 4000
FIGURE 2. (A) Tissue response from i g osf
Figure 1 together with fit according to Equa- § I = o2f
tion 8. Input function delay A is optimized in g 2w s
the fit (A = 8.6 sec), whereas dispersion 7 oa}
is neglected. (B) Linearized representation 0 . . . 1 00 . R R )
dmmmwmdngmeqm 0 40 u::e(w")zo 160 200 0.0 0,2 l:.(:”nv:‘.l: 0.0T 1.0
9 and 11. Axes intercepts of the straight line panion
yield flow and partition coefficient.
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= 4.3 sec). (B) Linearized representation of
the data from (A) according to Equations 9

time (sec.) 0,0 0,2 0.4

o8 0.8 T 1.0 and 11. Systematic deviations from the
X0 (mifmi) pariion straight line are reduced at small x as com-
coel

pared to Figure 2B.

according to Equation 7 using the derived values of A and
7.

The neglect of dispersion (i.e., setting 7 = £ = 0 in the
fitting procedures) results in systematic errors for blood
flow and partition coefficient which usually amount to only
a few percent if the delay is adjusted freely. To demon-
strate this more clearly, the function y%(A) is shown in
Figure 5A as it results from the series of fits to Equation 8
if £ = 0 is assumed. The minimum of y %(A) corresponds to
the best value A = 8.6 sec, which leads to results in Figure
2. In Figure 5B the same function is plotted if € is optimized
in the fit. Now there is a relatively large range of A-values
for which the fit remains quite good. The minimum corre-
sponds to results in Figures 3A and 3B. The blood flow f
and the partition coefficient p are rather insensitive to the
variation of A if € is optimized to compensate for this
variation. This means that a mismatch of one parameter
can be compensated to a certain extent by an appropriate
change in the other, as can be seen by comparing results in
Figures 2B and 3B. However, the most accurate values are
obtained if A and & are fitted simultaneously.

Finally, the sensitivity of the linearized representation
with regard to a mismatch of A is demonstrated in Figures
6A and 6B. Delay has been fixed to a value of 5 sec (as
compared to the best value of 8.6 sec) (Fig. 2B). Deviations
from the straight line in Figure 6B show that the ‘delay
correction’ is insufficient, whereas the quite small devia-
tions between fit and data in Figure 6A might lead to the
conclusion that the fit is acceptable. A comparison with
Figure 2 indicates that this would result in systematic er-
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FIGURE 4. Measured input function and true input function which
results after correction of delay and dispersion.
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rors of about 12% for blood flow and 6% for the partition
coefficient.

Typical parametric images obtained by our approach are
shown in Figures 7 and 8. The investigation was performed
postoperatively in a patient with stenosis of the left middle
cerebral artery. In Figure 7 the blood flow image shows a
significantly better resolution and reduced noise level com-
pared to the partition coefficient image in Figure 8. This is
explained by the fact that blood flow is directly determined
by the fit, whereas the partition coefficient is computed
from the ratio of the fit parameters f and k.

The computation of the parametric images (128 x 128
pixels) together with images of parameter standard devia-
tions and the y? takes about 20 sec on a SUN SPARCsta-
tion.

Results derived in investigations of patients with steno-
sis of the middle cerebral artery are shown in Table 1.
Reduction of the average flow in the parietal cortex is
evident as is reduction in the average partition coefficient.

Results of the Monte Cario Simulations
Gaussian-shaped noise distributions of varying width
were superimposed on theoretical tissue-response curves
generated via Equation 2 for several values of blood flow
and partition coefficient from a typical experimental input
function. The frequency distributions of the fit parameters
are directly derived by applying the multilinear approach to
a sufficiently large number of simulated noisy data sets. In
these simulations we used the following relation between
the squared standard deviation (s.d.) of the noise distribu-
tion and the count rate (CTR) in an individual pixel or
region of interest (ROI) of the reconstructed image:

s.d.2 = const. * CTR.

