
parallel-hole collimators, we have found apparent deficits
in the posterior parietal cortex (1). These apparent deficits
may be due to altered radioactivity localization or to
imaging/reconstruction artifacts. Interpretation ofsuch an
image and diagnosis of a disease state will require deter
mining whether the apparent cortical variability is due to
an underlying physiological cause or due to imaging/
reconstruction artifacts.

The quantitative potential of SPECT or PET for esti
mating regional concentration of radioactivity is degraded
by inaccuracies in image reconstruction. In particular, a
shape- and size-dependent recovery coefficient, partial vol
ume effects, resolution nonuniformity and scatter (2,3)
will, in many instances, cause two regions with identical
radioactivity concentration to appear to have significantly
different radioactivity concentrations in the reconstructed
image. Simulation studies (4,5) have shown that for a
uniform true distribution of radioactivity in grey matter,
there are apparent regional differences of radioligand lo
calization caused by variation in the effective regional
thickness of cortical grey matter. This variation is the
result of different amounts of cortical infolding along the
circumference of the cortex. For example, the infolding is
greater at the frontal and occipital regions.

These apparent differences arise from the facts that: (a)
there is finite detector resolution and sampling and (b) an
incorrect reconstruction algorithm has been appliedâ€”that
is, the assumptions underlying the application of the ff1-
tered backprojection (FBP) reconstruction algorithm are
not strictly valid. In order to compensate for items a and
b, we have developed an algorithm for the reconstruction
of grey matter images which incorporates both a realistic
model of the data collection process and the anatomical
information available in the high-resolution MRI image.

METHODS

Three-Dimensional Computer Simulation Procedure
The mathematical three-dimensionalHoffman brain model

(6) hasa transaxialresolutionof 1mm and an axial spacingof 6

The use of SPECT to diagnose physiological alterations in
disease states depends on the potential of SPECT to provide
a quantitativelyaccurate reconstructed image. However, the
reconstructed values depend upon the shape and size of the
brainregionas stronglyas they depend upon true radioactivity
concentration. We report here the results of applying an
iterative reconstruction algorithm (IRA) to compensate for
shape- and size-dependence, as well as for attenuation and
scatter. The IRAis designed only for the reconstruction of
images for which the true radioactivity in the white matter
within the actual brain is negligible compared with the true
radioactivityin the grey matter within the actual brain.The
IRA incorporatesan accurate three-dimensionalmodel of
detector response and utilizes an MRI image which defines
the anatomical features of the brain being imaged by sag
menting the grey, white and ventricular regions. It is the
assumption of radioactivitylocalizationexclusivelyin the grey
matter which permits the efficient incorporation of the MRI
image. The IRA was validated by simulation studies that
utilizeda slice through the basal ganglia in the realistic Hoff
man three-dimensional mathematical brain model. FBP im
ages deviate significantlyfrom true radioactivitydistribution,
whereas IRA images are nearly identical to true radioactivity
distribution, except for random fluctuations due to the pres
ence ofstatisticalnoise.Theseresultsindicatethat the appli
cationoftheIRAwillpermitSPECTtodistinguishdeficitsdue
to true physiologicalchanges from apparent deficits due to
imaaina/reconstruction artifacts.

JNucIMed 1992;33:1225â€”1234

ith the use ofthe muscarinic acetylcholinergic recep
tor binding radioligand (R,R)-['231J41QNBand a triple
headed SPECT system with ultra high-resolution (UHR)
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mm. In order to represent the three-dimensional brain model
a voxel resolution of 3 mm x 3 mm x 3 mm, we sampled e
third voxel within the transaxial slice, and then duplicated
extended each transaxial slice to an axial length of 2 voxels.

The simulated projection data are built up as the succe
summation of projection data for each nonzero voxel (4,5).
each nonzero voxel, the three-dimensional model of det
response(measuredusingthe Trionix Triad SPECTsystem
UHR parallel-holecollimators)is multipliedby the voxelv@
translated according to the voxel position and summed into
array containing the accumulated simulated projection
Symbolically, a nonzero voxel at position (i,j,k) contri
OBJ(i,j,k)3-DPSF(i'-i,j'-j,k'-k) to PROJ(i'j',k'), where PROJ
the simulated projection data and OBJ is the mathem@
radioactive object. This computation is object-driven. We

an analytical expression for the 3-DPSF which explicitly included
the distance- and depth-dependence of the amplitude A and the
standard deviation r (5).

