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The value of PET as an objective diagnostic tool for dementia
may depend on the degree to which abnormal metabolic
patterns can be detected by quantitative classification meth-
ods. In these studies, a neural-network classifier based on
coarse region of interest analyses was used to classify normal
and abnormal FDG-PET scans. The performance of neural
networks and of an expert reader were evaluated by cross-
validation testing. When the “abnormal” class was repre-
sented by subjects with clinical diagnoses of “Probable Alz-
heimer’'s,” the areas under the relative-operating-characteris-
tic (ROC) curves were 0.85 and 0.89 for the neural network
and the expert reader, respectively. When testing with abnor-
mal subjects represented by “Possible AD"” cases, ROC areas
for both the network and the expert were 0.81. The neural
network out-performed discriminant analysis. It is concluded
that PET has potential for the detection of abnormal brain
function in dementing diseases, and that the combination of
neural networks and PET is a useful diagnostic tool. Despite
the low-resolution “view" afforded the neural network, its
performance was nearly equivalent to that of an expert reader.

J Nucl Med 1992; 33:1459-1467

Positron emission tomography (PET) scan studies in
dementia have shown so-called “typical” patterns of ab-
normality, such as bilateral parieto-temporal hypometab-
olism, asymmetrical hypometabolism and predominantly
frontal hypometabolism (/-9) as shown in Figure 1. These
“typical” patterns appears in many (usually advanced)
cases of different neurological disorders, and it is often
possible to show significant differences in PET scan pat-
terns on a group basis (e.g., differences in mean values of
particular regions, or of ratios of mean values to a reference
region, for a given disorder), but reliable case-by-case
classification of subjects remains difficult. Disorders such
as Parkinson’s dementia and normal pressure hydroceph-
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alus can produce metabolic patterns that are supposedly
“typical” of Alzheimer’s disease (AD) (10,11).

Because of the large numbers of regions of interest
(ROIs) in a typical PET data base, identification of either
discrete abnormalities or patterns of abnormality for a
patient group compared to a control group has posed some
statistical challenge. PET studies are expensive and involve
radiation exposure, and because PET itself has not been a
commonly available methodology, relatively few subjects
in patient and control groups have been studied. Further-
more, intrinsic variability and methodological artifacts
result in considerable inter- and intrasubject variability.
Multicolinearity or interdependence between brain regions
also presents problems in investigating regional differences
between groups. These problems have been addressed to
some extent by normalization of regional values to some
reference region(s) (9,12), by the use of multivariate ap-
proaches (/3), by discriminant-function analysis (/4) and
by a “scaled sub-profile” model (15). These different meth-
ods of analysis have value for identifying single or groups
of brain regions that have the greatest differences between
subject groups (best discriminators) or for identifying a
distinctive profile of regional function that characterize a
disorder. AD and other memory disorders are heteroge-
neous, however, and there is growing evidence of multiple
sub-types within the AD disease category (16-19). This
evidence indicates the need, which has not yet been met,
for a PET analysis method which has the ability to recog-
nize and employ multiple discriminating profiles that will
serve to identify certain disorders on PET scans.

PET scan classification methods can vary from interpre-
tation by a human reader to more automated methods, as
shown in Figure 2. Certain artifacts, such as those pro-
duced by a lateral tilt of the brain, can be suspected and
taken into account more readily by a human expert than
by currently-available computerized methods. Needless to
say, the performance of a human reader will depend on
that reader’s level of expertise and experience in reading
PET scans.

To evaluate a quantitative classification method ade-
quately, cross-validation studies must be performed. This
involves “training” the classifier with one group of subjects,
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FIGURE 1. PET image illustrating parieto-temporal asymme-
tries and bilateral parieto-temporal hypometabolism. The piot
gives results of a ROl analysis of the PET study shown above,
i.e., CMRgic in the four bilateral lobes of the brain (right and left
frontal, parietal, temporal, occipital).

