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SPECT images of a Jaszczak rod phantom, a single-slice
Hoffman brain phantom and a uniform water-bath were ac-
quired. Simulated noisy bar phantoms incorporating depth-
dependent attenuation and bilur were produced and compared
to simulations with depth-independent attenuation and biur,
as is the case in PET. Following iterative maximum-likelihood
reconstruction, regularization was performed with use of
Gaussian filters. While correction for attenuation is achieved
in approximately 10 iterations, spatial resolution in the SPECT
reconstructions, quantified by contrast in the bar simulations
and by visual inspection of the real data, was highly nonuni-
form, being poorest at the center and improving toward the
periphery. Image resolution continued to improve well beyond
50 iterations when regularization was applied that maintained
a constant signal-to-noise ratio. Contrast in the simulated
PET data also improved with increasing iterations, but the
PET data showed uniform contrast throughout the transaxial
slices at all numbers of iterations.
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T:lem is increasing interest in maximume-likelihood re-
construction in single-photon emission computed-tomog-
raphy (SPECT) (/-4) and positron-emission tomography
(PET) (5,6). In SPECT imaging, maximume-likelihood re-
construction may improve quantification (2) and yield
more accurate attenuation compensation, especially in the
chest (1,7). This reconstruction technique also shows
promise in PET imaging of the brain (6).

Despite this widespread interest in maximum-likelihood
reconstruction, there have been few systematic, quantita-
tive studies of fundamental properties of the algorithm in
tomographic reconstruction (8). This paper addresses the
following questions:

1. Are attenuation and resolution in reconstructed
slices uniform across the slice?

2. How many iterations of the algorithm are required?
Is there an optimum number of iterations?

3. Are the resolution characteristics the same in SPECT
and PET imaging?
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We believe the answers to all of these questions have
important clinical implications.

METHODS

The Expectation-Maximization Algorithm for
Maximum-Likelihood Reconstruction

The basic concept of maximum-likelihood reconstruction is
simple: the activity distribution in the reconstructed slice is
chosen to be the one with the “maximum likelihood” of produc-
ing the observed projection data. Since no analytic solution is
available, the reconstruction must be performed iteratively, usu-
ally with use of the expectation-maximization algorithm. Two
equations for the iterative expectation-maximization calculation
are in wide use (3,9). They differ only in choice of the “complete
data,” and they converge to the same final solution. The equation
proposed by Lange and Carson (9) will be used here because it
appears to converge faster than the other algorithm (6).

The “Noise” Problem with Increasing Iterations

As the number of iterations of the expectation-maximization
algorithm increases, the reconstructed images become increas-
ingly “noisy.” This undesirable phenomenon has led several
authors to propose stopping at 50 iterations (2,10,11). Some have
suggested continuing to iterate, believing the reconstructed image
will improve rather than deteriorate if appropriate constraints are
applied. Several constraint techniques have been proposed (/2-
17). In this paper, the data will be presented both without
constraints or regularization and with post-iteration Gaussian
regularization based upon the “method of sieves” (/2,13). The
Gaussian filters were implemented as 15 X 15 pixel convolution
filters applied to the reconstructed slices after iteration (/8).

Differences Between SPECT and PET Reconstruction

In maximum-likelihood reconstruction, the physics of the
imaging situation is explicitly included in the projection and
backprojection steps. In SPECT imaging, the spatial resolution
and photon attenuation are both strongly dependent upon depth
(19). In PET, resolution is almost completely independent of
depth, and attenuation is usually considered to be constant along
any particular reconstruction ray or cylinder with the attenuation
values based on a transmission measurement (/9). Thus, while
the superficial form of the iterative equations for SPECT and
PET appear identical, the projection and backprojection opera-
tors are fundamentally different.

