Quick Diagnosis of Hyperthyroidism with Semiquantitative 30-Minute Technetium-99m-Methoxy-Isobutyl-Isonitrile Thyroid Uptake

Chia-Hung Kao, Shyh-Jen Wang, Shu-Quinn Liao, Wan-Yu Lin and Chung-Yuan Hsu

Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China

Ten normal volunteers and 14 patients with hyperthyroidism had pinhole thyroid imaging 30 min after an intravenous injection of 10 mCi 99mTc-MIBI. Technetium-99m-MIBI thyroid uptake was calculated by the formula: [total counts with a region of interest (ROI) over the whole thyroid gland] ÷ [(mean counts of every pixel in the neck soft tissue) × (total number of pixels in ROI over the whole thyroid gland)]. The results showed that the 30 min 99mTc-MIBI thyroid uptake ratios had positive relationships with the 24 hr 131I-thyroid uptake (r = 0.79), and that the patients with hyperthyroidism had significantly higher 30 min 99mTc-MIBI thyroid uptake than the normal volunteers (5.31 ± 0.78 s.e.m. versus 2.35 ± 0.14 s.e.m., p < 0.005 using the Mann-Whitney U-test). Technetium-99m-MIBI thyroid uptake may be useful for the rapid diagnosis of hyperthyroidism.

J Nucl Med 1993; 34:71–74

Conventional 131I thyroid uptake and scans reflect thyroid function. However, 131I uptake may be influenced by antithyroid drugs, and the measurement is usually made 24 hr after oral intake of 131I. Technetium-99m-MIBI thyroid uptake is related to the mitochondria of the cells. Both the number and activity of the mitochondria are measured in thyroid glands with hyperthyroidism. In two recent articles, 99mTc-TBI (tertiary butyl isonitrile) and 99mTc-MIBI were used for visualization of suppressed thyroids (1,2). The uptake was higher in hyperfunctional nodules than in suppressed normal thyroid tissues. In our study, 99mTc-MIBI thyroid uptake was used as an index to predict thyroid function and to differentiate between euthyroid and hyperthyroid glands. It is based on another mechanism which is different from the traditional 24-hr 131I thyroid uptake study.

MATERIALS AND METHODS

Ten normal volunteers (3 M, 7 F; 22–78 yr) with normal thyroid function and 24 hr 131I-thyroid uptake (Table 1) and 14 patients with hyperthyroidism (2 M, 12 F; 20–72 yr) who had been diagnosed by typical clinical features, abnormal thyroid hormones and increased 24 hr 131I thyroid uptake (Table 2), were studied.

A commercial MIBI preparation (max. 5.55 GBq [150 mCi] in approximately 1 to 3 ml) was obtained from the Dupont Company (Cardiolite). The labeling and quality control procedures were carried out according to the manufacturer's instructions. Labeling efficiency was always higher than 90%. Patients were pretreated with 500 mg perchlorate to prevent uptake of free [99mTc]pertechnetate in the thyroid glands 30 min before intravenous injection of 370 MBq (10 mCi) 99mTc-MIBI. After an additional 30 min, the thyroid was imaged by a gamma camera with a pinhole collimator for a total of 100,000 counts. The distance from the collimator to the neck was consistently 7 cm.

The 99mTc-MIBI thyroid uptake was calculated by the formula: [total counts with an ROI over the whole thyroid gland] ÷ [(the mean counts of every pixel in the neck soft tissue) × (total number of pixels in the ROI over the whole thyroid gland)] (Fig. 1A,B).

RESULTS

The results (Table 1,2) showed that 30-min 99mTc-MIBI thyroid uptake ratios correlated with 24-hr 131I thyroid uptake (r = 0.79) (Fig. 2) and that patients with hyperthyroidism had significantly higher 30-min 99mTc-MIBI thyroid uptake than the normal volunteers (5.31 ± 0.78 s.e.m. versus 2.35 ± 0.14 s.e.m., p < 0.005 using the Mann-Whitney U-test) (Fig. 3).

DISCUSSION

Hexakis (2-methoxyisobutyl isonitrile) technetium (I) (99mTc-sestamibi) is a monovalent cation with a central Tc(I) core that is surrounded by six lipophilic ligands coordinated through the isonitrile carbon. Piwnica-Worms et al. (3) investigated the fundamental myocardial uptake mechanism of technetium sestamibi and found that its transport involves passive distribution across plasma and mitochondrial membranes, and at equilibrium it is sequestered largely within mitochondria by the large negative transmembrane potentials. When plasma membrane po-
tentials or mitochondrial membrane potentials are depolarized, there is inhibition of net uptake and retention of \(^{99m}\text{Tc-sestamibi}\). When mitochondrial and plasma membrane potentials are hyperpolarized, there is increased \(^{99m}\text{Tc-sestamibi}\) cellular uptake and retention. Metabolic derangements could conceivably result in diminished \(^{99m}\text{Tc-sestamibi}\) uptake independent of flow. This could occur with metabolic-induced membrane polarization changes (4).

