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The use of SPECT to diagnose physiological alterations in
disease states depends on the potential of SPECT to provide
a quantitatively accurate reconstructed image. However, the
reconstructed values depend upon the shape and size of the
brain region as strongly as they depend upon true radioactivity
concentration. We report here the results of applying an
iterative reconstruction algorithm (IRA) to compensate for
shape- and size-dependence, as well as for attenuation and
scatter. The IRA is designed only for the reconstruction of
images for which the true radioactivity in the white matter
within the actual brain is negligible compared with the true
radioactivity in the grey matter within the actual brain. The
IRA incorporates an accurate three-dimensional model of
detector response and utilizes an MRI image which defines
the anatomical features of the brain being imaged by seg-
menting the grey, white and ventricular regions. It is the
assumption of radioactivity localization exclusively in the grey
matter which permits the efficient incorporation of the MRI
image. The IRA was validated by simulation studies that
utilized a slice through the basal ganglia in the realistic Hoff-
man three-dimensional mathematical brain model. FBP im-
ages deviate significantly from true radioactivity distribution,
whereas IRA images are nearly identical to true radioactivity
distribution, except for random fluctuations due to the pres-
ence of statistical noise. These results indicate that the appli-
cation of the IRA will permit SPECT to distinguish deficits due
to true physiological changes from apparent deficits due to
imaging/reconstruction artifacts.
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parallel-hole collimators, we have found apparent deficits
in the posterior parietal cortex (/). These apparent deficits
may be due to altered radioactivity localization or to
imaging/reconstruction artifacts. Interpretation of such an
image and diagnosis of a disease state will require deter-
mining whether the apparent cortical variability is due to
an underlying physiological cause or due to imaging/
reconstruction artifacts.

The quantitative potential of SPECT or PET for esti-
mating regional concentration of radioactivity is degraded
by inaccuracies in image reconstruction. In particular, a
shape- and size-dependent recovery coefficient, partial vol-
ume effects, resolution nonuniformity and scatter (2,3)
will, in many instances, cause two regions with identical
radioactivity concentration to appear to have significantly
different radioactivity concentrations in the reconstructed
image. Simulation studies (4,5) have shown that for a
uniform true distribution of radioactivity in grey matter,
there are apparent regional differences of radioligand lo-
calization caused by variation in the effective regional
thickness of cortical grey matter. This variation is the
result of different amounts of cortical infolding along the
circumference of the cortex. For example, the infolding is
greater at the frontal and occipital regions.

These apparent differences arise from the facts that: (a)
there is finite detector resolution and sampling and (b) an
incorrect reconstruction algorithm has been applied—that
is, the assumptions underlying the application of the fil-
tered backprojection (FBP) reconstruction algorithm are
not strictly valid. In order to compensate for items a and
b, we have developed an algorithm for the reconstruction
of grey matter images which incorporates both a realistic
model of the data collection process and the anatomical
information available in the high-resolution MRI image.

METHODS

Three-Dimensional Computer Simulation Procedure
The mathematical three-dimensional Hoffman brain model
(6) has a transaxial resolution of 1 mm and an axial spacing of 6
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mm. In order to represent the three-dimensional brain model at
a voxel resolution of 3 mm X 3 mm X 3 mm, we sampled every
third voxel within the transaxial slice, and then duplicated and
extended each transaxial slice to an axial length of 2 voxels.

The simulated projection data are built up as the successive
summation of projection data for each nonzero voxel (4,5). For
each nonzero voxel, the three-dimensional model of detector
response (measured using the Trionix Triad SPECT system with
UHR parallel-hole collimators) is multiplied by the voxel value,
translated according to the voxel position and summed into an
array containing the accumulated simulated projection data.
Symbolically, a nonzero voxel at position (i,j,k) contributes
OBIJ(ij,k)3-DPSF(i’-i,)’-j,k’-k) to PROJ(i’,j’,k’), where PROJ is
the simulated projection data and OBJ is the mathematical
radioactive object. This computation is object-driven. We used
an analytical expression for the 3-DPSF which explicitly included
the distance- and depth-dependence of the amplitude A and the
standard deviation ¢ (5).