When attenuation was included in the simulation, the method
for simulating the projection data was modified by multiplying
the voxel value by an attenuation factor. The attenuation factor
was computed using a constant attenuation coefficient equal to
0.15cm@and an attenuation path length equal to the distance
betweenthe voxeland the boundaryof the attenuatingmedium,
along a line perpendicular to the detector face. When attenuation
was included in the simulation, the FBP reconstructed image was
corrected for the attenuation effects with Chang's first-order
method (7) using an effective attenuation coefficient equal to
0.12cm@becauseof the presenceof scatterin all of the simula
tionsin whichweincludedattenuation(8,9).

Scatter was represented as the sum of two Gaussian compo
nents (5). When scatter was included in the simulation, three
separate simulations were performed, one for the detector re
sponse and two for the scatter, and the projection data from each
ofthe three simulations were added together prior to the addition
of noise or reconstruction (5). When noise was included in the
simulation, the projection data were scaled to the desired number
of acquired counts, and Poisson noise was computed using the
rejection method (5,10).

Brain Models
Based upon the mathematical brain model of Hoffman et al.

(6), we utilized threedifferent â€œtrueâ€•distributions of radioactiv
ity: (a) a uniform cortical grey matter radioactivity distribution
(Fig. lA), (b) a 30% right parietal cortical deficit (Fig. 1B) and (c)
a â€œsinusoidalâ€•brain model (Fig. lC), in which the radioactivity
in the grey matter voxels was set equal to 1 + A
sin(Bx+C)sin(Dy+E)for the voxelat location(x, y). We selected
A=0.3,B=D=0.28radvoxerandC=E=Ovoxer'.A
circumferentialpath through the cortical grey matter (Fig. lD)
wasused for determiningwhichvoxelswouldbe includedin the
circumferential profiles (see Data Analysis).

FBP
The projectiondata werereconstructedaspreviouslydescribed

(4,5). FBP usinga Hammingfilter with cutoff frequency0.12
mm' (0.36 pixer') was utilized for reconstruction.

IRA
The IRA was applied to an image in which the radioactivity

distribution is restricted to the grey matter. The data sets required
for the IRA are shown in Figure 2. The â€œtrueâ€•radioactivity

f,

FIGURE 1. Digitizedtransversesliceat the levelof the basal
ganglia chosen from the three-dimensional Hoffman brain model
(6) indicatinguniformdistributionof radioactivitythroughout the
grey matter (A), right parietal cortical deficit brain model (B),
sinusoidal brain model (C), and circumferential path through the
corticalgrey matter (D).For displaypurposes, each brain image
was normalizedto its own maximum.

distribution resulted in a set ofâ€•measuredâ€•projection data, which
were computed using the three-dimensional simulation procedure
(5). For simulations with noise, the projection data were scaled
to a desired level ofacquired counts, and Poisson noise was added
to the scaled projection data. Poisson noise was computed using
the rejection method (10). The measured projection data cone
sponded to physically observable projection data and were sub
sequently reconstructed using FBP. When FBP was used as an
internal part ofthe IRA, no attenuation correction was applied.

Grey matter voxels in the corresponding grey matter voxel
(â€œGMVâ€•)image [grey matter voxels in the MRI image were
defined as the grey matter voxels in the Hoffman brain model
(6)] weresettoaninitialestimate.Forexample,allgreymatter
voxels may be set equal to a constant and, throughout the entire
IRA process, all nongrey matter voxels were set to 0. The projec
tion data arising from GMV radioactivity distribution defined by
this initial guess were computed using the three-dimensional
simulation procedure. When this simulation included attenuation
and/or scatter, then simulation of the projection data within the
IRA also included attenuation and/or scatter. Attenuation and/
or scatter were thus implicitly included within the IRA, which
therefore directly compensated for these degrading factors with
out any additional correction factors, such as the Chang atten
uation correction algorithm (7).
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FIGURE2. Flowdiagramof the imple
mentation of the IRA. Data sets are en
closed within rectangular boxes. Solid ax
rows represent the relationshipof the data
sets. Dotted arrows represent computa
tions.

The IRA may be summarized as follows:At each iteration,
each ofthe grey matter voxels (as defined by GMV distribution)
within the FBP reconstruction from the measured projection data
was compared with the corresponding voxel within the FBP
reconstructionfrom the noiselesssimulatedprojectiondata (see
Fig.2), and fromthesevaluesthe correspondingvoxelwithinthe
GMV distributionwas updated usingEquation 4 below.A new
set of noiselessprojections (aswell as a set of projections with
noise) was formed from the GMV distribution with the three
dimensional computer simulation procedure, and from this a
new reconstructionwas generatedby the FBP, representingthe
updated reconstruction from the simulated projection data. This
procedure was repeated through multiple iterations. The final
GMV distributionwasconsideredto representthe reconstruction
ofthe true distribution.

