
radionuclide concentrations (1 ). Therefore, the partial vol
ume effect will be manifest primarily as a scale distortion
on myocardial tissue time-activity curves. In contrast, the
cross contamination of measured signal between myocar
dial tissue and right or left ventricle blood-pool produces
tissue time-activity curves which are dramatically altered
in shape. These shape distortions are the result of mixing
two curves with very distinct kinetic properties (sharp
bolus blood curve and a slow temporally varying tissue
curve).

The difference between the two basic manifestations of
resolution distortions in PET studies can be seen in the
kinetic model parameter estimates from dynamic data.
The scale-related distortions (partial volume effect) pre
dominantly bias the uptake rate constant (K1) of kinetic
models. The shape-related distortions produce biases in
the kinetic rate constants which primarily describe the
retention and washout of the tracer from the tissue
(k2 . . . ku).

At the present time, the most serious efforts to correct
for the resolution distortion effects in kinetic PET studies
have been associated with methods for the measurement
of myocardial blood flow (11â€”15). In the mathematical
formulation of the equations used in each of these meth
ods, the measured PET signal is assumed to be a linear
combination ofthe myocardial and blood-pool tracer con
centrations. In the implementation of these methods, the
fractional contribution ofthe blood-pool to the PET signal
is either measured using equilibrium blood-pool studies
(11,15), calculatedbased upon the geometryof the heart
and tomograph resolution (13), or estimated as an addi
tional parameter in the model (12). In several of these
techniques, the myocardial tissue contribution to the PET
signal is also estimated as another parameter in the model
(11,12,15).

In an alternative method recently developed by Hutch
ins et al. (14), the blood-pool and myocardial tissue con
tribution to the measured PET signal are coupled through
the use of a single additional parameter in the mathemat
ical model fit to the measured data. In this paper, the
method developed by Hutchins et al. (14) is examined in
detail. This method reduces the bias introduced into Id

The distortions inherent in PET images of the human heart
due to finite image resolution and cardiac motion limit the
capability to evaluate physiology quantitatively. A method
based on a simple geometrical model of region of interest
representations in physical space has been developed to
minimize these distortions. In this paper, simulation studies
have been performed to evaluate the noise characteristics of
the method. This study demonstrates that unbiased estimates
ofkineticmodelparameterswhichdescribemyocardialphys
iology can be measured with an accuracy of 7%â€”i5% for
scale-related parameters and 4%â€”i6% for shape-related pa
rameters of kineticmodels in studies with the equivalent of 1
millionevents. Applicationof the techniques developed in this
paper for the measurement of myocardial blood flow in eight
dogs (14 independent flowstates) shows a strong correlation
with microsphere determined blood flow in the same animals
(slope = 1.022, intercept = â€”0.18, r = 0.96).

J NucI Med 1992; 33:1243â€”1250

istortion of myocardial PET images by finite image
resolution (PET scanner, cardiac, and respiratory motion)
represents a serious limitation to quantitative studies of
physiology and biochemistry (1â€”4).The resolution distor
tions are typically classified as the partial volume effect
and tissue:blood spillover (5â€”15).Manifestations of these
effects in dynamic studies of the heart are seen in the two
principal properties of the myocardial tissue time-activity
curves. These basic properties are the shape of the curve
and its scale. The partial volume effect results in an
underestimation of the radionuclide quantity in objects
which are less than approximately two times the recon
structed image resolution (3). In myocardial PET studies,
the wall ofthe left ventricle ranges from 0.8 cm to 1.2 cm
in thickness, resulting in significant loss of quantitative
information (5). Typical radionuclide concentrations cx
tracted from PET images are only 50%â€”70%of the true
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netic model rate constants by resolution distortions using
a simple geometric model of the volume representation of
a region of interest (ROl). The geometric model of the
ROl volume is reduced in complexity through the use of
assumptions regarding the tissue types which contribute
signal to this volume. Optimization of the ROl position
on heart images to meet the ROl model assumption has
been evaluated using PET simulation methods. Simulation
studies have also been performed to evaluate the influence
of myocardial wall thickness and image resolution on this
technique. Experimental verification of this ROl data
analysis strategy is presented using â€˜3NH3and radiolabeled
microsphere blood flow data measured in dogs.

MATERIALS AND METHODS

Geometric ROI Model
A simple model of the representationof an ROI in physical

space is the basis of the method which has been developed to
eliminate resolution distortions in myocardial PET studies (Fig.
1). The radionuclide concentration which is observed from the
placement of an ROl over a heart image (Cps-r(t))represents the
weighted sum of the radionucide concentrations for each tissue
type which occupies the volume.

