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I@ has long been supposed that pro
vision of glucose by glycolytic flux

should be beneficial to the ischemic
myocardium (1). The basic logic relies
on the benefits of production of ATP
independently of oxygen, during the
glycolytic process. Even when glycol
ysis is maximally accelerated in an
oxia with maintained coronary flow,
glycolytically-produced ATP cannot
meet the total energy requirements of
the normally contracting heart. ATP
produced by glycolysis may, however,
play a different role by helping to
protect the cell membrane (2). Thus,
ATP generated by glycolysis prefer
entially interacts with potassium

ReceivedMar. 18, 1992;acceptedMar. 18,
1992.

For reprints contact: Professor L.H. Opie, Heart
ResearchUnit,Universityof CapeTownMedical
School,Observatory7925,CapeTown,SouthAf
rica.

channels in isolated guinea-pig car
diac myocytes (3). Furthermore, it is
ATP produced by glycolysis rather
than the total ATP level that prevents
ischemic contracture in the moder
ately underperfused myocardium (4).

These studies strongly suggest that
it is not the overall level nor the con
centration of ATP that is critical in
the maintenance of ion gradients
across the sarcolemma, but rather the
rate of provision of ATP derived spe
cifically from glycolysis.

MYOCARDIAL BLOOD FLOW
AND GLUCOSE UPTAKE

If glycolysis (both from exogenous
glucose uptake and from glycogen)
were always increased by ischemia,
then the above protective scheme
would be relatively straightforward.
Rather, in severe ischemia, it is pro
posed that the accumulation of gly

colytic products in the myocardium
(e.g., lactate, protons produced from
turnover of ATP and from other
sources, and increased levels of re
duced coenzymes) act to inhibit gly
colytic flux at several points and
thereby to decrease glucose uptake
(5). There should accordingly be a
â€œflip-flopâ€•mechanism whereby glu
cose utilization, initially increased by
relatively mild degrees of ischemia, is
inhibited by severe degrees of ische
mia. Therefore, as the coronary flow
rate progressively falls, there will be a
critical flow level at which increased
uptake of exogenous glucose switches
to decreased uptake. A recent hypoth
esis (6) proposes that an increased
glucose uptake reflects continued cell
viability, whereas a decreased uptake
is associated with loss of viability of
the ischemic cells which then pass
from reversible to irreversible damage.
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On the basis of this proposal, cells
threatened by ischemia could be di
vided into: (a) viable cells with in
creased values for glucose uptake and
(b) nonviable cells with decreased val
ues. It is proposed that in zones of
severe ischemia glycolysis is inhibited
and fails to exert its proposed protec
tive function on the cell membrane
(6). Among the consequences would

be cytosolic calcium overload, which
is a key stepin the progressionto cell
death ( 7).

What is the proposed level of myo
cardial bloodflowfor the â€˜flip-flopâ€•in
glucose uptake to occur?In the isolated
perfused rat heart, during severe ische
mia when the coronary flow is re
duced to 5%â€”l0%ofthe pre-ischemic
value, then myocardial glucose uptake
falls. By contrast, when flow is 15%â€”
20% of the pre-ischemic value, then
the glucose uptake increases albeit
only modestly (6). Thus, in this prep
aration, the critical flow rate must lie
between 5% and 20%. It must be con
sidered that these hearts are perfused
without blood, so that the control cor
onary flow rate is abnormally high,
probably 2.5 times that found in the
rat in situ (8). Suppose, therefore, that
at an approximation the critical rate
offlow is about 10% ofcontrol in the
isolated rat heart perfused without
blood, then a â€œcorrectionfactorâ€•of
about 2.5 would have to be applied to
bring it to levels relevant to blood
perfused preparations. Thus, the
â€œguestimatedâ€•critical flow in the
blood-perfused dog heart would be
about 2.5 x 10% or about 25% of the
pre-ischemic value. It should be re
called that ischemia is composed of
two components, decreased delivery
of oxygen and nutrients, and de
creased washout of metabolites. Rel
evant to the glycolytic hypothesis is
whether or not glycolytic end-prod
ucts accumulate in the ischemic tis
sue, which would reflect the absolute
rate ofwashout. Hence, it is appropri
ate to make corrections in the calcu
lation for the total coronary flow rate,
which reflects the washout rate, rather
than the absolute decrease in oxygen
delivery.

CHRONIC METABOLIC ISCHEMIA
AND HIBERNATION

Consonant with the proposal for a
critical level of glucose uptake are the
findings that an increased glucose ex
traction in the presence of decreased
coronary flow can indicate the hiber
nating state in which there is de
creased coronary flow; contractility is
reduced, yet the viability returns when
the blood flow is restored to normal
(9). Closely related is the entity of

â€œpersistent metabolic ischemia,â€•
found in patients with unstable angina
pectoris at a time when there are no
electrocardiographic signs of ischemia
(10). Studies with PET in patients
with coronary artery disease have
identified segments of myocardium
that are still viable, although contract
ing poorly (11). Hence, it might be
supposed that increased uptake of
fluorodeoxyglucose (FDG) could re
flect tissue viability and possible suit
ability for operative restitution of cor
onary flow.

