Scintigraphic Evaluation of Tenosynovial Giant-Cell Tumor Using Technetium-99m(V)-Dimercaptosuccinic Acid

Hisataka Kobayashi, Harumi Sakahara, Makoto Hosono, Makoto Shirato, Junji Konishi, Yoshihiko Kotoura, Takao Yamamuro and Keigo Endo

Departments of Nuclear Medicine and Orthopedic Surgery, Kyoto University Faculty of Medicine, Kyoto; Department of Nuclear Medicine, Gunma University School of Medicine, Gunma, Japan

Scintigraphy of Tenosynovial GCT • Kobayashi et al.

J Nucl Med 1993; 34:1745—1747

Tenosynovial giant-cell tumor is a slow-growing benign tumor of the synovial tissue. In cases of tenosynovial giant-cell tumor diffuse type, tumors often cause local recurrence after resections and rarely metastasize (1). Exact extension of recurrent tenosynovial giant-cell tumor is difficult to determine by conventional radiologic modalities (2).

Technetium-99m(V)-DMSA, a 99mTc-labeled tumor-seeking agent, was previously reported to be very useful in detecting soft-tissue tumors, especially in aggressive fibromatosis (3). In this report, we present scintigraphic findings in three cases of six tenosynovial giant-cell tumors. Intense uptake of 99mTc(V)-DMSA and no uptake of 67Ga was seen in all tumors.

METHODS

Studies were performed on three patients with histologically proven primary and recurrent tenosynovial giant-cell tumor. Technetium-99m(V)-DMSA was prepared as previously reported (4). A lyophilized kit of 99mTc(V)-DMSA, containing 1.36 mg of dimercaptosuccinic acid, 1.26 mg of NaHCO3, 0.11 mg of (SnCl2) (2H2O) and 30 mg of glucose, was made available by Daichii Radioisotope Laboratories (Tokyo, Japan). Labeling was performed by adding to the kit 0.1 ml of 7% NaHCO3 with 2-3 ml of pertechnetate with the desired activity. Purity of 99mTc(V)-DMSA was analyzed by thin-layer chromatography, and no free pertechnetate or other 99mTc derivative was detected. Technetium-99m(V)-DMSA imaging was performed 2 hr after a 370-MBq intravenous injection. Nine days after the 99mTc(V)-DMSA study, 67Ga citrate scintigraphy was performed 72 hr after a 111-MBq intravenous injection. A conventional gamma camera was used in both studies.

CASE REPORT

Patient 1

In 1987, a 54-year-old man presented with asymptomatic swelling on the lateral side of the right ankle joint. The lesion gradually enlarged. Technetium-99m(V)-DMSA scintigraphy showed markedly high uptake of 99mTc(V)-DMSA in the lesion (Fig. 1A), but no accumulation of 67Ga (Fig. 1B). Radical resection of the tumor was performed and pathological examination revealed tenosynovial giant-cell tumor. In 1989, the tumor recurred at the same site. At that time, marked accumulation of 99mTc(V)-DMSA was shown in the lesion (Fig. 1C), but 67Ga did not accumulate in the tumor (Fig. 1D). In 1991, the tumor recurred again and follow-up study with 99mTc(V)-DMSA scintigraphy showed high uptake of 99mTc(V)-DMSA in concordance with the site of the recurrent tumor. Exact location was difficult to determine on CT scans but the accuracy of 99mTc(V)-DMSA scintigraphy was proven by surgical exploration (Fig. 1E, F, G).

Patient 2

In 1990 a 38-yr-old male patient developed swelling with mild pain at the right lateral malleolus. A radical resection of the tumor was performed and pathological examination revealed tenosynovial giant-cell tumor subclass diffuse type. The tumor recurred at the right lateral side of the ankle joint in 1991. At that time, there was marked accumulation of 99mTc(V)-DMSA in the recurrent tumor and an invasive tumor with high signal intensity was revealed on T2-weighted MRI scans (Fig. 2A, B). However, 67Ga showed no accumulation at that site (Fig. 2C). Extensive resection was performed and the tumor was histopathologically proven to be a diffuse tenosynovial giant-cell tumor.
Patient 3

In 1992, a 57-yr-old male patient presented with a gradually enlarging asymptomatic swelling at the distal portion of the PIP joint of the right middle finger. Technetium-99m (V)-DMSA scintigraphy showed markedly high uptake of \(^{99m}\text{Tc(V)-DMSA} \) in that small lesion (Fig. 3A), but no accumulation of \(^{67}\text{Ga} \) was shown (Fig. 3B). A radical resection of the tumor was performed and pathological examination revealed a localized tenosynovial giant-cell tumor.

In all six primary and recurrent tenosynovial giant-cell tumors in three patients on whom both \(^{99m}\text{Tc(V)-DMSA} \) and \(^{67}\text{Ga-citrate} \) scintigrams were performed, marked uptake of \(^{99m}\text{Tc(V)-DMSA} \) and faint or no uptake of \(^{67}\text{Ga} \) was shown.

DISCUSSION

Diffuse tenosynovial giant-cell tumors have a strong tendency to recur (1), and are difficult to determine by CT and MRI scans (2). Thus, exact diagnosis of location and the determination of the existence of primary and recurrent tumors as well as distinguishing the tumor from surgical scars, are essential for treatment.
Technetium-99m(V)-DMSA accumulation at operative scar was usually faint and gradually decreased with time (5), but uptake in the tenosynovial giant-cell tumor was markedly high. Therefore, it was not difficult to distinguish accumulation in recurrent tumors from that in surgical scar tissue. However, 67Ga-citrate showed no accumulation in the tumor. There is no other suitable scintigraphic agent to demonstrate tumor and tumor-like lesions in soft tissue.

Although the accumulation mechanism remains to be studied and nonspecific accumulation might reduce its effectiveness (6,7), 99mTc(V)-DMSA seems to be superior to 67Ga-citrate in evaluating primary and recurrent lesions in tenosynovial giant-cell tumor.

In conclusion, 99mTc(V)-DMSA scintigraphy was useful in detecting both subtypes of tenosynovial giant-cell tumor, especially in diagnosing local recurrence.

REFERENCES