When attenuation was included in the simulation, the method
for simulating the projection data was modified by multiplying
the voxel value by an attenuation factor. The attenuation factor
was computed using a constant attenuation coefficient equal to
0.15 cm™' and an attenuation path length equal to the distance
between the voxel and the boundary of the attenuating medium,
along a line perpendicular to the detector face. When attenuation
was included in the simulation, the FBP reconstructed image was
corrected for the attenuation effects with Chang’s first-order
method (7) using an effective attenuation coefficient equal to
0.12 cm™' because of the presence of scatter in all of the simula-
tions in which we included attenuation (8,9).

Scatter was represented as the sum of two Gaussian compo-
nents (5). When scatter was included in the simulation, three
separate simulations were performed, one for the detector re-
sponse and two for the scatter, and the projection data from each
of the three simulations were added together prior to the addition
of noise or reconstruction (5). When noise was included in the
simulation, the projection data were scaled to the desired number
of acquired counts, and Poisson noise was computed using the
rejection method (5,/0).

Brain Models

Based upon the mathematical brain model of Hoffman et al.
(6), we utilized three different “true” distributions of radioactiv-
ity: (a) a uniform cortical grey matter radioactivity distribution
(Fig. 1A), (b) a 30% right parietal cortical deficit (Fig. 1B) and (c)
a “sinusoidal” brain model (Fig. 1C), in which the radioactivity
in the grey matter voxels was set equal to 1 + A
sin(Bx+C)sin(Dy+E) for the voxel at location (x, y). We selected
A =0.3,B =D =0.28 rad voxel™' and C = E = 0 voxel™'. A
circumferential path through the cortical grey matter (Fig. 1D)
was used for determining which voxels would be included in the
circumferential profiles (see Data Analysis).

FBP

The projection data were reconstructed as previously described
(4,5). FBP using a Hamming filter with cutoff frequency 0.12
mm~' (0.36 pixel™') was utilized for reconstruction.

IRA

The IRA was applied to an image in which the radioactivity
distribution is restricted to the grey matter. The data sets required
for the IRA are shown in Figure 2. The “true” radioactivity
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FIGURE 1.
ganglia chosen from the three-dimensional Hoffman brain mode!
(6) indicating uniform distribution of radioactivity throughout the
grey matter (A), right parietal cortical deficit brain model (B),
sinusoidal brain model (C), and circumferential path through the
cortical grey matter (D). For display purposes, each brain image
was normalized to its own maximum.

Digitized transverse slice at the level of the basal

distribution resulted in a set of “measured” projection data, which
were computed using the three-dimensional simulation procedure
(5). For simulations with noise, the projection data were scaled
to a desired level of acquired counts, and Poisson noise was added
to the scaled projection data. Poisson noise was computed using
the rejection method (/0). The measured projection data corre-
sponded to physically observable projection data and were sub-
sequently reconstructed using FBP. When FBP was used as an
internal part of the IRA, no attenuation correction was applied.

Grey matter voxels in the corresponding grey matter voxel
(“GMV”) image [grey matter voxels in the MRI image were
defined as the grey matter voxels in the Hoffman brain model
(6)] were set to an initial estimate. For example, all grey matter
voxels may be set equal to a constant and, throughout the entire
IRA process, all nongrey matter voxels were set to 0. The projec-
tion data arising from GMYV radioactivity distribution defined by
this initial guess were computed using the three-dimensional
simulation procedure. When this simulation included attenuation
and/or scatter, then simulation of the projection data within the
IRA also included attenuation and/or scatter. Attenuation and/
or scatter were thus implicitly included within the IRA, which
therefore directly compensated for these degrading factors with-
out any additional correction factors, such as the Chang atten-
uation correction algorithm (7).
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The IRA may be summarized as follows: At each iteration,
each of the grey matter voxels (as defined by GMV distribution)
within the FBP reconstruction from the measured projection data
was compared with the corresponding voxel within the FBP
reconstruction from the noiseless simulated projection data (see
Fig. 2), and from these values the corresponding voxel within the
GMYV distribution was updated using Equation 4 below. A new
set of noiseless projections (as well as a set of projections with
noise) was formed from the GMV distribution with the three-
dimensional computer simulation procedure, and from this a
new reconstruction was generated by the FBP, representing the

- updated reconstruction from the simulated projection data. This
procedure was repeated through multiple iterations. The final
GMYV distribution was considered to represent the reconstruction
of the true distribution.