The root-mean-square(RMS)error in the reconstructedimage
due to the added Poissonnoisewascomputedas

D@@c â€” â€˜ I @2i S
1%1 â€˜@@noiic l2@i(i.grey matter)'@Siuij f n1@

voxels.The RMS error in the reconstructedimage due to both
Poisson noise and deviationsof the initial guess from the true
radioactivitydistributionwascomputedas

D@IC _@ I \21 S
L@1â€˜0guess l2@i(i.giâ€¢eymauer)!@UrVi)i n1@ Eq.2

where v represents the@ grey matter voxel in the FBP recon
structed images derived from the true radioactivity distribution.

A relaxationfactor,a, wascomputedas

a ( 1 â€”RMS@0@/RMS@,@)/2, Eq.3

The purpose of a is to prevent the iteration from reducing
RMSguess below RMS,,,,@, the Poisson noise in the reconstructed

image(fornoiselesssimulations,a = 0.5).Forthe@ g@ymatter
voxel rn within the GMV image, the current guess (for the j@'
iteration) of the radioactivity value, m,@,was upgraded by the
formula

= m@ [(v1/u1@ â€” 1) a@ + 1],
Eq.l

where Siand u, represent the i@'voxels in the FBP reconstructed
image derived from the noisy and from the noise-free simulated
projection data, respectively, and n is the number of grey matter

Eq. 4

where the superscripts are not exponents but are the iteration
numbers.The valuesof RMS@, and RMS@Cwererecalculated
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at eachiteration as

RMS@! lv. . I j+1 j+I@2/1 5noise IL@I(I.grcymatterp@i u , , ,

DL(CJ+l _ I .@ j+I @2j 1 5
â€œguess @L@*tgreymauer@U@ V@) ,@flj.

and the value of a@1was recalculated at each iteration as

aJ+I = (1 â€”RMSh@jRMS'@,j/2.

In our initial studies,we found that each iteration reduced the
difference (RMS@,, â€”RMS@) to approximately one-half of the
previous difference (RMS@guessRMS@noisc).Since our goal was to
stop when RMS@,,raRMS@, we performed approximately 10
iterations, which reduced the difference (RMS@CSSâ€”RMSI@,ISC)to
approximately 0.1% of the difference (RMSÂ°@,,, RMSÂ°noisc).
The output of the IRA is the final updated GMV distribution
defined as in Equation 4.

The IRA is based upon the idea that both the projection and
reconstructionprocessesare linear, so that for the iiâ€•greymatter
voxelthe ratio of its radioactivityvaluesin the GMV guess/true
radioactivity distribution@u1/v1. That is, the ratio in the FBP
reconstructed image space is an approximation ofthe ratio in the
original object space. With other iterative approaches (such as
maximum likelihood or ART), the residual errors in the projec
tion data are used to correct the estimate ofthe true radioactivity
distribution. In comparison, the advantage of using the IRA is
that residualerrors are localizedto a specificvoxelin the image
rather than distributed along the large number of image voxels
which contribute to a given voxel in the projection data. However,
because of the existenceof noise, we cannot apply the entire
amount of correction, but rather require a damping factor a.

In some studies,we applied the IRA to an isolatedslice,and
in other studies we applied the IRA to a slice within the full
three-dimensional brain model. In the latter case, a simplification
was required because of the excessivecomputational time re
quired using our microcomputer@The true distribution of radio
activity within the grey matter of all the slicesother than the
selected slice was uniform; only the selected slice had an unknown
radioactivity distribution to be reconstructed. The true radioac
tivity distribution within the selected slice was either the right
parietal cortical deficit model (Fig. lB) or the sinusoidal model
(Fig. 1C). In the three-dimensional simulations, we utilized a 9-
mm thicknessfor the selectedsliceand scaledthe projectiondata
for this slice (equal to the sum of the projection data originating
within the slice plus the projection data originating from within
neighboring slices) to 2.0 x 106counts prior to the addition of
Poisson noise. The simulation also included attenuation and
scatter effects.