The thyroid uptake mechanism of \(^{99m}\text{Tc-MIBI}\) is not yet clearly understood. Based on microscopic findings, more abundant mitochondria and blood flow are often described in the thyroid glands of hyperthyroidism (5). We suppose that it should bind to the cytosol in the follicular cell as in myocardium. The cationic charge and lipophilicity of \(^{99m}\text{Tc-MIBI}\), mitochondrial and plasma membrane potentials of the follicular cell as well as cellular mitochondrial content can play a significant role in thyroid uptake of this agent (6,7). However, uptake may be caused by an indirect phenomenon such as increased thyroid blood flow and capillary permeability.

In a review of the literature, \(^{99m}\text{Tc-MIBI}\) is taken up by normal thyroid tissue and the metastases of thyroid carcinoma. This uptake cannot be affected by exogenous thyroxine therapy (8). In two recent articles, \(^{99m}\text{Tc-TBI}\) (an earlier \(^{99m}\text{Tc-isonitrile complex}\) and \(^{99m}\text{Tc-MIBI}\) were used for visualization of suppressed thyroids without TSH stimulation (1,2). The biodistribution of \(^{99m}\text{Tc-MIBI}\) is characterized by rapid blood clearance and, consequently, early uptake by target organs (9). The early imaging time of thyroid glands, 20–40 min after intravenous injection of \(^{99m}\text{Tc-MIBI}\), is adequate (1,10).

Another study found that perchlorate failed to inhibit \(^{99m}\text{Tc-MIBI}\) uptake by the thyroid (10). Pretreatment of patients with perchlorate, either as sodium or potassium perchlorate, can markedly alter the biological distribution of \(^{99m}\text{Tc-pertechnetate}\). Perchlorate is a monovalent negative ion of approximately the same ionic size as \(^{99m}\text{Tc}\) pertechnetate. It blocks pertechnetate uptake in the thyroid gland, salivary gland, gastric mucosa and choroid plexus by competitive inhibition (11,12). Its effect on thyroid uptake persists for up to 72 hr (13). Perchlorate may also be given after tracer administration, since pertechnetate is readily discharged from the thyroid and salivary glands. In the present study, thyroid uptake should not be due to free \(^{99m}\text{Tc-pertechnetate}\), because we did not use \(^{99m}\text{Tc-MIBI}\) if the radiochemical purity was less than 90%. We also

TABLE 1
Comparison of \(^{99m}\text{Tc-MIBI}\) and \(^{131}\text{I}\) Thyroid Uptake in Normal Volunteers

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Sex</th>
<th>Age</th>
<th>% 30-min (^{99m}\text{Tc-MIBI}) Thyroid uptake</th>
<th>% 24-hr (^{131}\text{I}) Thyroid uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>78</td>
<td>2.89</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>71</td>
<td>2.77</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>48</td>
<td>2.77</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>22</td>
<td>2.48</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>28</td>
<td>2.50</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>29</td>
<td>2.37</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>69</td>
<td>2.33</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>48</td>
<td>2.12</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>35</td>
<td>1.76</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>51</td>
<td>1.52</td>
<td>23</td>
</tr>
</tbody>
</table>

TABLE 2
Comparison of \(^{99m}\text{Tc-MIBI}\) and \(^{131}\text{I}\) Thyroid Uptake in Patients with Hyperthyroidism

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Age</th>
<th>% 30-min (^{99m}\text{Tc-MIBI}) Thyroid uptake</th>
<th>% 24-hr (^{131}\text{I}) Thyroid uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>31</td>
<td>12.82</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>20</td>
<td>10.46</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>62</td>
<td>7.52</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>54</td>
<td>5.17</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>21</td>
<td>4.66</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>65</td>
<td>3.87</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>38</td>
<td>4.72</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>34</td>
<td>4.01</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>42</td>
<td>3.78</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>34</td>
<td>3.71</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>72</td>
<td>3.67</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>53</td>
<td>3.54</td>
<td>62</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>20</td>
<td>3.34</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>27</td>
<td>3.10</td>
<td>45</td>
</tr>
</tbody>
</table>

FIGURE 1. A 20-yr old female with hyperthyroidism had a free T4 > 4.4 ng/dl (reference normal: 0.7–2.2), T3 = 408 ng/dl (reference normal: 85–165), T4 = 22.03 μg/dl (reference normal: 6.0–12.0), and TSH = 0.24 μU/ml (reference normal: 0.4–5.0). The 30-min \(^{99m}\text{Tc-MIBI}\) thyroid uptake was 10.46 and the 24-hr \(^{131}\text{I}\) thyroid uptake was 79%.
pretreated the patients with perchlorate, which inhibits the thyroid uptake form of free 99mTcpertechnetate.

