
must derive the true inputfunction in tissue from the mea
sured input function. Two related effects have to be con
sidered in this context (1â€”6,13â€”15),namely delay and dis
persion.

Delay is caused by the differing path lengths the tracer
has to travel from the heartto either samplingsite or target
organ.Themeasuredinputfunctionis thereforeshifted
(usually delayed) with respect to the true input function.
Moreover, the tracer bolus experiences a smearing out
(dispersion) due to inhomogeneous velocity fields in the
vessels which differs for measured and true input function.

Several approacheshave been proposed to correct these
effects. These approaches suffer from differentdrawbacks
in either validity or computing-timeefficiency (1â€”6).

This study describes a numerically, stable and fast pro
cedure that allows a consistent simultaneous determination
of all parameters in the model and enables simultaneous
calculation of parametric images of blood flow and parti
tion coefficient.

Accuratedeterminationof localbloodflow in tissueusingthe
Kety-Schmidtone-compartmentmodel for freelydiffualb@trec
erarequiresknowledgeOfthetrUearterialinputfunctionintissue.
Becausemeasuredinputfunctionsareusuallydelayedanddus
persedwith respectto true influx,a correctionof the expenrnen
tel input function is necessary. We descilbe a technique that
uses a fast multilinear least-squaresminimizationprocedureto
determinesimuttaneoualythedisperalon,thet@oodflowandthe
partitioncoeffident as afunction of delay. In this approach,a few
multilinear fits are suffident to determine the complete set of
parameters necessary to descnbe the data Because ofthe high
speedof the procedure,dispersioneffectsmay be takeninto
accounton a piXel-by-piXelbasisin calculatingparametuicim
ages of blood flow and partitioncoefficient.The described pro
cedure has been used at our instituteforabout 1 yr inmore than
160 investigationsand has provenwellsuited for routineuse in
a dinicalenvironment

JNucIMed1993;34:1770-1777

ynamic positron emission tomography (PET) offers a
unique noninvasive method for reliable quantitative deter
mination of local blood flow in tissue using tracers such as
â€˜50-labeledwater or butanol which can be considered as
nearly free diffusible under physiological conditions
(16,17).

In addition to the time-activity curve in tissue derived
from the dynamic PET scan (tissue-response function), the
time-activity curve in arterial blood (arterial-input ftmc
tion) must also be known. In most cases this information
can only be derived from arterial blood sampling at a pe
ripheral site such as the radial artery. To enable unbiased
estimations of the interesting physiological parameters,
i.e., blood flow and tissue-blood partitioncoefficient, one
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MATERtALSAND MEIHODS

DataAcqulsftlon
ThePETdatawereacquiredwithaSiemensECAT951/31PET

scanner. Thirty-one slices with a plane separation of 3.4 mm were
obtained simultaneously. The axial and transaxial resolution of
thereconstructedimage(Hann-filter,cut-offfrequency0.4, 128x
128matrix)was about7â€”8mmF'WHM.

After a bolus injection of 3.7 GBq 150-H20, multiple time
frames were taken (12 x 5 sec. 4 x 30 sec). The total scan time
was 3 min.Themethodforsynthesisandthe automatedproce
dure for the application of the 150-labeled water has been de
scribed before (18). All image data were corrected for attenuation
(10 mm transmission)and decay duringthe reconstructionproce
dure.

Radial arteiy blood samples (1 ml)were taken according to the
dynamic protocol at midframe times and one immediate'y before
start of the scan. The samples were counted in a weilcounter
whichwas cross-calibratedto the PETscanner.Thedecay-cor
rectedvaluesweretransferredto aSUN4-workstationforfurther
dataprocessing.



Theory â€”e
The kinetics of a freely diffusible tracer is governed by the

lineardifferentialequationof the Kety-Schmidtmodel(11). The
relationbetweenthetruearterialinputfunctionca(t)andthetissue
response function c1(t) is given by:

f
@(t)= fca(t)@ c@(t), Eq. 1

where f is blood flow, p is tissue blood partitioncoefficientandthe
time derivative is indicated by a dot. (Decay-corrected quantities
are considered throughout.) The analytic solution ofEquation 1 is:

c@(t)= fca(t)* e@ = fe@ kt J@ca(s)e@ds, Eq. 2

wherek = f/pand* denotesconvolution.Thisequationdepends
nonlinearlyon k, whichnecessitatestheuse of time-consuming
iterativeminimizationprocedures(usuallyof the Levenberg-Mar
quardt type (7)) in order to derive estimates for f and k directly
fromEquation2.