Y
Y-
: CLASSIFIER

?
DIAGNOSIS 1 =DIAGNOSIS 2 = DIAGNOSIS 3= DIAGNOSIS 4

PET

FIGURE 2. A selection of PET classification methods. Infor-
mation from a PET study (either the images themselves or the
results of quantitative analyses) can be used to “diagnose” ab-
normalities. Intuitive visual interpretations by trained experts can
be powerful, but are inherently subjective. Certain “rules” regard-
ing pattemns of deficits or assymetry may be formalized to con-
stitute a “rule-based classifier.” Quantitative, statistical versions
of these types of rules, or approaches such as discriminant
analysis, may be used to form a “statistical classifier.” Alterna-
tively, neural networks may be trained to indicate abnormalities.
The relevant question is: given the same PET scan, will the
different methods agree?
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and testing it on a separate group, which will measure a
classification method’s ability to perform on new and
independent data sets. Re-substitution experiments, in
which testing is performed on the group used to “train”
the classifier, can be used to demonstrate theoretical limits
of the classifier’s performance as the number of experi-
mental subjects increases (20), but they do not give realistic
estimates of a classifier’s performance in a practical setting.

The introduction of a group of computational algo-
rithms known collectively as “artificial networks™ has stim-
ulated great interest within the field of pattern recognition
(21-23). In these algorithms, individual processing ele-
ments, analogous to biological neurons, receive weighted
averages of inputs from other processing elements. As in
biological networks, a transfer function is applied to this
weighted average, and the results are fed to other process-
ing elements. The recent development of methods by
which connection weights can be adjusted so that networks
can “learn,” by example, how to classify patterns, has
made this technique particularly valuable. The introduc-
tion of the generalized delta rule (27) for use in semi-linear
networks enabled the realization of computer programs
implementing a multilayer neural network (the back-prop-
agation network) that could perform impressive feats of
“learning.”

Though neural network training is strictly a “supervised
learning” process, the learning is essentially by example,
with no guidance from the user as to the criteria to employ.
The network is allowed to learn what it “believes” to be
the most important discriminating features, and to weigh
those features appropriately for best classification perform-
ance. The weight vectors associated with individual hidden
units can quite legitimately be thought of as “feature
detectors,” since the weighted-average input to each hidden
unit represents a covariance or correlation-type calcula-
tion. In the sense that it applies multivariate profiles to
PET data, the back-propagation network approach is con-
ceptually similar to the methods of others (14,15,19). The
nonparametric and nonlinear aspects of neural networks,
however, offer potential advantages.

Neural networks are beginning to find applications in
many fields, including the field of medical imaging (24-
29). A neural-network classification system for fluoro-
deoxy-glucose (FDG) PET scan data is described here, and
its applicability in separating normal from abnormal FDG-
PET scans is evaluated.

MATERIALS AND METHODS

Patients with dementia or memory disorders were recruited
for brain imaging studies at the Wien Center for Alzheimer’s
Disease and Memory Disorders, Mount Sinai Medical Center,
Miami Beach. Normal young and elderly subjects were also
recruited from the local community. Recruiting procedures are
described in detail elsewhere (8).

Resting-state (supine, awake, eyes closed and blindfolded in a
quiet, darkened room) PET scans were obtained using a PETT
V scanner (30) (seven simultaneous slices, 15 mm apart, with
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inplane and axial image resolution of 15 mm FWHM). Patients
were injected with 3-5 mCi of ['®F]FDG, and scans were obtained
30 min later for a length of time sufficient to obtain 2 x 10°
counts in the highest count slice. “Arterialized” venous blood
was collected in order to measure plasma radioactivity and glu-
cose (31). Regional cerebral metabolic rate of glucose (rCMRgic)
values were calculated using standard rate constants, a lumped
constant of 0.42 and an operational equation (3/). Data were
analyzed for 67 ROIs in the brain, using previously-published
methods (13,32-34). For each region, the average metabolism in
absolute values of rCMRglc in mg/100 g/min was determined.
Values were also calculated for 12 larger bilateral lobular regions
and 4 bilateral lobar regions (frontal, parietal, temporal and
occipital).

Classification performances were evaluated for two groups of
subjects. All subjects had been clinically diagnosed according to
current NINCDS-ADRDA criteria (35), and the clinical diagnosis
was used as a reference. Each group contained two classes: “AD”
subjects and age-equivalent normal subjects. The AD class was
represented, in the first group, by subjects with a clinical diagnosis
of “Probable AD”, and in the second, by subjects with “Possible
AD” as defined by NINCDS-ADRDA criteria (it was expected
that PET-based diagnosis would be somewhat more difficult for
the Possible AD group). Approximately half of the patients di-
agnosed as Possible AD had met all the criteria for Probable AD,
except for being insufficiently cognitively impaired to be labeled
as demented. The remaining Possible AD patients were those
who were demented but had other medical conditions that could
independently produce some mental impairment, so as to make
the diagnosis of AD less certain. Table 1 summarizes the com-
position of the two groups.