Experimental Image Data

Two sets of experimental data were acquired. One was from a
Jaszczak phantom (Data Spectrum Corp., Chapel Hill, NC) filled
with 20 mCi *™Tc. Half of the phantom contained only radio-
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active water, while the other half contained six sets of rods with
diameters from 4.8 to 12.7 mm. The other study was of a single-
slice Hoffman brain phantom (20) filled with 3 mCi ®™Tc. Both
studies were collected on a single-head rotating gamma camera
(Siemens Orbiter, Siemens Medical Systems, Hoffman Estates,
IL) equipped with a high-resolution collimator. Data were col-
lected in a 128 x 128 pixel matrix at 90 angles over 360°. Pixel
dimension was 3.1 X 3.1 mm. Several rows of projection data
were summed before reconstruction in the Jaszczak study to give
high-count, low-noise slices. Three rows were summed in the
Hoffman phantom to account for the 9 mm thickness of the
phantom. The dimensions of the phantoms, total projection
counts and radius of rotation are given in Table 1. To speed
reconstruction, the central 80 % 80 pixels of the projection data
were used for the Jaszczak study and 64 X 64 pixels were used
for the Hoffman data; the phantoms were centered on the axis of
rotation to avoid missing projection data.

Simulated Image Data

Four very simple computer-simulated phantoms were created
to assess the uniformity of spatial resolution (Table 1). The
phantoms were created with the same pixel dimensions and
matrix sizes as used with the experimental data. The first two
phantoms were in a cross-hatch pattern with bar thicknesses of 4
or 3 pixels and dimensions typical of body and head imaging.
The spaces between the bars were of the same thickness and
contained zero counts. The third and fourth phantoms consisted
of 4-pixel or 3-pixel vertical bars with spaces containing 50% of
the activity in the bars. The “body” phantoms were produced
with diameters equal to the Jaszczak phantom, while the “head”
phantoms were designed with the dimensions of the Hoffman
phantom. These simulated phantoms were rotated through 90
angles over 360° and projected with use of the collimator resolu-
tion-function and attenuation values described below. The total
counts and radius of rotation for the larger (body) phantoms were
chosen to correspond to typical values for a clinical study of the
abdomen with a triple-head camera. Values for the smaller (head)
phantoms were similar to those in a brain study with a triple-
head camera. Poisson noise was added with use of a random
number generator.

For SPECT imaging, the depth-dependent spatial resolution of
the gamma-camera was measured by planar imaging of a line
source filled with ®™Tc imbedded in a lucite scattering medium.

The resolution, assumed to be Gaussian in shape, was character-
ized as a function of depth, D (cm), by the full width at half
maximum (FWHM) according to the following equation:

FWHM (cm) = v(0.47)* + (0.056D)

A linear attenuation coefficient of 0.13/cm was used for the
SPECT simulations; a value of 0.15/cm resulted in negligible
differences in the results.

To approximate the acquisition characteristics of PET imaging,
simulated data were also generated with a constant resolution of
8 mm FWHM and a constant attenuation value of 0.096/cm
(19).

implementation of the lterative Reconstruction

The iterative reconstruction algorithm was implemented for
parallel projection and backprojection rays as would be obtained
with use of a parallel-hole collimator. The computations were
performed on a modern reduced-instruction-set (RISC) worksta-
tion (DECstation 5000/200, Digital Equipment Corp., Maynard,
MA). Each iteration of the algorithm required only 7-12 sec with
use of an approach we have developed (27) that involves one
precomputation of the projection and backprojection operators
requiring less than 100 sec with subsequent storage in computer
memory; at each iteration only a table lookup is then required
followed by simple floating-point calculations.

Data Analysis

The real experimental data were used to analyze quantitatively
the attenuation compensation and evaluate qualitatively the
depth-dependence of resolution and the performance of the al-
gorithm with increasing numbers of iterations. The spatial reso-
lution was analyzed with use of the simulated phantoms. The
simulated data from the 3- and 4-pixel vertical bars were used to
quantify the depth-dependence of resolution. Because of the edge
artifact present in maximum-likelihood reconstruction (/2,13), a
measure of contrast between the bars and spaces was employed
rather than a measure such as the point spread function that
would be more prone to artifactual results. The counts within the
full width of the central bar (Cy,,) Were summed at the center of
the circular phantom and at one-half of the distance to the edge
of the phantom. The counts in the space between the bars were
similarly determined (Cyee). The contrast at the center and at
the mid-radius was then computed as (Coar-Cspace)/Crar- The ideal