If on the other hand an integration of Equation 1 is performed,
observingthatc.(0)= 0), theequivalentintegralequation:

ft ft
c@(t)=f I ca(s)dsâ€”k I c@(s)ds, Eq.3

.10 Jo

is obtained. Equation 3 offers the opportunityto determinef and
k (hencep) froma lineartwo-parameterfitby treatingthe time
dependent integrals as known basis functions in a fit to the model
function:

c@(t)= 1ia(t) kj1(t),

It i@t
ja(t)@ Ca(S) dS and j1(t) =@ ci(s) ds.

Jo Jo

This possibility was first recognized by Blomqvist (8).

The Influence of Delay and DIspersion
As already noted by Meyer (3), consecutive corrections for

delay and dispersion in general will not be selfconsistent, i.e.,
reversal of the order of corrections will yield different results.
Such procedurescan only determinethe correctvalues if the
dependenceof the goodness-of-fitparameterx@(thesumof the
squareddifferencesbetweendata and fit)on delayand dispersion
is suchthattheabsoluteminimumof@ canbe determinedbytwo
independent one-dimensional minimizations. Because in general
this is not the case, a consistent approachis calledfor inwhich the
correct relation between experimental and true input function is
takenintoaccount.

It shouldbe notedthatonly the dispersionof the measured
inputfunctioncm(t)relativeto thetrueca(t)intissueis of interest,
notthetotaldispersionof theinjectedboluspriorto thesampling.
This implies that under reasonable experimentalconditions, dis
persion is a minor effect compared to delay, and the shape of cm(t)
will always be similarto that of ca(t). Therefore, it is justified to
describe dispersionaccordingto lida et al. (4) by the convolution:

c,,@(t)=ca(t)*â€”, Eq.5
1@

so that the effect of dispersion is completely specified by the
dispersion time constant r. A direct consequence of Equation 5 is:

ca(t) c,,@(t)+ T@(t), Eq. 6

as can be seen by performingthe convolution in Equation 5 and
computingthe time derivative.

Delayis takenintoaccountby shiftingthetimescaleofcm(t)in
Equation6by thedelaytime@ (byconventiont@ispositiveifcm(t)
is delayedwithrespectto ca(t)):

ca(t) c.,@(t+ /@)+ r@(t + is). Eq. 7

This is the required relation between measured and true input
function.The most straightforwardway to proceedis to insert
Equation 7 in Equation 2 and perform a nonlinear least-squares fit
for the set of parameters(f, p. r, @),as described by Meyer (3).

The MultillnearApproach
The ultimategoalof investigatingregionaldifferencesof blood

flowis generationof parametricimagesforbloodflowandparti
tioncoefficient.Nonlinearfittingis tooslowtoallowcalculationof
parametric images even if the parameters@ and@ are fixed ac
cordingto results obtainedon a representativeregion. One there
fore has to resortto some otherprocedure,such as weighted
integrationtechniques (9) once@ and@ have been determinedby
thenonlinearfit.

We investigatedwhether a unified procedurecould be found
thatenablessufficientlyfastfitsevenonapixel-by-pixelbasis.We
found that this can be achieved by combining Equation 7 and

Eq. 4 Equation3. This yields (observingthat cm(s) 0):

ft It
c@(t)= ec.,@(t+ @)+ f@ c.,@(s+ i@@)ds â€”k@ ci(s)ds

Jo Jo

= ec,,@(t + i@&) + @m(t, L@@) kj1(t), With S fi. Eq. 8

Comparison with Equations 3 and 4 show that dispersion intro
duces an additional term e@cmin the model equation. Given the
experimentaldetermined functions Cm(t)and c.(t), Equation 8
allows fast simultaneous determination of parameters @,f and k
foranyfixeddelayi@by meansof a three-parameterlinearleast
squaresfit. One can proceedby performinga series of fits to
Equation 8 in which the whole range of possible values for i@is
scanned. The minimum of the function x@' e('@ f(s), k(i@))thus
foundyields the best estimates for the complete set of parameters.