Three classification methods were compared. The first method
consisted of classification by a human expert. An expert reader
(RD), who was blind to individual clinical diagnoses, examined
each PET scan for signs of abnormality and assigned a grade of
abnormality from O through 5 (0 = completely normal, 1 =
questionable deficit present, 2 = mild deficits, 3 = moderate
deficits, 4 = severe deficits, 5 = severe widespread deficits). A
threshold-type decision criterion was then applied to each subject.
The results of the human expert were compared to the results of
two quantitative classifier methods, both of which were trained
with eight-dimensional patterns (eight lobar metabolic values)
resulting from ROI analyses of individual subjects. One quanti-

tative method was a discriminant analysis technique (36), as
implemented in the SAS statistical package (37), in which the
discriminant function obtained for a “training set” was applied
to patterns within a “testing set”. The SAS procedure employed
an optimization strategy which used either linear or quadratic
discriminant analysis, depending on the results of tests of the
intra-class and pooled covariance matrices (38). The second
quantitative method was the back-propagation artificial neural
network. Both cross-validation and re-substitution studies were
performed for the quantitative methods.

Comparisons of the three methods were made on the basis of
“relative-operating-characteristics” (ROC) analyses (39-42), in
which the area under the ROC curve was used as the figure of
merit. The ROC area measures a diagnostic system’s performance
at several different settings of the decision criteria, and is a more
complete representation of a diagnostic system’s performance
than, for example, the report of a single pair of sensitivity and
specificity values. It can be shown (42) that the area under the
curve corresponds to the probability of a correct response in a
two-alternative forced choice test, in which a classifier is presented
with one sample of each of the two possible alternatives (in this
case, normal or abnormal), and is forced to say which is which.

Figure 3 is a conceptual representation of the neural-network
classification system. ROI data, based on rCMRglc in the eight
(four right and four left) lobes served as an eight-dimensional
input to the neural network. Neural network training was per-
formed using back-propagation techniques described elsewhere
(21,22). By presenting examples of each class (in this case, results
of ROI analyses of normal and AD PET scans) at the input layer,
comparing the calculated output of each output-layer unit with
the target values for that class, and then adjusting the internal
weights so that the calculated outputs would then be closer to the
target values, the network learned to define appropriate decision
boundaries within the input space. Once a network was trained
in this way, “unknown™ patterns were classified by presenting
input patterns at the input layer. For the two-class problem, a
single output unit indicated the classification, according to a
selected threshold criterion. The network was trained so that the
output of this unit was “high” (close to 1) for normal patterns
and “low” (close to 0) for abnormal patterns. Target values used
for training were thus either 1 or 0, for normal and abnormal
subjects, respectively. For one iteration, the entire group of ex-
amples was presented, and the error at the output layer was

TABLE 1
Composition of the Two Groups Used to Test Classification Performance
Group 1 Group 2
“AD" class: “Probable AD" “Possible” AD
N 41 39
Age 70.9 + 8.8 (range: 53-93) 73.6 + 9.4 (range: 51-96)
Mini-Mental status exam score
150+73 19.0 + 8.0
Gender (M, F) 21,20 18, 21
“Normal” class: Age-Equivalent Normals Age-Equivalent Normals
N 50 50
Age 67.7 + 8.9 (range: 50-84) 67.7 £+ 8.9 (range: 50-84)
Gender (M, F) 25,25 25,25

Note: “Normals” include some subjects with small MR lesions.
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FIGURE 3. A conceptual representation of the PET classifi-
cation system based on a neural-network classifier. Values rep-
resenting metabolism in various regions of the brain serve as
input patterns. Examples of pattemns from previously-classified
normal and abnormal subjects can be used to perform “super-
vised” training of the neural network. The classification perform-
ance of the network can then be tested by presenting metabolic
patterns of new subjects. The number of units in the “hidden
layer” can be varied to optimize the cross-validation performance.

“propagated” back through the network according to the gener-
alized delta learning law (21).