N

CpE-@<t) =@ F1C1(t).

The weights in Equation 1 (F1)represent the fractions ofthe ROI
volumeoccupiedbythe @thtissuetype(C3(t)).Therefore,assuming
that the entire volume is occupied by a linear combination of
multiple tissue types,

@F1=l.0. Eq.2

The expressionin Equation 1 can be algebraicallymanipulated
to form an equationwhich relatesCpE@(t)to the true myocardial
tracer concentration (Cm(t)) and the blood-pool concentration
(C@(t)).

CpE-@(t)= FaCa(t) + FmCm(t) +@ FC1(t).

If we assume that the terms in the summation on the right hand
side of Equation 3 are negligible, then

CpE@<t)= FaCa(t) + FmCm(t). Eq. 4

In this expression,the terms Faand Fmrepresentthe spilloverof
blood-pool activity into the ROl and the fraction of the volume
which is occupied by myocardial tissue, respectively. Further
simplification of this model can be achieved by strategically
placing the ROI so that only myocardial tissue and blood pool
occupy the ROl volume. Therefore, the fraction of the ROI
volume that contains myocardium can be expressed in terms of
the fraction of the ROl volume that is blood pool.

From Equation 2,

Fml.OFaFi. Eq.5

If@ F = 0,

then Fm 1.0 â€”Fa. Eq. 6

Substitution of Equation 6 into Equation 4 yields a new expres
sion for the ROI tissue concentration (CpE-@(t)).

CpE-@-(t)= FaCa(t) + ( 1.0 â€”Fa)Cm(t). Eq. 7

Eq. 1 PET Simulations
A series of simulation studies was performed to evaluate the

error sensitivity of this myocardial data analysis strategy. The
simulation studies consist of generating dynamic heart image
data sets for predefined myocardial and blood kinetics, adding
pseudorandom noise to the image data sets to generate multiple
realizations, and fitting a kinetic model to the data to generate
estimates ofbias and variance in kinetic model parameter values.
The process begins by assigning user selected kinetic properties
to the blood pool and left ventricle ofa segmented heart phantom
model which mimics motion ofthe heart throughout the cardiac
cycle. The tissue and blood kinetics are integrated over the time
limits established by the scanning sequence and simulated radio
nuclide distributions are established. These distributions are input
into a PET scanner simulation routine producing PET image

Eq. 3 sinograms (16).

ROI Data Generation
To facilitatethe rapid production of multipledata set realiza

tions, an ROl method developed by Huesman was utilized (1 7).
Predefined ROIs were forward projected and filtered to form an
ROl sinogram.The ROl sinogramswerethen multipliedto the
emission sinograms and the results integrated to produce mean
values and standard deviations for each ROl position throughout
the simulated dynamic imaging sequence.

Multiple kinetic time-activity curve realizations were generated
by sampling Gaussian distributions with standard deviations
determined using the Huesman algorithm. For each defined ROI,
500 noisyrealizationsweregenerated.

Tissue and BlOOdKinetics
Several combinations of tissue and blood kinetics were exam

med to evaluate the properties of the myocardial data analysis
strategy. In all cases, the myocardial tissue kinetics were described
by a simple two-compartment model. The values assigned for the
rate constants are listed in Table 1. A continuously measured

N

PET
IMAGE

FIGURE 1. ROl representation in physicalspace. Placement
of an AOl on a low-resolutioncross sectional imagehas a true
volumerepresentation in space which is much larger than the
originallydefined ROl. The volume of this AOl is determined by
the three-dimensional resolution of the imaging device.
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0

FIGURE 3. Simulatedmyocardialtissuetime-activitycurves.
Each curve represents the convolutionof a two-compartment
mathematical model with the arterial blood curve. In each case,
the K1value is 1.0 ml/g/min. The k2values for each curve are (A)
1.0 min1, (B) 0.33 min1, (C) 0.20 min1, (0) 0.14 min1 and (E)
0.11 min1.

WallThickness Simulations
The effect ofmyocardial wall thickness on the ROI estimation

strategy was evaluated by estimating the fraction of the ROl
volume occupied by the blood pool at a point at which 95% of
the ROI volume was occupied by myocardial tissue and blood.