The root-mean-square (RMS) error in the reconstructed image
due to the added Poisson noise was computed as

RMSM = lzi(i:my mamr)(si‘Ui)z/n}'s, Eq 1

where s; and u; represent the i*" voxels in the FBP reconstructed
image derived from the noisy and from the noise-free simulated
projection data, respectively, and n is the number of grey matter
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voxels. The RMS error in the reconstructed image due to both
Poisson noise and deviations of the initial guess from the true
radioactivity distribution was computed as

RMS;ucss = {Siciegrey manen(Ui-Vi)?/n} -3, Eq.2

where v; represents the i grey matter voxel in the FBP recon-
structed images derived from the true radioactivity distribution.
A relaxation factor, «, was computed as

a = (1 = RMSp0s/RMSpen)/2, Eq.3

The purpose of a is to prevent the iteration from reducing
RMS;,cs below RMS,is, the Poisson noise in the reconstructed
image (for noiseless simulations, a = 0.5). For the i** grey matter
voxel m; within the GMV image, the current guess (for the j**
iteration) of the radioactivity value, m;J, was upgraded by the
formula

mi*' = mj [(vi/ui — 1) o + 1], Eq.4
where the superscripts are not exponents but are the iteration
numbers. The values of RMSit. and RMSit),. were recalculated
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at each iteration as

RMS:;:* = Izi(itgrey maller)(sj“‘uljﬂ)z/n"s Eq' 5
RMS";;; = ‘zi(i.uey ,.,.“,,,(u.j*'-vi)z/n} -3 Eq. 6

and the value of o’*' was recalculated at each iteration as
o*! = (1 — RMSiH/RMSiti)/2. Eq.7

In our initial studies, we found that each iteration reduced the
difference (RMSjil — RMSitk.) to approximately one-half of the
previous difference (RMS/ues — RMSh0is). Since our goal was to
stop when RMS}iL = RMSitk., we performed approximately 10
iterations, which reduced the difference (RMS!% — RMS3...) to
approximately 0.1% of the difference (RMS%uess = RMS%oisc).
The output of the IRA is the final updated GMYV distribution
defined as in Equation 4.

The IRA is based upon the idea that both the projection and
reconstruction processes are linear, so that for the i*" grey matter
voxel the ratio of its radioactivity values in the GMV guess/true
radioactivity distribution=u;/v;. That is, the ratio in the FBP
reconstructed image space is an approximation of the ratio in the
original object space. With other iterative approaches (such as
maximum likelihood or ART), the residual errors in the projec-
tion data are used to correct the estimate of the true radioactivity
distribution. In comparison, the advantage of using the IRA is
that residual errors are localized to a specific voxel in the image
rather than distributed along the large number of image voxels
which contribute to a given voxel in the projection data. However,
because of the existence of noise, we cannot apply the entire
amount of correction, but rather require a damping factor a.

In some studies, we applied the IRA to an isolated slice, and
in other studies we applied the IRA to a slice within the full
three-dimensional brain model. In the latter case, a simplification
was required because of the excessive computational time re-
quired using our microcomputer: The true distribution of radio-
activity within the grey matter of all the slices other than the
selected slice was uniform; only the selected slice had an unknown
radioactivity distribution to be reconstructed. The true radioac-
tivity distribution within the selected slice was either the right
parietal cortical deficit model (Fig. 1B) or the sinusoidal model
(Fig. 1C). In the three-dimensional simulations, we utilized a 9-
mm thickness for the selected slice and scaled the projection data
for this slice (equal to the sum of the projection data originating
within the slice plus the projection data originating from within
neighboring slices) to 2.0 X 10° counts prior to the addition of
Poisson noise. The simulation also included attenuation and
scatter effects.