GraphIcal Quality Control
We introduced elsewhere(10) a linearizedrepresentationof

data that enablesa sensitivecheckwith respectto possibleerrors
in delayanddispersioncorrections:dividingbothsidesof Equa
tion3 by [jt0ca(s)ds], the equationis transformedto a straight
line:

y(x)=fâ€”kx, Eq.9

where y(t) and x(t) are definedby:

where:

LocalBloodFlowMeasurementswithPETâ€¢vandenHoffat al. 1771
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hone plotsexperimentaldataintheformy(x)accordingto Eqtia
tion 11 using the values of delay and dispersion as determined by
the above describedfitting procedure, the data will follow the
straightline of Equation9 only if r and Avalues are correct.

Computer Simulations
It is understoodthattemporalsamplingbothfor the arterial

inputfunctionandtissueresponseis sufficientlyfineso thatun

certaintiesconnected with interpolationandnumericalintegration
of thediscretelysampleddataareinsignificant.Then,as is obvi
ousfromthederivationof Equation8, thedescribedprocedureis
exact as far as noiseless data are concerned. The multilinear
approachthereforegives unbiasedestimatesof the underlying
true parameters of the data set.

Presence of statistical noise in the data alters this situation:
noise might lead to systematic errors in parameter estimates be
cause in least-squaresfittingit is presupposedthat the basis func
tions of the model (cm,Jin'ji in Equation8) are exact. This
assumption is fulfilled to a good approximation for c,@(t)and j@(t).
However,j1(t)exhibitssubstantialnoise if individualpixelsare
involved,evenif one recognizesthattherelativeuncertaintiesin
j1(t)aremuchsmallerthanthose of c.(t), due to the smoothing
effectof the involvedintegration.We therefore investigatedthe
influenceof noisydataon the parameterestimatesby meansof
Monte Carlosimulations.For this purposewe superimposed
Gaussian-shaped noise distributions of vaiying width on theoret
ical tissue responsecurveswhichwere generatedvia Equation2
forseveralvaluesofparametersf andkfromatypicalexperimen
tal inputfunction.

RESULTS

Performance of the Multilinear Approach
A typical experimental input function with the tissue

response from a grey matter region in brain is shown in
Figure 1. Both curves are drawn at a different scale to show
the onset of tissue response. Figure 2A shows the tissue
response data andthe optimalfit to Equation8, assuminga
fixed value of r = 0. Figure 2B shows the linearized rep
resentation of the data (input plus response) in the form
y(x)alongwiththestraightlineaccordingtoEquation9
using the fittedvalues of f and k. The values of blood flow
and partition coefficient can be read as axes intercepts.
Systematic deviation of the data from the line at small x
(corresponding to early times) is obvious and indicates that
dispersion has not been adequately considered. In Figure
2A the corresponding deviations at early times are much
more difficultto detect.

Using the correct procedureoffitting the complete set of
parametersleads to the results presented in Figures3A and
3B where data points follow the theoretical expected be
haviormuch better. Figure4 shows the correspondingtrue
input function that results from the explicit deconvolution

FIGURE1. Experimentalinputfunctionandtissueresponsefrom
agrey matterregionofthe humanbrain.DlfferentScaleSare usedfor
inputandresponsefunction.

Itc@(s)ds
c@(t) _ c@(t) Jo j(t)

y(t)= x(t)=
I ;(s)ds@t) I ;(s)ds@t j8(t)

Jo Jo
Eq.1O

In this representationblood flow appears as the y-intercept and
thepartitioncoefficientas thex-interceptof thestraightliney(x).
(Thistransformationhas been introducedindependentlyby Yokoi
et al. (12,19)).

Usingtheexperimentalinputfunctionandassumingdelayand
dispersionaccordingto Equation7, thedefinitionof x(t)andy(t)
can be reformulatedto yield:

c@(t) j@(t)
y(t)=. x(t)=.