Fa+Fm0.95. Eq.9

@ F = 0.05. Eq. 10

Eq. 8 In this simulation, a step response function interface between
myocardial tissue and blood pool was assumed. The tomograph
resolution response function was Gaussian shaped with FWHM
values ranging from 4 mm to 14 mm. Myocardial wall thicknesses
ranging from 2 mm to 20 mm were simulated.

ExperimentalPETStudies
Data from eight open-chest anesthetized dogs (14 individual

flow states) were evaluated using the ROI strategy described in
this paper. Each dog had ammonia and radiolabeled microsphere
blood flow studies (20). The ammonia blood flow estimates were
calculatedusing a three-compartment model (14) with the K1
estimatesrepresentingmyocardialblood flow.A range of myo
cardial blood flows was created through pharmacologic stimula

FIGURE 4. AOldefinitions.Thedefinitionof theROlpositions
used in the simulationstudies starts in the left ventricleblood
pool (region1) and steps across the myocardium.Each AOlis
shaped likea sector of an annulusand has an area 1.1 cm2.The
solid circles on the plot represent the position of the center of
the AOl drawn over an image profile of the myocardium. Region
10 represents the conventional placement of an ROl which is
centered on the myocardium.

ConfigurationK1 (ml/g/min)k2(min1)BVA1.01.00.10B1.00.330.10C1.00.200.10D1.00.140.10E1.00.110.10F0.20.0220.10G0.60.0660.10H3.00.330.10I5.00.550.10

1@:

0 300 SOO â€¢oo 1200 1500

TIME (s)1800

.0

20 30

SCAN TIME (minut..)

10

I 10 II

REGIONNUMBER
REGION

TABLE 1
Stimulation Study Rate Constants

input function from an H2150 PET study performed in our
laboratory (18) was used as the arterial blood curve in the
simulations (Fig. 2). The simulated myocardial tissue time-activ
ity curves studied are shown in Figure 3. Ten percent of the
myocardial tissue was assumed to be occupied by vascular blood
(BY).

Parameter Estimation
Kinetic model parameters were estimated using a nonlinear

curve fitting method based upon the Marquardt algorithm (19).
Each ROI curve realization was fit with Equation 8:

CpE-@-(t)= ( 1 â€”Fa) ,f K)eâ€•2*0 C@(t)dt

In eachcase,the parametersK1,k2,and Fawereestimated.Mean
and standard deviationsfor 500 realizationsof each ROl curve
werecalculatedto assessthe biasand variancein modelparameter
estimates. The term Fa represents both the ventricle blood pool
as well as the vascular fraction ofthe myocardial tissue (14).

ROl Location
In each study,a seriesof ROIswasplacedacrossthe myocar

dium starting in the left ventricle blood-pool and projecting
radially outward across the epicardial surface of the heart (Fig.
4). Each ROl was shaped like a sector of an annulus and had an
area of 1.1cm2.This strategyfor the placementof ROIs enables
the assessment of the performanceof this method as a function
of ROl position.

(â€˜12

+ Fa J Ca(t) dt.

FIGURE 2. Arterialbloodcurve.Thiscurvewas derivedfrom
the continuousmeasurement of arterialbloodfollowinga bolus
injection of H2150 into a human subject.

Myocardial AOl Strategies â€¢Hutchins et al 1245
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proaching 1.0. These results clearly demonstrate that the
elimination of the resolution induced biases in K1 esti
mates is achieved at the expense ofincreasing the variance
of the K1 estimate. In regions that have a large blood
volume fraction (e.g., region 5), a positive bias in the K1
and k2 parameter estimates begins to appear. Histogram
plots ofthe K1estimates (Fig. 7) demonstrate that this bias
is a result of a skewed distribution of the K1 estimates
toward high K1 values. These results indicate that when
the blood volume fraction is high, an increased noise
sensitivity ofK1 to overestimates OfFa is observed relative
to the sensitivity of K1 to underestimates of Fa.

Figure 8 shows the relationship, which is observed be
tween the bias and the variance in the kinetic model
parameter estimates. Each data point in this plot represents
an ROl location. The data points with very small standard
deviations are near the epicardium and the points with
large standard deviations are near the endocardium.