Because of the three-dimensional detector response and scatter,
some of the counts originating from the neighboring slices will
be detected within the projection data for the selected slice.
Approximately 52.4% of the counts within the projection data
for the selected slice had originated as nonscattered counts from
within the projection data for the selected slice had originated as
nonscattered counts from within the selected slice; the remainder
of the counts arose from the convolution of radioactivity outside
of the selected slice with the three-dimensional detector response
function (17%), or from scatter originating within (2.6%) or
outside (28%) the selected slice. Because preliminary results in-
dicated convergence by approximately the fourth iteration when
we applied the IRA to a slice within the full three-dimensional
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brain model in the presence of noise, we stopped the IRA after
the fourth iteration.

Data Analysis

Circumferential cortical profiles were determined as described
previously (4,5,11) using the circumferential path drawn on the
theoretical map of grey matter. Data obtained using circumfer-
ential profiles were normalized such that their means were equal
to unity.

Scatter plots of the relative % errors were obtained by nor-
malizing the FBP and IRA reconstructed images and the true
radioactivity distribution to a mean of unity prior to subtraction
of the true radioactivity distribution from the reconstructed im-
ages.

Convergence of the IRA was examined for the sinusoidal
model either as an isolated single slice in the absence of attenua-
tion and scatter, or as a slice embedded within a three-dimen-
sional brain in the presence of three-dimensional detector re-
sponse, attenuation, scatter and noise. The true radioactivity
distribution and the GMYV guess at each iteration were individ-
ually normalized to a mean of unity. The value in each grey
matter voxel of the normalized true radioactivity distribution was
then subtracted from the corresponding voxel of the normalized
GMYV guess and the RMS error, RMS,.,., computed from these
differences:

RMS’ true = tzi(icwy mmer)(mnj'ti)z/ n} '5, Eq. 8

where t; represents the i voxel in the true image. Before subtrac-
tion, m? and t; are first normalized so that the means over all
grey matter voxels are equal to unity.

RESULTS

Isolated Two-Dimensional Brain Slice

To demonstrate the convergence properties of the IRA,
we have computed two different measures of the error in
the current IRA estimate of true radioactivity distribution:
RMS;,..«s (Equation 6) and RMS,... (Equation 8). RMS;,,.
cannot be determined in a real imaging situation, since
the true radioactivity distribution would need to be known;
thus RMS;,.c must be used as an approximation to
RMS;.... For an isolated sinusoidal brain slice, RMS,.,. has
converged by the ninth iteration (Fig. 3). Thus, we chose
to terminate the IRA at the ninth iteration for isolated
two-dimensional brain slices. The value of « (Fig. 3) tends
to decrease with increasing iteration numbers. RMS,i.
(Equation 5) is essentially independent of iteration number
(not shown).

To demonstrate the quantitative accuracy of the IRA,
we reconstructed noise-free simulated projection data for
a uniform cortical grey matter radioactivity distribution
(Fig. 1A) and for a right parietal cortical deficit model (Fig.
1B), using FBP (Fig. 4A) or IRA (Fig. 4B) (not shown for
the uniform model). FBP of both models resulted in
circumferential cortical profiles that exhibited 2- to 3-fold
cortical variations (Fig. 4C), although (except for the deficit
in the right parietal cortex deficit model) these profiles
should theoretically be constant. The deficit in the deficit
model is discernible when a comparison is made against
the uniform model (Fig. 4C). In practice, however, the
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FIGURE 3. Convergence of the IRA applied to an isolated
brain slice or a brain slice embedded within the three-dimensional
brain for the sinusoidal brain model.

reconstructed image resulting from the exactly matching
uniform model will not be available for this comparison,
and the trough due to the deficit will not be distinguishable
from normally-occurring troughs due to normal variations
in effective cortical thickness. In contrast, for the IRA, the
circumferential profiles for both the uniform and deficit
models were constant, except for the expected 30% deficit
in right parietal cortex for the deficit model (Fig. 4D).
These results show that IRA can compensate for variations
due to imaging artifacts to permit the quantitation of
physiological variations.