TABLE 1
Characteristics of the Real and Simulated Phantoms
Total Radius of
Diameter projection rotation
Phantom Type (cm) counts (cm) Figure
Jaszczak—uniform Real 21.6 1,750,000 19 1
Jaszczak—rods Real 216 2,870,000 19 7
Hoffman brain Real 16 x 12 212,000 15 8
(oval)
Cross-hatch (4 pixel)-body Simulated 21.7 oo* 25 2
Cross-hatch (3 pixel)}-head Simulated 16.1 © 15 3
Vertical bars (4 pixel)-body Simulated 21.7 500,000 25 4
or o
Vertical bars (3 pixel)-head Simulated 16.1 600,000 15 —
or o
* Noise-free.

Maximum-Likelihood Characteristics * Miller and Wallis
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contrast of the phantoms was 0.5. Results are expressed as a
fraction of the ideal contrast.

When regularization is employed to compensate for the
“noise” artifact, the resolution of the Gaussian regularizer should
be selected in a rational manner. We selected the regularizing
filter so that the signal-to-noise ratio (SNR) in the reconstructed
slice after regularization would be constant as the number of
iterations increased. The SNR of the image after 50 iterations
without regularization was selected because several authors have
proposed performing maximum-likelihood reconstruction with
that number of iterations and no regularization (2,10,11). To
determine the SNR for the simulated data, 25 realizations of the
projection data were created with the use of a random-number
generator. Reconstructions then were performed separately for
each projection set, leading to 25 noisy slices from each phantom.
The SNR for each phantom was then computed on a pixel-by-
pixel basis as the mean of the 25 images divided by the standard
deviation. Mean and SNR images were then created. The average
SNR was computed from the SNR image within the phantom
except for the 5 pixels closest to the periphery where there could
be edge artifact.

It was not practical to collect the identical experimental phan-
tom data 25 times because of the very long total acquisition time
and the declining counting rate caused by radioactive decay.
Thus, the SNR was estimated from an annulus in the uniform
section of the Jaszczak phantom. Within an annulus of the
symmetric phantom, the mean counts will be constant and the
variance of the counts will be uniform. An annulus was chosen
rather than the entire phantom to avoid potential problems with
imperfect attenuation compensation and nonuniform distribu-
tion of noise. Thus, the mean and standard deviation of the pixel
counts in a 5-pixel thick annulus at one-half of the phantom
radius were determined and the SNR was computed as the mean
of the counts in the annulus divided by the standard deviation.

RESULTS

Figure 1 shows a profile through the center of the
uniform “water bath” section of the Jaszczak phantom
after 10 iterations. The essentially flat shape of the profile

1000 |

Counts
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FIGURE 1. The counts in a cross-sectional slice through the
center of the water bath section of the Jaszczak phantom is
shown after 10 iterations of the maximum-likelihood algorithm
without regularization.
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FIGURE 2. The simulated, noise-free cross-hatch phantom is
shown for SPECT imaging with dimensions typical of body ac-
quisition. Reconstructions are shown after 50, 100 and 300
iterations.

did not change with larger numbers of iterations except
for the well-known increase in the noise and edge artifacts
(12,13). Thus, only 10 iterations are required to achieve
complete attenuation compensation with this uniform at-
tenuating medium.