Jm(t, @)+ 1@ crn(t@ t@) â€˜ Jm(t, @)+ 1@@ c.,@(t + A)'

where

jm(t, @)= .1: c.@(s + @)ds.

A

C

0
C

gFiGURE2. (,@Thsue responsefrom
Agure I together w@ fit according to Equa
tion8. Inputfunctiondeisy@ Isoptimizedin
thefit@ = 8.6see),whereasdispersioni
Is ne@d. (B) Lkiearlzedrepresentation
ofthedatafrom(A)accordingto Equations
9 and I 1.Axeslnterce@softhe stralghtline

@dflowand @oncoeffident.
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FIGURE 3. (A) Tissue response from
Figure1 togetherwithfitaccordingto Equa
tion8. inputfunc@ondeisy@ anddispernion
rareoptimizedinthefit (i@ = 4.8see,@
= 4.3 see). (B) Unearized representation of

the datafrom (A) accordingto Equations9
and 11. Systematic deviations from the
straightlineare reducedat smallx as corn
paredto Figure2B.

according to Equation 7 using the derived values of i@and
1@.

rors of about 12% for blood flow and 6% for the partition
coefficient.

Typical parametric images obtained by our approach are
shown in Figures 7 and 8. The investigation was performed
postoperatively in a patient with stenosis of the left middle
cerebral artery. In Figure 7 the blood flow image shows a
significantly better resolution and reduced noise level com
paredto the partitioncoefficient image in Figure 8. This is
explained by the fact that blood flow is directly determined
by the fit, whereas the partition coefficient is computed
from the ratio of the fit parametersf and k.

The computation of the parametric images (128 x 128
pixels) together with images of parameterstandarddevia
tions and the x2 takes about 20 sec on a SUN SPARCsta
tion.

Results derived in investigations of patients with steno
sis of the middle cerebral arteiy are shown in Table 1.
Reduction of the average flow in the parietal cortex is
evident as is reduction in the average partitioncoefficient.

Results of the Monte Carlo Simulations
Gaussian-shaped noise distributions of vaiying width

were superimposed on theoretical tissue-response curves
generated via Equation 2 for several values of blood flow
and partition coefficient from a typical experimental input
function. The frequency distributionsof the fit parameters
are directly derived by applying the multilinear approach to
a sufficientlylarge numberof simulatednoisy data sets. In
these simulations we used the following relation between
the squared standarddeviation (s.d.) of the noise distribu
tion and the count rate (CFR) in an individual pixel or
region of interest (ROl) of the reconstructed image:

s.d.2 coast. * CTR.

The proportionalityconstant was adjusted to various val
ues in several runs of simulations. These investigations
lead to the conclusion that our approach remains valid
even at very high noise levels, as in the case of individual
pixels.

Figure 9 shows the simulated noise-free tissue response
for a flow of 0.5 (ml/min)/mland a partitioncoefficient of
0.9 mI/mt.Also shown is one of the noisy tissue-response
curves generated in this simulation. The noise level (s.d.!
CFR = 20% in the maximum of the noise-free response
curve) is typical for per-pixel count rates obtained in LCBF

The neglect of dispersion (i.e., setting r = s = 0 in the
fitting procedures) results in systematic errors for blood
flow and partitioncoefficient which usually amountto only
afewpercentifthedelayisadjustedfreely.Todemon
strate this more clearly, the function x2(@) is shown in
Figure 5A as it results from the series of fits to Equation 8
ife = 0 is assumed. The minimum of x2(t@)corresponds to
the best value@ = 8.6 5cc, which leads to results in Figure
2. In Figure 5B the same function is plotted if e is optimized
in the fit. Now there is a relatively large range of a-values
for which the fit remains quite good. The minimumcorre
sponds to results in Figures 3A and 3B. The blood flow f
and the partition coefficient p are rather insensitive to the
variation of i@ if e is optimized to compensate for this
variation. This means that a mismatch of one parameter
can be compensated to a certain extent by an appropriate
change in the other, as can be seen by comparingresults in
Figures 2B and 3B. However, the most accurate values are
obtained if i@tand e are fitted simultaneously.