The simulated projection data for the deficit model were
scaled to a total of 500,000 counts/slice, and Poisson noise
was added to the scaled projection data. The noisy projec-
tion data were reconstructed using IRA (Fig. 4E). A com-
parison of the circumferential profiles of the noisy IRA
reconstructed image and the theoretical image (Fig. 4D)
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FIGURE 4. Noise-free FBP reconstructed image (A) and noise-free IRA reconstructed image (B) for the right parietal cortical deficit
model, circumferential profiles for FBP for the uniform and right parietal cortical deficit models (C), circumferential profiles for IRA (D)
and noisy IRA reconstructed image (E). In (C), because of the large degree of agreement, it is difficult to distinguish the circumferential
profiles for the FBP from the uniform and deficit models, except in the region of the deficit. In (D), because of the large degree of
agreement, it is difficult to distinguish the noise-free IRA and the theoretical circumferential profiles. In (C), FC, TC, PC, OC denote
frontal cortex, temporal cortex, parietal cortex and occipital cortex, respectively.
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indicates the accuracy of the IRA even in the presence of
a realistic level of statistical noise.

The brain model containing a single deficit is rather
oversimplified. We therefore simulated a sinusoidal brain
model (Fig. 1C) in the absence of noise, using both FBP
(Fig. 5A) and IRA (Fig. 5B). Deviations in the FBP recon-
structed image can be demonstrated quantitatively by
comparison of the circumferential profile with the theo-
retical circumferential profile (Fig. 5C). The accuracy of
the IRA reconstructed image can be demonstrated quan-
titatively by comparison of the circumferential profile with
the theoretical circumferential profile (Fig. 5D).

The simulated projection data for the sinusoidal model
were scaled to a total of 500,000 counts/slice, and Poisson
noise was added to the scaled projection data. The noisy
projection data were reconstructed using IRA (Fig. SE). A
comparison of the circumferential profiles of the noisy
IRA reconstructed image and the theoretical image (Fig.

5D) indicates the accuracy of the IRA even in the presence
of a realistic level of statistical noise.

Brain Slice Within a Three-Dimensional Brain Model

For the brain slice embedded within a three-dimensional
brain, RMS,,,. had converged by the fourth iteration (Fig.
3). Thus, we chose to terminate the IRA at the fourth
iteration for brain slices embedded within a three-dimen-
sional brain. The value of « (Fig. 3) tends to decrease with
increasing iteration numbers. RMS, . (Equation 5) is
essentially independent of an iteration number (not
shown).

A comparison of the noise-free attenuation-corrected
FBP (Fig. 6A) and the IRA (Fig. 6B) reconstructed images
for the right parietal cortical deficit model indicates the
superiority of the IRA. Circumferential profiles (Fig. 6C)
quantitatively indicate the superiority of the IRA. Simi-
larly, a comparison of the noise-free attenuation-corrected

C = true for sinuscidal model
e FBP for sinusoidal model
g 1.5 1
=]
P .
05 T T v
0 20 40 60 80
SAMPLING POINT ALONG
CIRCUMFERENTIAL PROFILE

NORMALIZED COUNTS

FIGURE 5. Noise-free FBP reconstructed image (A) and noise-free IRA reconstructed image (B) for the sinusoidal brain model,
circumferential profiles for FBP (C), circumferential profiles for IRA (D) and noisy IRA reconstructed image (E). In (D), because of the
large degree of agreement, it is difficult to distinguish the noise-free IRA and the theoretical circumferential profiles.
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FIGURE 6. Noise-free FBP reconstructed image (A) and noise-
free IRA reconstructed image (B) for the right parietal cortical
deficit model in the presence of an out-of-slice contribution (“3-
D"), attenuation (“A”), and scatter (“S”) in the projection data, and
circumferential profiles for the true image, FBP and IRA (C). The
FBP image was corrected for attenuation (“AC”) using the Chang
method (7) with an attenuation coefficient of 0.12/cm (8,9). In
(C), because of the degree of agreement, it is difficult to distin-
guish the noise-free IRA and the theoretical circumferential pro-
files.