Figures 2 and 3 show reconstructions of the cross-hatch
simulated, noise-free phantom for dimensions character-
istic of both body and brain SPECT imaging and for the
PET-like situation. This phantom, illustrating resolution,
demonstrates that for SPECT imaging resolution is poorer
at the center of the image than closer to the periphery.
The relative resolution at the center compared to periph-
erally improves with increasing number of iterations. Res-
olution is independent of depth for the PET-like simula-
tion. This phenomenon is quantified with use of the noise-
free vertical bar phantoms shown in Figure 4 for body
imaging with SPECT and the similar phantoms, not
shown, for the head and PET cases. The noise-free bars
were used for analysis; the results were essentially the same,
but more variable, when the noisy bars were used. As
described above, regularization was not performed at 50
iterations. Gaussian regularizers were chosen for higher
iterations to give a SNR equal to that at 50 iterations. For
the images in Figure 4, the FWHM of the Gaussian
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FIGURE 3. The upper row shows the cross-hatch phantom
for a simulated SPECT study with dimensions typical of head
imaging. The lower row shows the same phantom, but with
imaging similar to the PET case. Reconstructions are shown after
50, 100 and 300 iterations.
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FIGURE 4. The vertical bar phantom is shown for simulated
SPECT imaging with body dimensions. The upper row shows
reconstructions for 50, 100 and 300 iterations without regulari-
zation. The lower row shows images after 100 and 300 iterations
with Gaussian regularization. The marks labeled “C" and *M"
represent the position of the horizontal profiles used to compute
contrast at the center and mid-radius of the phantom. The slight
truncation at the upper and right edges is related to the size of
the convolution filter mask.

regularizers was 9.1 and 12.5 mm for the images at 100
and 300 iterations, respectively.

Figures 5 and 6 are data derived from the vertical bar
phantoms. They show the ratio of the contrast at the center
of the images and half-way to the edge compared to the
ideal contrast of 0.5 for the large and small phantoms
representing body and head SPECT imaging with and
without regularization. Note the gradual improvement in
contrast with number of iterations and the inferior contrast
at the center of the images. The relative and absolute
differences between the center and mid-radius contrast
decreased with increasing numbers of iterations. The slight
fall in contrast after regularization at the mid-radius for
the head situation at 250 and 300 iterations is due to
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FIGURE 5. The ratio of the measured contrast to the ideal
contrast of 0.5 is shown for SPECT imaging of the simulated
vertical bar phantoms with body dimensions. Data are shown at
the center of the phantom and half-way to the periphery with and
without regularization.
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FIGURE 6. The contrast ratios for simulated head SPECT
imaging are shown in the same format as in Figure 5.

increasing smoothness of the Gaussian regularizers, as
discussed more fully below. Results for the vertical bar
PET-like situation showed average contrast ratios without
regularization rising from 0.41 at 50 iterations to 0.87 at
300 iterations. Values differed between the center and
mid-radius by only 0.03 at 50 iterations and 0.01 at 300
iterations.

The SNR was slightly lower at the center of the simu-
lated SPECT images than at the periphery. Since the
algorithm accurately compensates for attenuation, the
mean value is contrast, thus indicating that there is greater
noise at the image center. This variation is caused by
depth-dependent attenuation leading to fewer detected
counts coming from the center of the image.

To verify the quantitative SPECT results achieved with
the simulated bar phantoms, the experimental Jaszczak
and Hoffman data were reconstructed for 50, 300 and
1000 iterations, as shown in Figures 7 and 8. Regulariza-
tion was applied at 300 and 1000 iterations. The regular-
izer for the Jaszczak phantom at 300 iterations (10.1 mm

FIGURE 7. Reconstructions through the rod section of the
Jaszczak phantom are shown after 50, 300 and 1000 iterations.
The upper row is without regularization, while the lower row
shows reconstructions at 300 and 1000 iterations with Gaussian
regularization.
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FIGURE 8.
300 and 1000 iterations. The format is the same as in Figure 7.

The Hoffman brain phantom is shown after 50,

FWHM) was chosen to give a constant SNR in a mid-
annulus as described above. For the Hoffman phantom
and for the Jaszczak phantom at 1000 iterations, the
regularizers were selected to give clinically acceptable and
visually similar noise levels. Note that resolution at the
center of the phantoms is inferior to that at the periphery,
especially at low iteration numbers, and the resolution in
the center plateaus or continues to improve after regular-
ization, even at 1000 iterations, thus confirming the sim-
ulated results in Figures 5 and 6. The center of the Jaszczak
phantom is noisier than the more peripheral regions, al-
though that phenomenon is difficult to appreciate in pho-
tographic reproductions of the images.

DISCUSSION

There are several principal conclusions to be drawn
from this work.