The major architectural parameters of a back-propagation
neural network are: the number of hidden layers, the number of
hidden units within each layer and the number of training itera-
tions. These parameters all affect the capacity of the network to
“generalize” when performing classification. Although some the-
oretical guidelines for optimizing these parameters with respect
to a particular application can be found in the literature (22,43~
45), this type of optimization is still somewhat of an open
question. It is advisable to use the simplest architecture possible
and to train for no longer than necessary, since overtraining can
cause a network to “memorize” its training set and degrade its
performance on the testing set. The network may learn classifi-
cation “rules” which apply specifically to the training patterns
and are not generally applicable. Neural networks with a single
hidden layer were optimized with respect to the number of hidden
units and to training duration. Optimization procedures were
performed as described elsewhere (25). Briefly, classification per-
formances, as judged by ROC areas in cross-validation testing,
were evaluated for different combinations of number of hidden
units and number of training iterations. Overtraining was consid-
ered to occur when average cross-validation ROC areas began to
decrease with increasing training. The number of hidden units at
which ROC areas no longer increased with an increasing number
of hidden units was considered to be a number sufficient for the
data under consideration.

Normal controls were randomly divided into two groups of
equal size, and each group was then paired with an abnormal
group, thus forming two independent data sets which could serve
as training-testing pairs. In order to balance the number of normal
and abnormal subjects in training sets (so as to eliminate any
learning bias), a number of patterns from the smaller class were
represented more than once. In order to make the cross-validation
results as general as possible (i.e., to reduce the results’ depend-
ence on any special properties of a given training-testing combi-
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nation), two different cross-validation configurations were used
to obtain each averaged ROC curve. The normal controls used
for training in the first configuration were used for testing in the
second configuration, and vice versa. The cross-validation results
from these two configurations were averaged to obtain final ROC
curves. For neural-network experiments, training was repeated
several times for each configuration, each time with random
network initialization in order to eliminate any potential bias
attributable to particular initial conditions. The order in which
subjects within a training set were presented for training was also
randomized.

ROC curves were constructed by determining pairs of true-
positive-ratio and false-positive-ratio values at various settings of
decision criteria for each method. For the expert, this was accom-
plished by selecting different thresholds of assigned abnormality
grades (from 0 to 5) for the classification criteria. For the neural
network, ROC curves were similarly computed by selecting dif-
ferent thresholds for the output units of networks which were
trained to indicate abnormality on a scale of 0 to 1. For discrim-
inant analysis, points on the ROC curve were collected by choos-
ing a range of prior probabilities (from 0 to 1) for the discriminant
procedure.

Because of the nature of the sigmoid transfer function of the
network’s processing units, it is usually necessary to pre-process
the input data. The data should be scaled by an arbitrary constant
chosen so that the input values are “small” (absolute values less
than about 2). Another pre-processing option is to de-mean each
input pattern, i.e., to subtract the mean value of each n-dimen-
sional pattern from each of the n components. The inherent
assumption here is that the mean value (indicating overall level
of metabolism) is not as important to the classification process
as are the relative differences among the individual regional
function values. While it is not always advantageous to remove
information from input patterns, it can be beneficial if the infor-
mation removed is misleading or has little value. Experiments
were performed for two pre-processing methods in order to
quantitatively compare these methods. For one group of experi-
ments, the mean was removed from each pattern, as described
above, to form zero-mean patterns. For the second group of
experiments, non-zero-mean patterns were formed by simply
scaling the metabolic values so that their range was between 0
and 1.

RESULTS

The different methods were used to classify subjects in
Group 1 (“Probable AD” versus age-equivalent normals),
with the results shown in Figure 4. Since the specificity is
the complement of the false-positive ratio represented on
the abscissa in Figure 4, one can determine the sensitivity
and specificity for various strengths of criteria (more
“strict” or more “lenient™) directly from the ROC curve.
At a specificity of 80% (0.2 false-positive ratio), for in-
stance, one can see that the sensitivity of both the expert
reader and the neural network was in the range of 80%-
85%, while the sensitivity of discriminant analysis was in
the range of 65%-70%. The same methods were applied
to subjects in Group 2 (“Possible AD” versus age-equiva-
lent normals). As shown in Figure 5, the ROC curves for
the neural network and the expert nearly overlap one
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FIGURE 4. ROC curves illustrating classification performance
within Group 1. Different points on the neural-network curve were
determined by continuously varying the output unit's decision
threshold. The neural-network curve shown is an average of ROC
curves from forty trials (20 trials for each of two cross-validation
configurations). Different points on the expert “curve” were de-
termined by selecting different decision thresholds on the expert’s
0-5 abnormality scale. In order of decreasing true-positive ratios,
the points above correspond to thresholds of 0.0, 0.5, 1.0, 2.0,
3.0, 3.5, 4.0 and 5.0. Points on the discriminant analysis curve
were determined by choosing a range of prior-probability values.
The discriminant analysis curve was the average of results for
two cross-validation configurations.