The proportionality constant was adjusted to various val-
ues in several runs of simulations. These investigations
lead to the conclusion that our approach remains valid
even at very high noise levels, as in the case of individual
pixels.

Figure 9 shows the simulated noise-free tissue response
for a flow of 0.5 (ml/min)/ml and a partition coefficient of
0.9 ml/ml. Also shown is one of the noisy tissue-response
curves generated in this simulation. The noise level (s.d./
CIR = 20% in the maximum of the noise-free response
curve) is typical for per-pixel count rates obtained in LCBF
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FIGURE 5. (A) Goodness-of-fit (y2) as a = 100f
function of the assumed input function delay sor
A if dispersion 7 is neglected in the fit to the !
model function (Equation 8). (B) Goodness-
of-fit (x ) as a function of the assumed input
function delay A if dispersion 7 is taken into
account in the fit to the model function
(Equation 8).
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measurements. Figures 10A and 10B show the frequency
distributions of flow and partition coefficient which result
from fits to a total of 10* noisy data sets. The statistical
uncertainties of the mean values are about 0.1%. The de-
viation of the mean flow from the true flow amounts to
0.4%, the corresponding deviation of the mean partition
coefficient amounts to 2.2%.

For the generation of the partition coefficient distribu-
tion a sliding median filtering over the results of five con-
secutive fits in the simulation run was performed to remove
outliers that occur due to known instabilities of the division
p = f/k at this noise level.

Tissue Heterogeneity and Scan-Length Dependence

To quantitate the possible effects of tissue heterogene-
ity, we performed simulations by superimposing pure grey
matter (f = 0.5 (ml/min)/ml, p = 0.9 ml/ml) and white
matter (f = 0.2 (ml/min)/ml, p = 0.9 ml/ml) tissue-response
curves. These were generated from a typical experimental
input function for a scan length of 3 min according to our
scan protocol (analogous simulations in the context of
SPECT were recently performed by Yokoi et al. (19)). We
obtained negligible underestimates (below 0.6%) of the
mean flow for all admixtures of white matter between 0%
and 100%. The maximum deviation of the partition coeffi-
cient from the true mean was a 14% underestimate at a grey
matter fraction of about 30%.

The stated errors depend on the scan length; increasing
the scan time to 5 min increases the maximum underesti-
mate of the mean flow to 1.5%, whereas the maximum
error of the partition coefficient decreases to 10%. These

maximum deviations occur at a grey matter fraction of
about 30%.

As is evident from the derivation of Equation 8 and
Figures 2B and 3B, a variation in scan length does not
result in systematic shifts of the parameter estimates in
homogeneous tissue. However, scan length influences the
precision of the estimates. This is illustrated by patient data
in Figures 11A and 11B, which show dependence of the
derived flow and partition coefficient on scan length for
grey and white matter. The grey matter data are averaged
values from the parietal cortex. Figure 11A shows that flow
is determined accurately for scan lengths longer than 60 sec
for both grey and white matter. A determination of the
partition coefficient in white matter requires scan lengths of
more than 150 sec, as shown in Figure 11B.

DISCUSSION

The Monte Carlo simulations were performed to evalu-
ate bias of parameter estimates as a consequence of noisy-
tissue data. Figure 10A illustrates that bias in the estimate
of flow is negligible even for noise levels typical of the low
count rates in individual pixels. Therefore the multilinear
approach is equally suited for the processing of low noise
ROI data as well as the generation of parametric images.
The frequency distribution for the partition coefficient (Fig.
10B) shows a slight deviation from the Gaussian shape and
a small shift (2.2%) of the mean with respect to the true
value. Since the statistical accuracy in real studies is usu-
ally below this level, these systematic shifts can generally
be ignored.