In conclusion, these studies suggest that 99mTc-MIBI uptake may be useful for the diagnosis of hyperthyroidism.

ACKNOWLEDGMENT

The authors would like to thank the Institute of Nuclear Energy Research, Taiwan, Republic of China for the preparation and quality control of 99mTc-MIBI.

FIGURE 2. Thirty minute 99mTc-MIBI thyroid uptake ratios correlated well with 24-hr 131I thyroid uptake ($r = 0.79$).

FIGURE 3. Patients with hyperthyroidism had significantly higher 30-min 99mTc-MIBI thyroid uptake than normal volunteers.
fibroses, a process leading to widespread interstitial fibrosis, bronchiolec-
tasis, and distortion of pulmonary architecture.

Gallium-67 images of the lungs are frequently abnormal in patients
with pulmonary sarcoidosis. There is evidence from in vitro experiments
that the macrophages associated with the alveolitis and granulomas of
the active disease become labeled with more 67Ga on a per-cell basis
than do normal macrophages. Furthermore, this increased macrophage
uptake of 67Ga in vitro correlates with the presence of positive 67Ga
scintigrams.

Although the role of 67Ga scintigraphy, as a means to stage or monitor
the disease is controversial, patients with normal studies generally have
stable pulmonary function, suggesting that their diseases are quiescent.
Conversely, positive 67Ga studies have been associated with deteriora-
tion of pulmonary function in most, but not all, patients. Furthermore,
several authors have demonstrated a close correlation between positive
gallium scintigrams and responsiveness to therapy. Most authors seem
to agree that corticosteroid therapy is unlikely to benefit a patient with
sarcoidosis who has a negative 67Ga study. On the other hand, it ap-
pears that positive 67Ga scintigrams do not reliably distinguish patients
who will improve spontaneously (without treatment) from those who re-
quire medical intervention. Thus, it appears that 67Ga uptake marks the presence of one or more
components of the disease stages associated with active alveolitis and
granuloma formation. Gallium-67 localization has not been associated
with pulmonary fibrosis per se, and hence may not correlate closely with
pulmonary function or with the appearance of the chest roentgenogram.
Patients who have pulmonary fibrosis but no 67Ga localization are unlikely
to benefit from corticosteroid therapy, which appears to be most suc-
cessful during the inflammatory phase of the disorder.

References
1. Kuo CH, Lin WY, Wang SJ, Yeh SH. Visualization of suppressed thyroid
2. Ramanathan R, Patel RB, Subrahmanyam N, Nayak UN, Sachdev SS,
Ramamoorthy N. Visualization of suppressed thyroid tissue by technetium-
99m-tertiary butyl isonitrile: an alternative to post-TSH stimulation scan-
3. Piwnica-Worms D, Kranauge JF, Chiu ML. Uptake and retention of
hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick
myocardial cells. Mitochondrial and plasma membrane potential depend-
4. Bellin GA, Watson DD. Physiological basis of myocardial perfusion im-
ageing with the technetium-99m agents. Semin Nucl Med 1991;21:
6. Piwnica-Worms D, Holman LB. Noncardiac application of hexakis (alkyl-
isonitrile) technetium-99m complexes [Editorial]. J Nucl Med 1990;31:
1166.
7. Chiu ML, Kranauge JF, Piwnica-Worms D. Effect of mitochondrial and
plasma membrane potentials on accumulation of hexakis (2-methoxyiso-
butylisonitrile) technetium (I) in cultured mouse fibroblasts. J Nucl Med
8. Muller SP, Piotrowski B, Guth-Tougelides B, Reiners C. Tc-99m MIBI
854.
Tc-99m isonitrile binding by the thyroid during myocardial perfusion
12. Lathrop KA, Harper PV. Biological behavior of Tc-99m and Tc-99m
pertechnetate ion. In: Progress in nuclear medicine, neuoruclear medicine.