The fraction ofthe ROl volume occupied by blood (Fa)
is plotted as a function of myocardial wall thickness in
Figure 9. Each of these data points represent a position at
which 95% of the ROl volume contained either myocar
dial tissue or blood-pool (i.e., background contribution to
the signal is 5%). The curves in Figure 9 represents results
for image resolutions ranging from 4 mm to 14 mm
FWHM. The coefficients ofvariation (COY) for the model
parameter estimates for each model configuration tested
are listed in Table 2. Comparison ofthe results in Table 2
with the data in Figure 9 enables the COY for kinetic
model parameters to be estimated as a function of wall
thickness and image resolution.

An example of the influence of the ROl position upon
estimates of K1 is shown in Figure 10. The solid circles in
each curve represent the measured ROl concentration and
the solid lines are the fit to the data. The microsphere
blood flow value calculated in this study was 1.24 ml/g/
mm. When an ROI is placed at a position which meets
the assumptions of the model described in the methods,
an unbiased estimate ofK1 is achieved (region A in Figure
10). For regions which are centered on the myocardium

S 10 12

ROl POSITION
S S 10

ROl POSITION
S 10

ROl POSITION
12

FIGURE 6. Onemillioneventsimulationresults.Thecurvesshowthemeanandstandarddeviationofthekineticmodelparameters
as a functionof ROlposition.Eachdata pointis based on 500 realizationsof myocardialimagingstudies contalningI millionevents.
These results are for model configuration A (K1= 1.0 mI/g/min; k2 = 1.0 min@).The solid lines in the K1and k2 plots represent the
true rate constant values in the simulation.

FIGURE 5. Noise-freesimulationresults.Thecurvesrepresent
the estimated K, (circles)and F8(squares) values as a function
of ROIposition.TheoriginalK1valueis 1.0 ml/g/min.Unbiased
K1valuesareobservedfor regions1â€”8.Significantbiasesin K1
are observed for all other regions.

tion with either dipyridamole or adenosine. Microsphere blood
flow was determined using the standard reference technique
developed by Heymann et al. (21). Further details of the experi
mental protocols for this study are described by Muzik et al. (20).

RESULTS

The performance of the ROI strategy described in this
paper in the absence of statistical noise is shown in Figure
5. The parameter estimatesfor K1 and F@are plotted as a
function of the ROl position. In this plot, ROl position 0
represents left ventricle blood pool (Fa 1.0) and ROl
position 20 is a point outside the epicardial surface of the
heart (F@= 0.0). Unbiased estimates of K1 are achieved
for ROIs which are located in the territory ofthe endocar
dium (regions 1â€”8).The blood volume estimates in this
territory range from approximately 0.5â€”1.0.As the regions
are moved across the midline of the myocardial wall and
extend toward the epicardial surface of the heart, signifi
cant biases in the K1 estimate become obvious. Figure 6
shows the mean and standard deviation in the parameter
estimates for studies which contain the equivalent of 1
million counts as a function of the ROl position. Results
for regions 1-4 are not presented because the problem
became ill-conditioned with blood volume fractions ap
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FIGURE 7. K1histograms.ThedistributionoftheK1estimates
for region 5 and region 7 are shown in Figure 6. The asymmetric
distribution for region 5 leads to a positive bias in the mean K1
estimate.

or placed toward the epicardial surface ofthe heart, signif
icant bias in the K1 estimates are observed (regions B and
C inFigure10).

The use of the ROI geometric model in the estimation
of myocardial blood flow in dogs is presented in Figure
11. The plots show the correlation between the estimated
blood flow and microsphere blood flow estimates. The
solid squares represent the kinetic estimates using the ROl
geometric model and the open squares represent the sim
ulation results for model configurations E-J in Table 1.
The slope ofthe relationship between the geometric model
method and microspheres is 1.022 (r = 0.96). The esti
mated errors in the simulation results are represented by
the error bars. These simulation results are presented in
Table 3.

DISCUSSION

The results of the present work support the hypothesis
that the resolution distortions (partial volume effect, spill
over) are the result of a single process and that correction
procedures do not need to be separated into multiple steps.
When the ROI volume contains only myocardial tissue
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FIGURE 9. Myocardialwall thicknesssimulationresults.The
fractionof the ROl volumewhich is occupied by blood (Fe)is
plotted agalnst the wall thickness of the myocardium for ROIs
that arepositionedso that 95% ofthe AOl volumecontainseither
myocardium or blood. Results are presented for PET image
resolutions ranging from 4 to 14 mm FWHM.