15 -
A - B m:c f. ggg
- s ) ™ . _ ) oel.: 2
FIGURE 6. (A) Tissue response from E oo N
Figure 1 together with fit according to Equa- 2 g "
tion 8. Input function delay A and dispersion £ ool 3 .
~ are fixed to values of 5 sec and zero, £ 2 osh
respectively. (B) Linearized representation £ b =
of the data from (A) according to Equations
9 and 11. Large systematic deviations from 0 . . 00 . —
the straight line occur as compared to Figure 0 40 80 120 160 200 ‘00 02 04 06 08 1,0
2B because of erroneous correction of the time (sec.) X(1) [mbiml)
input function delay A.
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FIGURE 7. Transversal
section of the brain in a patient
with stenosis of the left middie
cerebral artery postoperatively.
Parametric blood flow image
generated with the multilinear
approach.

This finding has been independently confirmed for ex-
perimental data sets by comparing the parameters of fits to
ROI data (the ROIs placed in regions of nearly homoge-
neous tracer kinetics) with averages obtained over the
same ROIs in the corresponding parametric images. The
results obtained agree very well.

Tissue heterogeneity due to limited spatial resolution
plays a minor role in PET as compared to SPECT. The
quantitation of possible effects showed that heterogeneity
can lead to deviations from the true mean values as far as
the partition coefficient is concerned. Flow values always
deviate slightly from the true mean. The underestimate of
the mean flow increases slowly with increasing scan time,
whereas the underestimate of the mean partition coefficient
decreases. This is explained by the fact that long scan times
yield a more accurate determination of the effective parti-
tion coefficient which converges toward the true mean for
sufficiently long scan times. This leads to the stated behav-
ior.

Scan length variation influences precision of the parameter
estimates but does not lead to systematic shifts in the multi-
linear approach. Our results show that flow values are accu-
rately determined for scan lengths of more than 60 sec even
in white matter. A reliable determination of the partition
coefficient necessitates scan length of more than 150 sec.

This is a direct consequence of the fact that a sufficient
approximation to equilibrium between tissue and blood is
necessary to derive any information concerning the parti-
tion coefficient. The much slower response in white matter
explains the experimental finding. As a consequence we
recently have changed our protocol by extending the total
scan duration to 5 min, which enables improved determi-
nations of the partition coefficient in low-flow areas.

FIGURE 8. Parametric par-
tition coefficient image corre-
sponding to the blood flow im-
age in Figure 7.
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TABLE 1
Average Values (+ s.d.) for Blood Flow and Partition
Coefficient in Five Patients with Stenosis of the Middle

Cerebral Artery
Grey matter
(parietal cortex) White matter
Flow ((mi/min)/mi) 0.38 £ 0.09 0.21 +0.08
Partition coefficient (mimi) 0.75 + 0.08 0.75 + 0.08

The properties of the multilinear approach can be sum-
marized as follows. A total of some 10-20 linear three-
parameter fits (using a stepwidth of 1 sec for the delay A)
determines all parameters of the model. The iteration count
has the same order of magnitude as in nonlinear proce-
dures, but the computational burdens per iteration step is
reduced by a very large factor. In contrast to nonlinear
minimization, our procedure determines the absolute min-
imum of »* unambiguously and does not depend on good
start values for all parameters to find this minimum. This is
especially advantageous if one considers noisy data in
which problems concerning the numerical stability of non-
linear procedures are encountered.

It should be stressed that this statement holds true even
for the determination of the delay. In our approach this is
the only parameter to be determined iteratively, therefore
one can afford a grid search over the whole range of rea-
sonable values. This becomes rapidly prohibitive if one
extends the search to more than one parameter. Fitting N
parameters in this way on a grid that is subdivided in a
number of M intervals for each parameter does take a
factor MN ! longer than a one-dimensional search. Non-
linear algorithms must be used, understanding the stated
problems in efficiency and stability.