FBP (Fig. 7A) and the IRA (Fig. 7B) reconstructed images
for the sinusoidal as well as scatter plots (Figs. 7C-D)
quantitatively indicate the superiority of the IRA.

A comparison of the noisy attenuation-corrected FBP
(Fig. 8A) and the IRA (Fig. 8B) reconstructed images for
the right parietal cortical deficit model indicates the supe-
riority of the IRA. Circumferential profiles (Fig. 8C) quan-
titatively indicate the superiority of the IRA. Similarly, a
comparison of the noisy attenuation-corrected FBP (Fig.
9A) and the IRA (Fig. 9B) reconstructed images for the
sinusoidal model again indicates the superiority of the
IRA. Scatter plots (Fig. 7C, 9C) again quantitatively indi-
cate the superiority of the IRA.

Except for the region containing the deficit, the FBP
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FIGURE 7. Noise-free FBP reconstructed image (A) and noise-
free IRA reconstructed image (B) for the sinusoidal model in the
presence of an out-of-slice contribution, attenuation and scatter
in the projection data, and scatter plots for FBP (C) and IRA (D)
versus the true image. The FBP image was corrected for atten-
uation using the Chang method (7) with an attenuation coefficient
of 0.12/cm (8,9).

reconstructed values for the right parietal cortical deficit
model in the absence of noise deviate significantly from
the true values in a manner which reflects anatomical
variations (compare Figs. 1D and 6C). A scatter plot of
the relative % errors in 1,111 grey matter voxels (omitting
the 20 voxels within the deficit region) in a noise-free FBP
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FIGURE 8. Noisy (“N") FBP reconstructed image (A) and noisy
IRA reconstructed image (B) for the right parietal cortical deficit
model in the presence of an out-of-slice contribution, attenuation
and scatter in the projection data, and circumferential profiles for
the true image, FBP and IRA (C). The FBP image was corrected
for attenuation using the Chang method (7) with an attenuation
coefficient of 0.12/cm (8,9).

reconstructed image (horizontal axis) and the relative %
errors in a noisy IRA reconstructed image (vertical axis)
for the right parietal cortical deficit model indicates that
there is an insignificant dependence of the errors in the
IRA image upon the errors in the FBP image (Fig. 10).
Since the errors in the FBP image represent the effects of
anatomical variation, the insignificant correlation (r =
0.071) indicates that the IRA has removed the effects of
anatomical variation from the reconstructed image. The
wider spread of the errors for FBP in the absence of noise
(—=50% to +40%) than for the IRA in the presence of noise
(—20% to +20%) indicates the superior quantitative ac-
curacy of the IRA.

noise is not shown, since it was nearly identical with that for FBP
in the absence of noise (Fig. 7C). The FBP image was corrected
for attenuation using the Chang method (7) with an attenuation
coefficient of 0.12/cm (8,9).
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FIGURE 9. Noisy FBP reconstructed image (A) and noisy IRA
reconstructed image (B) for the sinusoidal model in the presence
of an out-of-slice contribution, attenuation and scatter in the
projection data, scatter piot for IRA versus the true image (C)
and scatter plot for noise-free IRA plus added Poisson noise (D).
The scatter plot for (D) was computed to show that the broad-
ening of the scatter plot in the presence of noise in comparison
with the scatter plot in the absence of noise (Fig. 7D), which
resulted primarily from the statistics of the noise rather than from
a degradation of the accuracy of the IRA in the presence of noise.
The noise was added to the noise-free IRA scatter plot using the
rejection method (70) based upon the total counts in the projec-
tion data equal to 2 X 10° and the fact that 52% of the counts in
the projection data were nonscattered counts originating from
within the slice to be reconstructed and the “naive prediction” of
Budinger et al. (72). The scatter plot for FBP in the presence of
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FIGURE 10. Scatter plot of the relative % errors in 1,111 grey
matter voxels (omitting the 20 voxels within the deficit region) in
a noise-free FBP reconstructed image in the absence of an out-
of-slice contribution, attenuation, or scatter (horizontal axis) and
the relative % errors in a noisy IRA reconstructed image with the
same parameters (vertical axis) for the right parietal cortical deficit
model. The errors in the FBP image represent the effects of
anatomical variation, so that the insignificant correlation (r =
0.071) indicates that the IRA has removed the anatomical varia-
tion effects from the reconstructed image.