There are, however, certain techni
cal problems. It should be emphasized
that what is often measured in man is
simply the regional distribution of
FDG in the myocardium, which is not
the same as the metabolic rate of glu
cose uptake. To obtain the true met
abolic rate ofglucose, both the arterial
input fraction and the rate of myocar
dial accumulation of FDG should be
known (12). In addition, the differ
ences in affinity between glucose and
deoxyglucose both for the transmem
brane sugar transporter and for hexo
kinase are not known in human path
ophysiological conditions. Thus, con
siderable extrapolation is still
involved.

Nonetheless, first principles would
suggest that an increase of FDG up
take occurring in zones of mild ische
mia shows the long-term potential for
tissue viability, whereas in zones of
severe ischemia the depressed uptake
of deoxyglucose indicates a high risk
of necrosis. Thus, according to the
hypothesis linking glucose uptake and
ischemia (6), it should be possible to
predict which myocardial zones will
have reversible ischemia and which

will undergo necrosis according to the
pattern of extraction of fluorodeoxy
glucose. Studies relevant to this hy
pothesis in man have been summa
rized elsewhere (10). The crucial data
linking glucose extraction and myo
cardial blood flow, however, have
been missing.

FINDINGS WITH FDG AND MYO
CARDIAL BLOOD FLOW IN
DOGS

In this issue ofthe Journal, Kalffet
al. show that the uptake ofFDG meas
ured per unit of tissue after coronary
ligation in open-chest dogs increases
relative to that of the myocardial
blood flow as the latter falls (13). In
other words, ischemia induces a rela
tive rise in the glucose extraction, so
that the absolute level of uptake (ex
traction x blood flow) remains at nor
mal or near-normal levels (13). The
crucial observations are that in sam
ples with severe ischemia, FDG up
take decreased precipitiously. These
data confirm a threshold myocardial
blood flow value for maintenance of
glycolytic flux during ischemia. Since
it is known that such low flows are
often associated with irreversible is
chemia (14), it is tempting to propose
that the Kalffdata lend strong support
to the proposed hypothesis that a cru
cial factor in precipitating myocardial
cell necrosis is reduction of glycolytic
flux when the myocardial flow falls
beyond a critical value (6). In the dog,
this critical reduction of flow is in
rates about 20% of control levels, re
markably close to the 25% predicted
from the rat heart data. The Kalif
paper does not directly prove that it is
the fall in glycolytic flux that is the
cause ofthe cell necrosis; these crucial
data must still be collected. Kalff et
al. (13) measured neither glycolytic
flux nor cell necrosis. Although there
is a direct relation between a de
creased glycolytic flux and ischemic
contracture (4) and the latter is often
taken as an irreversible end-point of
ischemia, further work is required be
fore it can be ascertained that it is the
fall in glycolytic flux which is the cat
cial factor in precipitating cell death.
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FURTHER POSSIBILITIES FOR
PET IMAGING OF GLUCOSE
METABOLISM

Carbon-l 1-glucose is an infre
quently used tracer(15). It is a marker
of glucose carbon and therefore its
early expected fate is the formation of
CO2. In the normally oxygenated
myocardium, the most important cel
lular metabolic fate of glucose is gly
cogen rather than rapid oxidation
(16). When 11C-glucosecanbeimaged
in the myocardium late after its ad
ministration, a nonoxidative fate of
glucose is detected. Therefore, a com
parison of the images achieved with

@ C-glucose and I8fTJC@should show a
difference. For example, in the data
of Lammertsma et al. (15), the rela
tive values for uptake of FDG and
I â€˜C-glucose were 0.019 versus 0.0044

ml/g/min (p < 0.05) in normal sub
jects. Thus, it is possible by using both
FDG and â€˜â€˜C-glucoseto determine:
(1) the uptake of glucose by the myo

cardium (FDG), (2) the incorporation
of glucose into glycogen (â€˜â€˜C-glucose)
and (3) the flow of glucose along gly
colysis (FDG uptake less late tissue
recovery of â€˜â€˜C-glucose).It can be pre

dicted that the greater the glycolytic
flux in the tissue suspected to be is
chemic, the better the chances of sur
vival, a proposal that could be applied
to the hibernating heart.

Postanginal Carbohydrate Metabo
lism. In patients with stable exercise
induced angina, in the early recovery
phase, the regional uptake of both
FDG and â€˜â€˜C-glucoseis increased in
the postischemic myocardium with
close correspondence of the image
densities and distribution (Fig. 1), sug
gesting that a greater part of glucose
uptake is being incorporated into gly
cogen where the â€˜â€˜C-glucoseis prob
ably trapped. This concept is in agree
ment with the previously reported re
plenishment of glycogen in the
postischemic rat heart (1 7) and with
data from patients, including the
chemical determination of carbohy
drate oxidation (11,18).