and blood, the distortion of measured time-activity curves
can be represented by a single term in the geometrical
model of a ROl (Eq. 7). Determination of this term, the
fraction of the ROl volume occupied by blood (Fa), by
either measurements or parameter estimation procedures
eliminates the resolution distortions in the kinetic data. In
Figure 5, the performance of this approach on noise-free
simulated PET data is presented. As the ROIs are placed
on the image data in positions which meet the assumptions
used to derive Equation 7, the bias in the scale parameter
(K1) ofthe model disappears. When pseudorandom noise

is added to the simulated PET data, it becomes evident
that the reduction of resolution induced biases in model
parameters is at the expense of increasing variance (Fig.
6). The plots in Figure 6 also demonstrate that positive
biases in the scale-related kinetic model parameters begin
to occur when the blood fraction of the ROl volume
becomes large. The distribution ofthe scale-related param
eter (K1) for ROIs with large Fa5 compared to ROIs with
well behaved parameter estimates is shown in Figure 7.
This plot demonstrates that as the blood volume fraction
becomes large, the noise sensitivity ofthe method is much
greater for overestimates of F,, then underestimates of Fa.
Therefore, the distribution of K1 estimates becomes
skewed toward the high values leading to a bias in the
mean value for multiple trials. The strong positive corre
lation between Fa and the scale parameter of the model,
which is imposed by the form ofEquation 7, is responsible
for the large variation in the kinetic model parameter
estimates when Fa becomes large. Thus, an obvious con
sequence is the tradeoff that must be made between bias
and variance in the scale-related model parameters. In
Figure 8, the bias in K1 is plotted against the standard
deviation of K1. Clearly an optimal ROI position can be
selected that minimizes the combined effects of bias and
variance. However, the selection ofan ROI strategy should
be based upon the objectives of the PET study. In studies
that compare physiology under altered states in a single
individual, it would be preferable to accept bias in param

FIGURE 8. Biasversusstandarddeviationin K1.The biasin
K1estimatesis plottedagalnstthe K1standarddeviationas a
function of ROI position for model configurations(A)(solid cirdes)
and (E) (open circles). The data polnts wfth low standard devia
tions represent the epicardial surface of the heart, while the high
standard deviations are In the endocardlal territory of the heart.
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eter estimates in order to enhance the sensitivity to changes
by decreasing the variance. On the other hand, if absolute
quantitative values are necessary, the increased variance
may be tolerated in order to eliminate bias. Nonetheless,
these alternatives can be balanced, yielding kinetic model
parameters that are essentially free of resolution distortion
bias and have acceptable levels of variance.

An important element of this method is the ability to
uniquely isolate the blood and tissue curve shapes in the
parameter estimation procedure. In Tables 2 and 3, the
COY of the parameter estimates are listed as a function of

the curve tissue shapes which were defined by the model
configurations in Table 1. Each of these studies is based
upon the noise equivalent of 1 million events. It is evident
that an optimal relationship exists between the shape of
the input function and the shape of the tissue curve for

the isolation ofscale related model parameters (K1).When
the tracer behavior is similar to an inert freely diffusible
substance with rapid tissue washout characteristics (model
A, Table 1),the blood and tissue curveshave similar shapes
and the kinetic isolation of the tissue and blood compo
nents of the measured data becomes difficult. This leads
to an increased variability in the kinetic model parameter
estimates. As the tissue curve shapes become more kinet
ically distinct from the blood curve shape, the kinetic
isolation of each component is more reliably determined.
This results in a decrease in the variance of kinetic model
parameters. In the simulation studies presented in this
paper, a constant equivalent of 1 million counts was used
in each imaging sequence. Therefore, as k2 became small
in the simulations, the scale ofthe blood curve was reduced
so that it contributed fewer counts to the study. This leads
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FIGURE 10. Nitrogen-i3-ammoniaregressionplots.Regressionplotsfor threeROl positionsin a singledog studyare shown.
The figureson the lefthand side demonstrate the relativeROIpositionon the myocardium.The estimated K1and F@values foreach
region are indicated in the top right hand corner of each plot. The microsphere determined blood flow in this study was 1.24 ml/g/
mm.
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ModelK1 (ml/g/mmn)k2(min1)F@F0.19