Finally, the sensitivity of the linearized representation
with regardto a mismatch of@ is demonstratedin Figures
6A and 6B. Delay has been fixed to a value of 5 sec (as
comparedto the best value of8.6 see) (Fig. 2B). Deviations
from the straight line in Figure 6B show that the â€˜delay
correction' is insufficient, whereas the quite small devia
tions between fit and data in Figure 6A might lead to the
conclusion that the fit is acceptable. A comparison with
Figure 2 indicates that this would result in systematic er

FIGURE4. Measuredinputfunctionandtrueinputfunctionwh@h
results after correctionof delay and dispersion.
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FiGURE5. (A@Goodness-of-fit@ asa
functionofthe assumed inputfunctiondelay
â€˜@If dispersion i- is neglected in the fit to the

modelfunction(Equation8).(B)Goodness
of-fit@ as a function ofthe assumed input
functiondelay@ If dispersioni@is taken into
accountin the fit to the modelfunction
(Equation8).

measurements. Figures 1OAand lOB show the frequency
distributions of flow and partition coefficient which result
from fits to a total of 10â€•noisy data sets. The statistical
uncertainties of the mean values are about 0.1%. The de
viation of the mean flow from the true flow amounts to
0.4%,the correspondingdeviationof the meanpartition
coefficient amounts to 2.2%.

For the generation of the partition coefficient distribu
tion a sliding median filteringover the results of five con
secutive fits in the simulation run was performed to remove
outliersthatoccur due to known instabilitiesof the division
p = f/k at this noise level.

lissue Heterogeneity and Scan-Length Dependence
To quantitate the possible effects of tissue heterogene

ity, we performed simulations by superimposing pure grey
matter (f = 0.5 (mI/min)Iml,p = 0.9 mI/mi) and white
matter (f = 0.2 (ml/min)/ml,p = 0.9 mI/mi)tissue-response
curves. These were generated from a typical experimental
input function for a scan length of 3 min according to our
scan protocol (analogous simulations in the context of
SPECT were recently performed by Yokoi et al. (19)). We
obtained negligible underestimates (below 0.6%) of the
mean flow for all admixturesof white matterbetween 0%
and 100%. The maximum deviation of the partition coeffi
cient fromthe truemeanwas a 14%underestimateat a grey
matter fraction of about 30%.

The stated errors depend on the scan length; increasing
the scan time to 5 mm increases the maximum underesti
mate of the mean flow to 1.5%, whereas the maximum
error of the partition coefficient decreases to 10%.These

maximum deviations occur at a grey matter fraction of
about 30%.

As is evident from the derivation of Equation 8 and
Figures 2B and 3B, a variation in scan length does not
result in systematic shifts of the parameter estimates in
homogeneous tissue. However, scan length influences the
precision ofthe estimates. This is illustrated by patient data
in Figures hA and 11B, which show dependence of the
derived flow and partition coefficient on scan length for
greyandwhitematter.Thegreymatterdataareaveraged
values fromthe parietalcortex. Figure hA shows thatflow
is determinedaccuratelyfor scan lengths longerthan60 sec
for both grey and white matter. A determination of the
partition coefficient in white matter requires scan lengths of
more than 150 sec, as shown in Figure 11B.

DISCUSSION

The Monte Carlo simulationswere performedto evalu
ate bias of parameterestimates as a consequence of noisy
tissue data. Figure 1OA illustrates that bias in the estimate
of flow is negligibleeven for noise levels typical of the low
count rates in individualpixels. Therefore the multilinear
approach is equally suited for the processing of low noise
ROI data as well as the generation of parametricimages.
The frequency distributionfor the partitioncoefficient (Fig.
lOB)shows a slight deviation from the Gaussianshape and
a small shift (2.2%) of the mean with respect to the true
value. Since the statistical accuracy in real studies is usu
ally below this level, these systematic shifts can generally
be ignored.