DISCUSSION

Cortical circumferential profiles demonstrate that FBP
reconstructed images can exhibit significant quantitative
deviations from the true radioactivity distribution for a
uniform (Fig. 4C), deficit (Fig. 4C) and sinusoidal (Fig.
5C) model. In particular, the apparent deficits in the
simulated reconstructed image of the uniform model (Fig.
4C) indicate that it may be difficult to interpret an appar-
ent deficit in a physically measured human brain image as
resulting from a true radioactivity deficit or from an
imaging artifact. In order to compensate for these degra-
dations, we have developed the IRA, which utilizes a
realistic model of the data collection process.

The IRA is designed for the reconstruction only of grey
matter images. These images must be acquired at a time
when true radioactivity in the white matter within the
actual brain is negligible compared with true radioactivity
in the grey matter. The IRA incorporates an accurate
model of the three-dimensional detector response and
utilizes an MRI image which defines the anatomical fea-
tures of the brain being imaged by segmenting the grey,
white and ventricular regions. It is the assumption of
radioactivity localization exclusively in the grey matter
that permits the efficient incorporation of the MRI image.

For both the two- and three-dimensional models, in the
presence or absence of attenuation, scatter and noise, the
IRA reconstructed images are much closer to the true
radioactivity distribution, and the ambiguity of interpret-
ing a deficit as being real or artifactual is removed. Al-
though the reconstructed IRA image will allow us to
diagnose a deficit as arising from a true physiological
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change, because of its random nature statistical noise
cannot be compensated for by the IRA, and its presence
prevents the IRA from providing a perfect compensation
for finite detector response. Noise thus represents a fun-
damental limitation of our ability to determine the image
in a quantitatively accurate manner.

These simulation studies and the IRA incorporated
several unique features: (a) the application of realistic
three-dimensional distance- (between the source of radio-
activity and the detector) and depth- (between the source
of radioactivity and the boundary of the scattering me-
dium) dependent detector response function; (b) the ap-
plication of the realistic Hoffman mathematical three-
dimensional brain model; and (c) a high-resolution MRI
anatomical image was used in order to compensate for
artifacts due to anatomical variations.

Since we have not presented a rigorous mathematical
proof of the convergence of the IRA, the method’s validity
is demonstrated by the empirical results presented in this
paper. These results are sufficient to show that realistic
grey matter radioactivity distribution can be accurately
estimated using the IRA. In a recent paper (/3), an alter-
nate iterative reconstruction method was applied to real-
istic simulated projection data derived from the mathe-
matical Hoffman brain model (6) in the absence of scatter
and noise, and in the presence of attenuation and distance-
dependent detector response. This method (three-dimen-
sional maximum likelihood-EM) resulted in a % RMS
error which was similar to that for FBP. Since we have
shown here the superiority of IRA over FBP, we conclude
that the IRA is also superior to three-dimensional maxi-
mum likelihood-EM. In a second recent paper (/4), an
EM algorithm was applied iteratively to measured three-
dimensional Hoffman physical phantom projection data
in the frequency domain, again utilizing a distance-de-
pendent detector response. Quantitative results were not
presented; however, the visual appearance of the recon-
structed images was similar to that for FBP. We are not
aware of other simulation studies using an iterative recon-
struction method applied to a realistic brain model and a
realistic detector response function. Three recent reports
have appeared in which high-resolution anatomical infor-
mation was incorporated during the reconstruction of
emission tomographic images (15-17).