another. The discriminant analysis curve shows a lower
sensitivity for nearly all values of false-positive-ratio.
Early experiments indicated that training-set size was
an important factor in the generalizing capabilities of both
quantitative methods. The influence of variations over the
available range of training-set size appeared to outweigh
any effects attributable to composition (i.e., whether the
training set contained Probable AD or Possible AD sub-
jects). In order to use the largest possible number of
training samples while maintaining the independence of
testing sets, training sets for classifiers to be tested on
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FIGURE 5. ROC curves illustrating classification performance
within Group 2. Points on the curves were computed in the same
manner as were points on the curves in Figure 4.
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Probable AD sets included Possible AD subjects, and vice
versa. In fact, experiments indicated that there was very
little difference (variation in average ROC area was 0.01)
between the case in which the abnormal groups for training
sets consisted of equal ratios of Possible AD and Probable
AD subjects and the case in which abnormal training
groups was composed entirely of either Possible AD or
Probable AD subjects. The cross-validation results pre-
sented here are for the case in which networks were trained
on Group | and tested on Group 2, and vice versa. For
re-substitution tests, networks trained with either Group 1
or Group 2 were also tested on that same group.

The ROC areas for both subject groups are summarized
in Table 2. The neural-network ROC values shown in
Table 2 are mean values. Neural-network cross-validation
results were based on forty different training/testing ex-
periments (twenty experiments for each of two cross-
validation configurations), resulting in standard deviations
0f 0.012 for Group 1 and 0.018 for Group 2. For the cross-
validation results shown in Table 2, networks with four
hidden units (8-4-1 networks) were trained for just 40
iterations. These were optimal training parameters, as
determined by the optimization procedure described ear-
lier.

The results of the mean-removal comparison experi-
ments are shown in Table 3. Results are shown for both
quantitative methods for each of two types of data repre-
sentation: zero-mean and non-zero-mean (as described
earlier). Within Group 1, removing the mean resulted in
slightly higher ROC areas for the neural network, and
slightly lower ROC areas for discriminant analysis. For
Group 2, removing the mean made little or no difference
for either discriminant analysis or neural networks.
Neural-network training times for non-zero-mean experi-
ments were longer (400-500 iterations), than those for
Zero-mean experiments.

Selected weight vectors associated with the hidden units
of networks that were trained to distinguish normal from

TABLE 2
Classification Performance of Various Classification
Methods*
Group 1 (Probable  Group 2 (Possible
AD vs. Age-Equiv.  AD vs. Age-Equiv.
Method Normal) Normal)
Expert Reader 0.89 0.81
Neural Network 0.85 0.81
(cross-validation)
Neural Network (re- 0.98 0.97
substitution)
Discr. Analysis 0.80 0.74
(cross-validation)
Discr. Analysis (re- 0.92 0.92
substitution)

* Each value represents the area under the ROC curve for a given
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TABLE 3
Classification Performance for Two Different Data
Preparation Methods*
Group 1 (Probable Group 2 (Possible
AD vs. Age-Equiv. AD vs. Age-Equiv.
Method Normal) Normal)
Neural Network 0.85 0.81
(zero-mean)
Neural Network 0.82 0.80
(non-zero-mean)
Discr. Analysis 0.78 0.74
(zero-mean)
Discr. Analysis 0.80 0.74
(non-zero-mean)

* Each value represents the area under the ROC curve.

Note: Training times for non-zero-mean experiments were longer
(400-500 iterations) than those for zero-mean experiments (40 iter-
ations).

Probable AD PET scans are presented in Figure 6. These
vectors represent the most distinctive and heavily-weighted
“abnormal-detecting” patterns from groups of trained net-
works. The weight vectors presented here result from
training with non-zero-mean patterns, which corresponds,
of course, to the customary method by which human
experts observe PET images, i.e., without mean removal.