FIGURE6@(A) Thsue responsefrom
Agure 1togetherwithfit accordingto Equa
tion8. Inputfunctiondelay@ and dispersion
T are fixed to values of 5 sec and zero,

respectively.(B) Uneaiized representation
ofthedatafrom (A)aceordingto Equations

9 andI1. Largesystematicdeviationsfrom
thestralghtllneoccurascomparedtoFigure
2B becauseof erroneouscorrectionof the
Input function delay Â£
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Grey matter
(parletalcortex)WhitematterFlow

((mI/min)/ml)0.38 Â±0.090.21 Â±0.08Partition
coefficient(mVml)0.75 Â±0.080.75Â±0.08
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TABLE I
AverageValues(Â±s.d.)for BloodFlowandPartition
Coefficientin FivePatientsw@iStenosisof the Middle

CerebralArtery

FIGURE7. Transversal
sectionof the brainin a patient
withstenosisof theleftmiddle
cerebralarterypostoperatively.
Parametric blood flow im@e
generatedwiththe multilinear
a-.

This finding has been independently confirmed for cx
perimental data sets by comparing the parameters of fits to
ROl data (the ROIs placed in regions of nearly homoge
neous tracer kinetics) with averages obtained over the
same ROIs in the corresponding parametric images. The
results obtained agree veiy well.

Tissue heterogeneity due to limited spatial resolution
plays a minor role in PET as compared to SPECT. The
quantitationof possible effects showed that heterogeneity
can lead to deviations from the true mean values as far as
the partitioncoefficient is concerned. Flow values always
deviate slightly from the true mean. The underestimateof
the mean flow increases slowly with increasing scan time,
whereas the underestimate ofthe mean partition coefficient
decreases. This is explained by the fact thatlong scan times
yield a more accurate determinationof the effective parti
tion coefficient which converges toward the true mean for
sufficientlylong scan times. This leads to the stated behav
ior.

Scan length variation influences precision ofthe parameter
estimates but does not lead to systematic shifts in the multi

linear approach. Our results show that flow values are accu
ratelydeterminedfor scan lengthsof more than60 sec even
in white matter. A reliable determinationof the partition
coefficientnecessitates scan lengthof more than 150sec.

This is a direct consequence of the fact that a sufficient
approximation to equilibrium between tissue and blood is
necessaiy to derive any informationconcerning the parti
tion coefficient. The much slower response in white matter
explains the experimental finding. As a consequence we
recently have changed our protocol by extending the total
scan durationto 5 min, which enables improved determi
nations of the partitioncoefficient in low-flow areas.

FiGURE8. Paramethcpar
trnoncoeffidentimagecorre
spondingto the bloodflowim
age InFigure7.

80 120 160

tow (sec)

The properties of the multilinearapproachcan be sum
marized as follows. A total of some 10â€”20linear three
parameterfits (using a stepwidth of 1 sec for the delay @)
determinesallparametersof the model. The iterationcount
has the same order of magnitude as in nonlinear proce
dures, but the computationalburdensper iteration step is
reduced by a vety large factor. In contrast to nonlinear
minimization,our procedure determines the absolute min
imum of A@unambiguously and does not depend on good
start values for all parameters to find this minimum. This is
especially advantageous if one considers noisy data in
which problems concerning the numerical stability of non
linear procedures are encountered.

It should be stressed that this statement holds true even
for the determinationof the delay. In our approachthis is
the only parameterto be determinediteratively, therefore
one can afforda grid search over the whole range of rca
sonable values. This becomes rapidly prohibitive if one
extends the search to more than one parameter.Fitting N
parameters in this way on a grid that is subdivided in a
number of M intervals for each parameter does take a
factor M@ longer than a one-dimensional search. Non
linear algorithms must be used, understanding the stated
problems in efficiency and stability.