When the IRA is applied to a real brain image rather
than to a simulated brain image, a high-resolution MRI
anatomical image is needed in order to compensate for
artifacts due to anatomical variations. The anatomical
images will need to be segmented into grey matter regions
and registered with the SPECT images. This study did not
utilize an actual MRI image but assumed instead that the
true shape of the grey matter distribution, as well as the
exact nature of the detector response, attenuation and
scatter were precisely known a priori. The simulated re-
constructions presented here were therefore more accurate
than could be achieved when imaging a real brain using
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an experimentally acquired MRI image with imperfect
segmentation and registration.

ACKNOWLEDGMENTS

H.

The authors would like to thank Drs. Frank B. Atkins, Murray

Loew and Frederic H. Fahey for useful discussions and sug-

gestions. This work was supported by a grant from the National
Institutes of Health (NS22215) and, in part, by a grant from the
Department of Energy (DE FGO5 88ER60649).

REFERENCES

Kim HJ. Quantitative accuracy of single photon emission computed to-
mography in neuroimaging by computer simulation. DSc dissertation,
George Washington University. 1991.

. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission

computed tomography. 1. Effect of object size. J Comput Assist Tomogr
1979;3:299-308.

. Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quan-

titative measurements using camera-based single photon emission com-
puted tomography (SPECT). IEEE Trans Nucl Sci 1981;28:69-80.

. Kim HJ, Zeeberg BR, Fahey FH, Bice AN, Hoffman EJ, Reba RC. Three-

dimensional SPECT simulations of a complex three-dimensional mathe-
matical brain model and physical measurements of the three-dimensional
physical brain phantom. J Nucl Med 1991;32:1923-1930.

. Kim HJ, Zeeberg BR, Fahey FH, Hoffman EJ, Reba RC. 3D SPECT

simulations of a complex 3D mathematical brain model: effects of detector
response, attenuation, scatter, and statistical noise. I[EEE Trans Med Imag
1992:in press.

. Hoffman EJ, Cutler PD, Digby WM, Mazziotta JC. 3-D phantom to

1234

simulate cerebral blood flow and metabolic images for PET. IEEE Trans
Nucl Sci 1990;37:616-620.

. Chang LT. A method for attenuation correction in radionuclide computed

tomography. /JEEE Trans Nucl Sci 1978;NS-25:638-643.

. Harris CC, Greer KL, Jaszczak RJ, et al. Tc-99m attenuation coefficients

in water-filled phantoms determined with gamma cameras. Med Phys
1984;11:681-685.

. Jaszczak RJ, Floyd CE, Coleman RE. Scatter compensation techniques for

SPECT. IEEE Trans Nucl Sci 1985;32:786-793.

. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes

in C: the art of scientific computing. Cambridge: Cambridge University
Press; 1988:221-223.

. Links JM, Loats HL, Holcomb HH, Loats SE, Stumpf MJ, Wagner HN

Jr. Cortical circumferential profiling: an objective approach to cortical
quantification in emission tomography [Abstract). J Nucl Med 1989;30:
816.

. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH.

Quantitative potentials of dynamic emission computed tomography. J
Nucl Med 1978;19:309-315.

. Gilland DR, Jaszczak RJ, Bowsher JE, et al. Quantitative SPECT brain

imaging: effects of attenuation and detector response. IEEE NSS Confer-
ence Record 1992:in press.

. Zeng GL, Gullberg GT. Frequency domain implementation of the three-

dimensional geometric point response correction in SPECT imaging. /[EEE
NSS Conference Record 1992:in press.

. Chen C-T, Ouyang X, Wong WH, Hu X. Improvement of PET image

reconstruction using high-resolution anatomic images. IJEEE NSS Confer-
ence Record 1992:in press.

. Politte DG, Snyder DL. Image reconstruction for positron-emission to-

mography when anatomical boundaries are known. IEEE NSS Conference
Record 1992:in press

. Kim HJ, Zeeberg BR, Reba RC. Iterative reconstruction algorithm which

incorporates a high resolution anatomical image: simultaneous correction
for 3-D detector response, attenuation, and scatter in SPECT neuroreceptor
imaging. /JEEE NSS Conference Record 1992:in press.

The Journal of Nuclear Medicine ¢ Vol. 33 ¢« No. 6 ¢ June 1992