Glucose Extraction Versus Fate. It
should be possible to further subdi
vide myocardial segments on the basis
of â€˜8FDGand â€˜â€˜C-glucosepatterns
into those that are taking up glucose,
those that are storing glycogen and
those with active glycolytic flux.

Studies along the above lines with
PET techniques and new tracers
should considerably advance our
knowledge of glucose metabolism in
the ischemic or hibernating myocar
dium and help to assess the validity of
the hypothesis linking continuing glu
cose metabolism and glycolysis to
myocardial cell viability in ischemia.
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True statements concerning hemoptysis include:

40. The majorcauseis bronchialinflammatorydisease(chron
ic bronchitis or bronchiectasis).

41. It is rarelycausedby carcinomametastaticto lung.
42. Thesiteof bleedingcan be detectednoninvasivelyby scm

tigraphy with either 99mTcsulfur colloid or 99mTc.iabeled
red blood cells.

43. Scmntigramsin patients with hemoptysis usually show
abnormal pulmonary activity within the first hour after
injection of the radiopharmaceutical.

44. A bleedingrateofatleast100mI/dayisneededfor local
ization of bleeding sites by scintigraphy.

ITEMS1-4:PulmonaryLymphangltlcCarclnomatosle
ANSWERS:1,T;2, F;3, F;4,T
Theventilationimagesin Figure10arenormal;the perfusionimages
showmanysmallandmedium-sizedefectsscatteredthroughoutboth
lungs. Many of the defects appear to outline bronchopulmonary seg
ments.Thisscintigraphicpatternis unusualfor acutepulmonaryem
bolismand hasbeendescribedin patientswithcancerwho haveautopsy
evidenceoftumormicroembolismandlymphangiticcarcinomatosis.The
patientshown herehad a historyof metastaticrectalcarcinomawithdif
fuseinterstitialinfiltrates.Nopulmonaryemboliwerefoundatangiography.

Pulmonarylymphangitic carcinomatosisis usuallycaused by tumor
microemboliwithsubsequentspreadoftumortothepulmonaryparen
chyma and lymphatics. The cause ofthe characteristic pattern of perfu
sion defects in which the perfusion abnormalities appear to outline the
segments Câ€˜contourmapping' â€˜)is controversial. Some investigators
b&e@@thefindingsaredueentirelytosmalltumormicroembolithatlodge
inthesmallerperipheralvesselswithsparingofthelarger,morecentral
segmentalandsubsegmentalarteries.Othersholdthattheremustbe
interstitial or parenchymal disease in addition to the pulmonary
microemboli.

A normalchestradiographisseeninapproximately20%ofpatients
with lymphangitic carcinomatosis. Other causes of similar perfusion
abnormalities include pulmonary vasculitis, primary pulmonary hyper
tension, and nonthrombotic emboli (fat, oil, or septic).
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ITEMS 5.9: DIstributIonofPulmonaryVentilationandPerfusion
ANSWERS:5,T@6, F; 7, 8, F;9, F
In upright subjects,there is increasingventilationfrom the apex to the
baseofthe lung.Similarly,dependentlungregionsventilatebestinsupine
patients.This dependence on gravity is mediated by the effectof lung

weight on the size of alveoliat end-expiration.The smaller distending
intrapleural pressure in the dependent lung zones results in smaller alveoli
at end-expirationand a larger change in alveolarvolume with inspira
tion. Thus,airflow is lowestin the apical portion of an upright patient's
lung. Gravitycauses increasing air and blood flow from apex to base
inuprightindividuals,butbecausethebloodflowgradientissteeperthan
the airflowgradient, the ratioof ventilationto perfusiondecreases.The
effectsofgravityaremodifiedbythe localinfluencesofairwaysresistance
andalveolarcomplianceMorecompliantalveoligenerateasmallerrecoil
force to empty the alveolus of gas and, hence, are slower to clear their
contentof xenonduring washout.Optimum gas exchangetakesplace
when the flow of air and blood is matched. In obstructive pulmonary
diseasealveolarhypoxiacausesprecapillaryvasoconstrictionto reduce
blood flow to poorly ventilated lung regions. This is a protective
mechanism,which tends to compensatefor reduced airflow by reduc
ing bloodflow,therebyimprovingregionalgasexchange.
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ITEMS 10-14: PathologicConditionsAffecting Pulmonary
Function
ANSWERS:10,1@11,F; 12,1@13,F; 14,F
Three significant respiratoryeventsfollow embolic obstruction of pul
monary arteries:(1)addition of a large alveolardead space; (2) pneu
moconstriction;and(3)lossofalveolarsurfactant.Pneumoconstriction
involvesthe terminalairwaysand is caused by severalfactors.Reduc
tion in thecarbondioxidetensionin theembolizedlungcausescon
strictionthat can be overcomeby deep inhalation.In addition, humoral
agents, such as serotonin and histamine which presumably are released
from platelets adhering to the embolus may also promote pneumo

(continued on page 1382)
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