Once delay is determinedin a representativeregion, the
same algorithm(linearthree-parameterfit) can be used to
determine dispersion, flow and partition coefficient on a
pixel-by-pixel basis. This represents a unified procedure
for ROl fits andcalculationofparametric images. Although

FiGURE 9. Simulatedtissueresponsecurvesgeneratedfrom a
ty@ expeilmentalinputfunctionusinga flow of 0.5 (ml/min)/ml
and a partitioncoeffidentof 0.9 mI/mI.Shownare the idealnoise
freeresponse(squares)andanexampleof a noisyresponse(cir
des). The standard deviation of the supedmposedGaussian
shapednoiseis 20% at the madmumof the noise-freeresponse
curve.
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FIGURE 10. (A) Frequencydistribution
offlowvalues.Thedistributionresultsfroma
total of i0@fits to noisy tissue response
curveswftha noiselevelof20% (Fig.9).The
distributionis Gaussian-shaped.The mean
showsno significantbiaswithrespectto the
true value.Accuracyof the mean is about
0.1%.(B)Frequencydistributionofpartition
coefficientvalues. The distributionresults
from the same simulationas (is. For the
partitioncoeffldenta slidingmedianfiltering
over five consecutiveresultsIn the simula
tion run was performedin orderto remove
outliers.Thedistributionisslightlyasymmet
rio and deviatesfrom a Gaussianshape.
The mean exhibitsa bias of 2.2%withre
spect to the true value. Accuracy of the
meanis about0.1%.

the fittingof e as a thirdparameteron a pixel-by-pixelbasis
deterioratesthe noise level of the images for f and k (or p),
respectively to a certain extent, one gains the possibility of
investigatingtheinfluenceofregionalvariationsofthedis
persionconstantrontheresultsobtainedforf andk.

In the vicinity of every fixed pair ofvalues for delay and
dispersion a small change of the delay@ (for example, 1
5cc) can effectively be compensated by a change in the
dispersion constant r to the opposite direction, with re
spect to the combined influence of@ and r on the fitted
values for blood flow and partitioncoefficient. This reflects
the fact that for not-too-large values of r (below about 8
5cc), the dispersion according to Equations 5 and 6 results
in a shift of the input function, accompanied by only a
relatively small distortion in shape. Consequently, allow
ing for a regionalvariationof e (holding@ fixed to the value
derived from a fit to a representative region) effectively
corrects for the regional variations of true dispersion and

delay as long as stated restrictionsconcerning the rangeof
@ and r are at least approximately fulfilled. As can be seen

from the formal structure of Equation 8, the fittingof the
parameter e accounts also for a possible (arterial) fractional
blood volume in the tissue space under investigation. Near
larger vessels in which spillover effects play a role, the
fittingof 6 prevents serious bias in flow estimates.

The described procedure has been in routine use at our
institute for about 1 yr. During this time more than 160
investigationswith â€˜50-labeledwaterhavebeenper

FIGURE II. (A@Scan length depen
dence of flow detern*ation. Averagesof
five patientsare shown. Grey matterdata
are fromthe parie@cortex.Aceuratedeter
minationofflowIngreyand whitematteris
achievedfor scan iengths ionger than 60
sec.(B)Scanlengthdependenceofpartition
coeffidentdetenn@on. The samepatient
data as In (A)are used. Accurate determi
nationof partitioncoeffidentingraymatteris
achievedfor scan iengths longer than 90
sec. Inwhitematterscan lengthsof more
than 150secare requfred.

formed. The procedure has proven to be well suited for
clinical use because of its stability and speed. The ease of
quality control by means of the linearized representation is

especially useful and is an integral part of our implemen
tation of the procedure. However it is not in general ad
vantageous to use Equation 9 directly in the fitting proce
dure since it tends to introduce bias in the parameter
estimates if delay values derived from ROI data do not fit
exactly to each image pixel. The early deviations shown in
Figure 6B lead to erroneous parameterestimates.

CONCLUSION

The multilinearapproach described offers the opportu
nity to consistently correct effects of delay and dispersion
in local blood flow measurementswith dynamic PET. It is
faster than nonlinearprocedures and allows rapidgenera
tion of parametric images of blood flow, partition coeffi
cient and the dispersion-time constant, once the delay is
fixed by the same algorithmon a representative ROl. In
comparisonto weighted integrationtechniques for the gen
eration of such images, the dynamic information of the
PETscanseemsto be usedmoreefficientlyin thisap
proach. A suitable graphic display of the data enables a
direct and sensitive evaluation of the consistency of data
and model. These evaluations are highly desirable with
respect to use of quantitative approaches in a clinical en
vironment.
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