DISCUSSION

The results of this work suggest that PET has a notable
capacity for discriminating between normal and AD sub-
jects, and that the back-propagation neural network is a
useful classification tool. As indicated by ROC-based per-
formance evaluations within test groups of different diag-
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FIGURE 6. The two most important “discriminating profiles”
used by the neural nets. Shown above are weight vectors of
hidden units of networks trained on Group 1. The neural network
has incorporated and combined some “typical Alzheimer's dis-
ease” features, particularly asymmetry and left-parietal hypome-
tabolism, into its feature detectors. Note that the combination of
the two weight patterns allowed a trained network to detect
frontal asymmetry in either direction: right-side-higher-than-left or
right-side-lower-than-left.
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nostic difficulty, the neural network’s performance was
better than that of discriminant analysis and comparable
to that of an expert PET reader’s performance, despite the
low-resolution image data (one value per lobe) provided
to the network. The nonlinear and nonparametric nature
of the neural network apparently allowed it to be a more
robust classification procedure than those based on tradi-
tional statistical methods.

As expected, classification accuracy was higher within
Group 1 than within Group 2 (Table 2). In general,
patterns within the diagnostically more difficult group
(Group 2) would be less descriptive of the “AD” group,
thereby decreasing classification performance. The results
of the re-substitution experiments show, however, that it
is possible to separate normal from abnormal subjects with
almost complete accuracy in both groups. This implies
that higher accuracy for both groups could be obtained
with larger training sets.

Comparison between the results obtained using zero-
mean data versus those obtained with non-zero-mean data
served to demonstrate, at least for this subject group, the
relative unimportance of the mean value in discriminating
between normal and abnormal PET scans. In general,
removing the mean from the data presented to the quan-
titative classifiers either made no difference in classifica-
tion performance, or made it easier to distinguish between
the two groups. The single exception was a slight degra-
dation in discriminant-analysis performance for Group 1,
as shown in Table 3. For the neural network experiments,
results with zero-mean values were either equal to or
slightly higher than results with non-zero-mean values.
Also, shorter training times indicated that it was easier to
separate the two classes when using zero-mean values.

The results of classification within Group 1 are lower
than those reported by Friedland et al. for a similar group
of subjects studied with FDG-PET (46). There are at least
two possible explanations for this difference: differences in
PET-camera resolution, and differences in the method for
collecting input-function blood samples. The metabolic
values obtained with the Scanditronix camera used by
Friedland et al. [with a 6 mm FWHM (47)] can differ
significantly from those obtained from the same subject
with a low-resolution camera (48). In addition, Friedland
et al. performed arterial blood collection, rather than ar-
terialized venous collection. The latter has been cited in
more recent literature as a potentially significant source of
error (49).

It should be remembered that there are three major
issues to be considered in a PET-based classification sys-
tem: (1) the intrinsic diagnostic power of PET imaging; (2)
the quality of the image analysis; and (3) the classification
method. Each of these matters will influence the perform-
ance of a classification system. Although the focus here is
primarily on classification methods, it should be remem-
bered that poor performance in either of the other two
areas will compromise the classification results.
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It can be seen from the weight patterns (feature vectors)
shown in Figure 6 that the networks incorporated and
combined several patterns of asymmetry and hypometab-
olism into their feature detection process. These feature
vectors can be thought of as representing the relative effect
of individual input variables while others are held fixed.
These vectors, however, should be interpreted carefully.
They represent profiles that have been adjusted to serve as
discriminating profiles for abnormal PET scans on a group
basis. Metabolic patterns, representing individual subjects,
which were presented to the neural network and “matched
up” with one or more of the prominent aspects of one or
both of these weight vectors, were “judged” abnormal
according to the degree of matching. An increase in the
number and/or extent of matching profile characteristics
corresponded to an increased indication of abnormality.