1. Attenuation Compensation. Accurate attenuation
compensation for a uniform attenuation medium is
achieved after approximately 10 iterations (Fig. 1).

2. Resolution. Spatial resolution in SPECT reconstruc-
tion is variable across the slice, being the worst in
the center and becoming more uniform with increas-
ing number of iterations (Figs. 2-8). To our knowl-
edge, this fact has not previously been reported.

3. Number of Iterations. The reconstructed images con-
tinue to improve in quality (improving spatial reso-
lution at a constant SNR) well beyond 50 iterations
with plateauing or a possible slight decline at large
numbers of iterations (Figs. 2-8). This issue, a very
controversial topic for many years, will be discussed
further below.

4. PET. The depth dependence of resolution observed
with SPECT may not be present in PET imaging
(Fig. 3 and data in the Results).

Methodological Issues

Quantification of the spatial resolution in maximum-
likelihood reconstruction is a difficult issue. Ideally, point
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sources would be employed with results expressed in terms
of the measured full-width half-maximum. Unfortunately,
many filtering and reconstruction techniques, including,
among others, filtering of planar images with sharp filters

- such as the Wiener filter, and maximum-likelihood recon-

struction, produce artifactual enhancement of object
edges. Thus, the FWHM of a point source would become
artifactually narrow and, thus, no longer representative of
the ability to distinguish adjacent structures. For this rea-
son we have chosen to use a bar pattern simulation and
indirectly quantify “resolution” by a contrast measure.
The Jaszczak and Hoffman phantoms are evaluated in a
more subjective, visual way.

The SNR is an important measure of image quality that
is closely related to resolution. Differing reconstruction
factors, including the choice of filter in filtered backpro-
jection and the regularizer in maximum-likelihood, lead
to widely varying and inversely related resolution and
noise. Therefore, to simplify analysis of the results, we
have chosen to hold the SNR constant as iteration number
increases and measure the changing contrast. Similarly,
contrast or another measure related to resolution could be
fixed and noise change could be quantified.

Scatter correction has not been employed in either the
simulations or reconstructions. While the Hoffman phan-
tom is very thin with negligible scatter, the images obtained
from the rod section of the Jaszczak phantom (Fig. 7) are
degraded by scatter, thus reducing overall image contrast.
If scatter correction were applied, e.g., with dual-window
correction of the projection data (22), the enhanced con-
trast might make the depth-dependence of the spatial
resolution more apparent. However, correction for scatter
would not change the principal conclusions of this work.

Number of iterations

Many workers now perform maximum-likelihood re-
constructions with 50 iterations (2,10,11), believing either
that the increasing noise with further iterations leads to
deterioration of the images or that no gains will arise with
further time-consuming iterations. The results reported
her showing that spatial resolution is nonuniform and that
image quality improves beyond 50 iterations suggest that
more iterations should be employed. In fact, excellent
reconstructions are obtained with the computationally
impractical number of 1000 iterations (Figs. 7-8).

There may be an optimum number of iterations. As
shown in Figures 5 and 6, the contrast at the mid-radius
plateaus or falls slightly at 300 iterations when a Gaussian
regularizer is employed. This phenomenon is due to the
increasingly smooth regularizers required to hold image
noise constant as iteration number increases. If other
regularization methods are employed, this feature of max-
imum-likelihood reconstruction may disappear, or an op-
timum number may occur at a different point.

It is likely that the appropriate number of iterations will
depend upon the details of the imaging situation including
the counting rate, organ dimensions, uniformity of the
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attenuating medium, camera parameters and other factors.
Thus, further experiments will be required, ultimately with
clinical patient data, to fully answer this question for each
imaging situation.

We have chosen to use unconstrained maximum-like-
lihood reconstruction with post-processing regularization
by the kernel-sieve method (72,13). Other related tech-
niques, such as maximume-likelihood with use of Good’s
roughness measure (23,24), Gibbs priors (/4,16) or other
related methods (15,17) might give superior results to
those reported here. However, the fundamental conclu-
sions of this work would not likely change.