Once delay is determined in a representative region, the
same algorithm (linear three-parameter fit) can be used to
determine dispersion, flow and partition coefficient on a
pixel-by-pixel basis. This represents a unified procedure
for ROI fits and calculation of parametric images. Although

ion (oCi/ml)
§

0 40 80 120 160 200
time (sec.)

FIGURE 9. Simulated tissue response curves from a
typical experimental input function using a flow of 0.5 (mi/min)/ml
and a partition coefficient of 0.9 mi/ml. Shown are the ideal noise-
free response (squares) and an example of a noisy response (cir-
cles). The standard deviation of the superimposed Gaussian-
shaped noise is 20% at the maximum of the noise-free response
curve.

1775



FIGURE 10. (A) Frequency distribution
of flow values. The distribution results from a
total of 10* fits to noisy tissue response
curves with a noise level of 20% (Fig. 9). The

distribution is Gaussian-shaped. The mean

shows no significant bias with respect to the

g

true value. Accuracy of the mean is about
0.1%. (B) Frequency distribution of partition
from the same simulation as (A). For the
partition coefficient a sliding median filtering
over five consecutive results in the simula-
tion run was performed in order to remove
outhiers. The distribution is slightly asymmet-
ric and deviates from a Gaussian shape.
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The mean exhibits a bias of 2.2% with re-
spect to the true value. Accuracy of the
mean is about 0.1%.
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the fitting of £ as a third parameter on a pixel-by-pixel basis
deteriorates the noise level of the images for f and k (or p),
respectively to a certain extent, one gains the possibility of
investigating the influence of regional variations of the dis-
persion constant 7 on the results obtained for f and k.

In the vicinity of every fixed pair of values for delay and
dispersion a small change of the delay A (for example, 1
sec) can effectively be compensated by a change in the
dispersion constant 7 to the opposite direction, with re-
spect to the combined influence of A and r on the fitted
values for blood flow and partition coefficient. This reflects
the fact that for not-too-large values of 7 (below about 8
sec), the dispersion according to Equations S and 6 results
in a shift of the input function, accompanied by only a
relatively small distortion in shape. Consequently, allow-
ing for a regional variation of € (holding A fixed to the value
derived from a fit to a representative region) effectively
corrects for the regional variations of true dispersion and
delay as long as stated restrictions concerning the range of
A and 7 are at least approximately fulfilled. As can be seen
from the formal structure of Equation 8, the fitting of the
parameter ¢ accounts also for a possible (arterial) fractional
blood volume in the tissue space under investigation. Near
larger vessels in which spillover effects play a role, the
fitting of £ prevents serious bias in flow estimates.

The described procedure has been in routine use at our
institute for about 1 yr. During this time more than 160
investigations with !°O-labeled water have been per-

formed. The procedure has proven to be well suited for
clinical use because of its stability and speed. The ease of
quality control by means of the linearized representation is
especially useful and is an integral part of our implemen-
tation of the procedure. However it is not in general ad-
vantageous to use Equation 9 directly in the fitting proce-
dure since it tends to introduce bias in the parameter
estimates if delay values derived from ROI data do not fit
exactly to each image pixel. The early deviations shown in
Figure 6B lead to erroneous parameter estimates.

CONCLUSION

The multilinear approach described offers the opportu-
nity to consistently correct effects of delay and dispersion
in local blood flow measurements with dynamic PET. It is
faster than nonlinear procedures and allows rapid genera-
tion of parametric images of blood flow, partition coeffi-
cient and the dispersion-time constant, once the delay is
fixed by the same algorithm on a representative ROI. In
comparison to weighted integration techniques for the gen-
eration of such images, the dynamic information of the
PET scan seems to be used more efficiently in this ap-
proach. A suitable graphic display of the data enables a
direct and sensitive evaluation of the consistency of data
and model. These evaluations are highly desirable with
respect to use of quantitative approaches in a clinical en-
vironment.

FIGURE 11. (A) Scan length depen-
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