Several aspects of these profiles deserve mention. Vector
1 served as a mechanism for detecting patterns of promi-
nent left-impaired asymmetry in parietal, temporal and
occipital regions. These patterns, combined with sparing
of the occipital and temporal regions (relative to other
regions) and pronounced hypometabolism in the left-pa-
rietal lobe, were strong indicators of abnormality. Vector
2 served to detect occipital and temporal asymmetry in
the opposite direction, i.e., right-side hypometabolism
(though not as pronounced as in vector 1), combined with
sparing of the occipital and frontal regions relative to other
regions, and hypometabolism in the parietal and temporal
regions. Frontal asymmetry was also an abnormal indica-
tor, particularly in vector 1, which shows right-side-lower-
than-left asymmetry. Vector 2 shows frontal asymmetry
in the opposite direction, which allowed trained networks
to detect frontal asymmetry in either direction. It can be
seen that the combination of these two weight patterns
allowed trained neural networks to detect quite a rich
variety of abnormal indicators.

The ROC curve represents the performance at several
different settings of the particular decision criteria. The
area under the curve is the “only performance measure
available that is uninfluenced by decision biases and prior
probabilities, and it places the performances of diverse
systems on a common, easily interpreted scale” (40). The
area values presented above can be compared with values
from the literature (40), which describe the diagnostic
performances of various medical imaging techniques, such
as the detection of brain lesions on CT (A = 0.97), on
radionuclide scanning (A = 0.87) and the detection of
adrenal disease (0.93 for CT, 0.81 for ultrasound).

The ability of this study to fully evaluate the diagnostic
capability of neural networks was limited by several con-
siderations. Although, for a PET study, this group of
subjects was fairly large, it was small enough to impose
limitations in two senses. First of all, the neural network’s
“past experience,” in each evaluation, was represented only
by the subjects in the training set. The expert reader’s
training, of course, was not limited to the data sets used
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to train the quantitative classifiers, but was based on
knowledge gained from a professional lifetime’s worth of
experience. In addition, the low-resolution “view” that the
neural network had of each PET study certainly repre-
sented a significant handicap.

Another factor which may have influenced the results is
the fact that, if the expert reader is considered as an expert
system in the same sense as were the quantitative classi-
fiers, part of the expert’s training was performed on the
“testing set.” Some of the expert’s conclusions regarding
trends of asymmetry, etc. may actually be rather specific
for this group. In terms of the ROC values presented here,
this represents an additional “handicap” on the quantita-
tive classifiers, as compared to the expert reader. When
evaluating the quantitative classifiers, the training and
testing sets were completely independent.

Another limitation in evaluating the classification meth-
ods described here stems from the assumption that the
clinical diagnoses are accurate. Postmortem studies have
shown confirmation of clinical diagnoses for AD cases to
average about 80% (50-52). While all abnormal subjects
in this study presumably have an organic brain disorder,
they may have, in approximately 20% of the cases, a
disease other than AD. Another factor that may degrade
specificity is the heterogeneity in pathological findings in
AD. This heterogeneity may eventually produce several
different “metabolic types” of AD. Thus, the standard by
which the methods’ performances are measured is itself
somewhat uncertain. These limitations would particularly
apply to the results from Group 2, whose “AD” diagnoses
were less certain than those in Group 1.

The possible existence of metabolic sub-types noted
previously could serve to help explain the higher accuracy
of neural networks as compared to discriminant analysis.
As the weight vector analyses have shown, the neural-
network approach enables the identification of more than
one characteristic metabolic profile, which is appropriate
when a single disease may be manifested by more than
one metabolic pattern.

The combination of PET and neural networks appears
to be an objective and useful diagnostic tool for AD, and
would appear to be well-suited for structure-function-
based classification in other diseases as well. It should be
noted that the current study did not involve differential
diagnosis. Future work would include training with ex-
amples of more than one disease category.

Artificial neural networks can be used to model anatom-
ical/functional disorders, since their architecture and proc-
essing modes are similar to those of biological networks.
In the study presented here, patterns of regional function
have been associated with clinical diagnoses. In a similar
way, regional functional patterns can be associated with
patterns in neuropsychological evaluations, which could
lead to the discovery of patterns associated with very
specific neurological or cognitive syndromes.

An image-based classification system could be easily
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and effectively used to compare imaging modalities as well
as procedure-specific parameters (tracer concentrations,
number of counts to collect, etc.). Additional data from
magnetic resonance scans and even data from neurological
and psychological evaluations could be included to form
the basis of a comprehensive expert system. Such a system,
trained with the knowledge of human specialists, could be
available wherever there was a computer and could be
available on a continuous basis.
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