Computation Speed

A major factor affecting choice of iteration number is
the time required to perform the computation-intensive
iterations. Special multi-processor machines can perform
single-slice iterations at a rate of 40-300 per minute (24,
25). It may also be possible to speed convergence of the
iterative algorithm (26,27). As conventional workstations
continue to improve in speed, clinically acceptable com-
putation times may become a reality with the use of these
widely available low-cost machines.

The slower resolution improvement in the image center
suggests a simple modification to the iterative scheme to
more efficiently use the computer time. As the iterations
proceed, a progressively smaller area about the image
center is backprojected at each iteration. Thus, iterations
become faster with concentration on the region with the
lowest resolution. While this concept will require further
development that is beyond the scope of this paper, a
single, preliminary trial was performed. After the first 150
iterations of the standard algorithm, 225 additional itera-
tions were performed within a smoothly shrinking area,
leading to a total of 375 iterations consuming the same
time as the standard method with 300 iterations. Bar
phantom contrast improved at the center with only slight
loss peripherally compared to the standard method.

SPECT Versus PET

There is a simple, intuitive explanation for the property
of maximum-likelihood reconstruction that the resolution
in the center of the slice lags behind the resolution at the
periphery. Gamma-ray attenuation and depth-dependent
collimator resolution in SPECT lead to fewer and more
blurred detected photons in the projections coming from
the center of the image than from the edges. Thus, the
maximume-likelihood algorithm has more difficulty in se-
lecting the correct activity distribution in the center of the
object because the algorithm is dealing with smaller num-
bers of events that are spread over a larger area of the
detector surface.

If the depth-dependence of attenuation and resolution
is removed, as is approximately true in PET (/9), then it
is plausible to anticipate that the reconstructed slices would
not show the depth-dependence in resolution observed in
SPECT imaging. That appears to be the case in the simu-

Maximum-Likelihood Characteristics ¢ Miller and Wallis

lated “PET” results reported here (Fig. 3 and in the data
in the Results). Further experimental verification of this
observation will be required employing the proper fan-
beam geometry and PET measurements of real phantoms.

Clinical Implications

In clinical SPECT studies, information at the center of
the reconstructed slice is generally as important as infor-
mation at the periphery. Therefore, because of the depth-
dependence of resolution, it is doubtful that 50 iterations
of the maximum-likelihood algorithm (2,10,11) will be
adequate to resolve clinically important small structures.
This observation may not have been made previously
because phantom studies usually have not specifically
addressed resolution at the center.

To achieve the most accurate clinical interpretations by
visual analysis of images, it is desirable to have the best
possible spatial resolution and uniformity with minimum
noise. The results presented here with real phantoms
closely approximating clinical brain studies (Hoffman
phantom) and more generally corresponding to abdominal
studies (Jaszczak phantom) show that resolution improves
at a constant noise level with increasing numbers of itera-
tions. The images do not deteriorate as frequently sug-
gested (2,10,11). While there are practical limits due to
computation time and computer cost, it appears that more
than 50 iterations will be needed to achieve worthwhile
results with the maximum-likelihood algorithm. Other,
more complex “regularization” methods (14-17,23,24)
may give even better results than those reported here.
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slowly over a 1-3 min duration. Presumably, this is due to spasm of the

cystic duct, which impairs emptying of the gallbladder and falsely lowers

the gallbladder ejection fraction.
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ITEMS 10-12: Properties of CCK

ANSWERS: 10, T; 11, F; 12, F

Cholecystokinin (CCK) is a 33-amino-acid polypeptide hormone produc-
ed by the duodenal mucosa in response to fat, lipolytic products, amino
acids and small polypeptides in the small intestine. It causes the gallblad-
der to contract, the sphincter of Oddi to relax, enhances jejunal, ileal
and, to a lesser extent, colonic motility, increases pyloric tone, and
stimulates the secretion of pancreatic enzymes and bile. The diffuse ef-
fects of CCK on intestinal motility explain why many patients report “‘gurgl-
ing in the stomach’ following its injection. Its active or cholecystokinetic
portion resides totally in its C-terminal octapeptide fragment.