Â±0.010.022 Â±0.0040.55 Â±0.032G0.58
Â±0.050.067 Â±0.0040.55 Â±0.046E0.97
Â±0.100.11 Â±0.0050.55 Â±0.052H2.97
Â±0.460.33 Â±0.0150.55 Â±0.077I4.87
Â±0.620.55 Â±0.0300.55 Â±0.079

wall thickness limitations as a function of image resolu
tion. For example, if approximately 20%â€”25%COY rep
resent an acceptable upperlimit, then the maximum blood
volume fraction of an ROI volume must be in the 0.70â€”
0.75 range (actual limit is sensitive to the blood and tissue

tracer kinetics). In Figure 9, one can observe that this
blood volume fraction is achieved when the thickness of
the myocardium is approximately half the image resolu
tion (FWHM). Analysis ofregions where the wall thickness
is less than half the image resolution will probably lead to
highly variable results making the PET data very difficult
to interpret. In conventional PET data acquisition proto
cols (non-gated) the motion ofthe heart limits the effective
image resolution to approximately 10 mm FWHM. There
fore, it is anticipated that analysis of myocardial walls less
than 5 mm thick may require the use of cardiac gating in
order for optimal results to be achieved. Experimental
verification of these observations is required.

The data in Figures 10 and 11 demonstrate the elimi
nation of resolution induced bias in kinetic PET studies
ofthe heart using the ROl strategy described in this work.
The regression plots in Figure 10 demonstrate the ability
of this model to describe measured ROl tissue curves for
each of the ROl positions tested. The K1 estimate for
region A is equivalent to the microsphere measured blood
flow in this dog. In regions B and C, the assumptions of
the model description are not met resulting in underesti
mation of the K1 or blood flow value. The data in Figure
11 clearly show the high degree of correlation which is
achieved between the K1 estimates and microsphere deter
mined blood flow over a wide blood flow range in dogs
when optimized ROIs are utilized. Figure 11 also shows
the results ofthe PET simulation studies which predict the
observed experimental results.

The assumptions which must be met for the ROI strat
egy developed in this work to be successful dictate the
definition of ROIs which are heavily weighted by the
endocardium. This will result in a loss of sensitivity to
signal changes which occur predominately in the epicar
dium. The ramification of this loss of sensitivity is study
specific and must be evaluated for each class of study
performed.

CONCLUSION

The results of this study demonstrate the elimination of
resolution induced biases in kinetic model parameters for
the heart through the use of ROl data analysis strategies
and simple models of the ROI volume representation in
physical space. The removal of the resolution distortions
(partial volume effect and spillover) is achieved at the
expense ofincreasing the variance of individual parameter
estimates. In the application of these methods, careful
attention must be given to the objectives ofthe PET study
and the tradeoff between parameter estimate bias and
variance. Nonetheless, this study demonstrates that the
bias and variance can be balanced, yielding estimates of

C

E

E

Cl)
Ui
p.-
4

Iâ€”
(1)
lii

8

6

4

2

. Ki ESTIMATED
0 Ki SIMULATED

.

0 2 4 6 8
MICROSPHERE BLOOD FLOW (ml/g/mln)

FIGURE 11. Nitrogen-i3-ammoniaK1estimatesversusmicro
sphere blood flow. The estimated K1values for a series of eight
dogs (14 individual flow states) are plotted as a function of
microspheremeasured myocardialbloodflow.The solidlineis a
line of identity(slope = 1.0). The solid circles are the results
achieved using the ROl strategy. The open squares with error
bars represent the simulationresults for modelconfigurationsE
I (Table 1). A strong correlation between K1and the microsphere
bloodflowwas observed (slope= 1.022, intercept= â€”0.18,r =
0.96).

to an increased variability in the F@estimate and therefore
an increased variability in K1 estimates. This effect is
observed in Table 2. The properties of the ROI strategy
described in these results indicate that careful selection
among several potential tracers for a given application
based upon the relative tissue and blood kinetics may
significantly improve the estimation of kinetic model pa
rameters.

A common consequence of myocardial disease is the
loss ofcontractile function and subsequent thinning of the
myocardial wall. This phenomenon typically will increase
the distortions related to image resolution. The influence
of wall thinning upon the ROI data analysis strategy
described in this paper can be appreciated by examining
the data in Figure 9. As the wall ofthe myocardium thins,
the optimal ROI locations must be pushed further toward
the endocardial surface of the heart in order to meet the
assumptions of the ROl geometric model. Therefore, as
the blood fraction of the ROI volume (Fa) becomes large,
the variance in the scale related model parameter (K1)also
becomes large. Comparison of the data in Figure 9 with
the data in Table 2 enables the assessment of myocardial

TABLE 3
Simulation Study Parameter Estimates
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myocardial physiology that are essentially free of resolu
tion-related distortions.
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