There are two commercial preparations of the 33-amino- acid polypep-
tide cholecystokinin: Pancreozymin™ is produced by Boots Co., Ltd.,
England, and Cholecystokinin™ by the Karolinksa Institute in Stockholm.
Both sincalide, the C-terminal octapeptide, and ceruletide diethylamine,
the C-terminal decapeptide of cholecystokinin, are synthetic
cholecystogogues. Sincalide (Kinevac™) is produced by Squibb & Sons,
Inc., and ceruletide diethylamine (Tymtran™) by Adria Laboratories. Their
effects on the gastrointestinal and hepatobiliary system are identical to
that of intact cholecystokinin.
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ITEMS 13-16 and 17-20: False-Positive Scintigraphy for Acute
Cholecystitis

ANSWERS: 13, T 14, T, 15, F; 16, T, 17, T. 18, T, 19, T, 20, F

The images in Figure 1 reveal rapid uptake of the radiotracer by the liver.
The intrahepatic and extrahepatic ducts are seen by 15 min. By 30 min,
there is transit of the radiotracer into the duodenal sweep. However, the
gallbladder is not visualized throughout the 60 min of the study. Hence,
there may be complete cystic duct obstruction (acute cholecystitis). Since
the study was carried out only to 60 min, one cannot ascertain whether
the gallbladder may eventually visualize (e.g., only chronic cholecystitis
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may be present).

Among the causes of false-positive studies (i.e., nonvisualization of the
galibladder not due to cystic duct obstruction) are an insufficient period
of fasting and acute pancreatitis. As many as 50% of normal individuals
who are not fasted have nonvisualization of the gallbladder. Endogenous
release of cholecystokinin and contraction of the gallbladder following
a meal are presumed to prevent gallbladder filling. A fast of at least 2
hr, and preferably 4 hr, is required before beginning cholescintigraphy
to minimize the effect of endogenous cholecystokinin. Prolonged fast-
ing, for several days or more, such as may be encountered in post-
operative patients or those receiving total parenteral feeding, also may
lead to a false-positive cholescintigraphic study, presumably because
the bile within the galibladder is very viscous or mixed with sludge. Under
such circumstances, it is helpful to administer cholecystokinin 30-60 min
before cholescintigraphy; this will cause contraction of a normal galiblad-
der, which will then be in its refilling phase during the imaging study.
It is generally agreed that acute pancreatitis may be a cause of non-
visualization of the gallbladder, although controversy exists as to the
percentage of individuals with acute pancreatitis who will not have
visualization of the gallbladder.

Since nonvisualization of the gallbladder at 60 min may be due to
chronic cholecystitis as well as acute cholecystitis, several approaches
have been developed to distinguish between them. Obtaining images
up to 4 hr postinjection has been shown by many investigators to be
useful in separating chronic cholecystitis from acute cholecystitis. The
gallbladder will eventually visualize in patients with chronic cholecystitis
since the cystic duct is patent, although the gallbladder may be scarred
and sluggish. In patients with acute cholecystitis, the cystic duct is vir-
tually always functionally or anatomically obstructed, and the gallblad-
der will not visualize.

The false-positive rate for acute cholecystitis also can be reduced
significantly by medicating the patient with a cholecystokinin analogue,
or by use of morphine sulfate. Cholecystokinin given intravenously (slowly
over 1-3 min) empties a sludge-filled or distended gallbladder, allowing
a second dose of the hepatobiliary agent to flow into the gallbladder.
If the cystic duct is obstructed, the gallbladder cannot contract against
the obstruction. Alternately, if the gallbladder fails to visualize by 1 hr,
0.04 mg/kg morphine sulfate diluted in 10 ml of saline may be given intra-
venously with further imaging over the next 30 min. Morphine increases
the tone of the sphincter of Oddi at the distal common bile duct. The
resultant increase in pressure within the biliary system is enough to over-
come a partial obstruction of the cystic duct, or to cause filling of a fibrosed
gallbladder, thus bringing about earlier visualization of the gallbladder.

(continued on page 1695)
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