Because ofthe three-dimensional detector response and scatter,
some of the counts originatingfrom the neighboringsliceswill
be detected within the projection data for the selected slice.
Approximately52.4% of the counts within the projection data
for the selected slice had originated as nonscattered counts from
within the projection data for the selected slice had originated as
nonscattered counts from within the selected slice; the remainder
of the counts arosefrom the convolutionof radioactivityoutside
ofthe selected slice with the three-dimensional detector response
function (17%), or from scatter originating within (2.6%) or
outside (28%) the selected slice. Because preliminary results in
dicated convergence by approximately the fourth iteration when
we applied the IRA to a slice within the full three-dimensional

brain model in the presence of noise, we stopped the IRA after
the fourth iteration.

Data Analysis
Circumferential cortical profiles were determined as described

Eq. 6 previously(4,5,11) using the circumferential path drawn on the
theoretical map of grey matter. Data obtained using circumfer
ential profiles were normalized such that their means were equal

Eq. 7 to unity.
Scatter plots of the relative % errors were obtained by nor

malizing the FBP and IRA reconstructed images and the true
radioactivity distribution to a mean of unity prior to subtraction
of the true radioactivitydistribution from the reconstructedim
ages.

Convergenceof the IRA was examined for the sinusoidal
modeleitheras an isolatedsingleslicein the absenceof attenua
tion and scatter, or as a slice embedded within a three-dimen
sional brain in the presence of three-dimensional detector re
sponse, attenuation, scatter and noise. The true radioactivity
distribution and the GMV guess at each iteration were individ
ually normalized to a mean of unity. The value in each grey
matter voxelofthe normalizedtrue radioactivitydistributionwas
then subtracted from the corresponding voxel of the normalized
GMV guessand the RMS error, RMS@UC,computed from these
differences:

RMS'ÃœUC @:j(j.@TCYmattcr)(mfLti)2/n@ .

Eq.5

Eq.8

where t1represents the i@'voxel in the true image. Before subtrac
tion, m@and t@are first normalized so that the means over all
greymatter voxelsare equal to unity.

RESULTS

Isolated Two-Dimensional Brain Slice
To demonstrate the convergence properties of the IRA,

we have computed two different measures of the error in
the current IRA estimate oftrue radioactivity distribution:
RMSgucss (Equation 6) and RMS@TUC(Equation 8). RMSI@UC
cannot be determined in a real imaging situation, since
the true radioactivity distribution would need to be known;
thus RMSgu@SSmust be used as an approximation to
RMStrue. For an isolated sinusoidal brain slice, RMSUUC has

converged by the ninth iteration (Fig. 3). Thus, we chose
to terminate the IRA at the ninth iteration for isolated
two-dimensional brain slices. The value ofa (Fig. 3) tends
to decrease with increasing iteration numbers. RMS,,01,@
(Equation 5) is essentially independent ofiteration number
(not shown).

To demonstrate the quantitative accuracy of the IRA,
we reconstructed noise-free simulated projection data for
a uniform cortical grey matter radioactivity distribution
(Fig. lA) and for a right parietal cortical deficit model (Fig.
1B), using FBP (Fig. 4A) or IRA (Fig. 4B) (not shown for
the uniform model). FBP of both models resulted in
circumferential cortical profiles that exhibited 2- to 3-fold
cortical variations(Fig. 4C), although (except for the deficit
in the right parietal cortex deficit model) these profiles
should theoretically be constant. The deficit in the deficit
model is discernible when a comparison is made against
the uniform model (Fig. 4C). In practice, however, the
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reconstructed image resulting from the exactly matching
uniform model will not be available for this comparison,
and the trough due to the deficit will not be distinguishable
from normally-occurring troughs due to normal variations
in effective cortical thickness. In contrast, for the IRA, the
circumferential profiles for both the uniform and deficit
models were constant, except for the expected 30% deficit
in right parietal cortex for the deficit model (Fig. 4D).
These results show that IRA can compensate for variations
due to imaging artifacts to permit the quantitation of
physiological variations.

The simulated projection data for the deficit model were
scaled to a total of 500,000 counts/slice, and Poisson noise
was added to the scaled projection data. The noisy projec
tion data were reconstructed using IRA (Fig. 4E). A com
parison of the circumferential profiles of the noisy IRA
reconstructed image and the theoretical image (Fig. 4D)
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FIGURE 3. Convergenceof the IRA appliedto an isolated
brain slice or a brain slice embedded within the three-dimensional
brainfor the sinusoidalbrainmodel.
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FIGURE4. Noise-freeFBPreconstructedimage(A)andnoise-freeIRAreconstructedimage(B)fortherightpanetalcorticaldeficit
model, circumferential profiles for FBP for the uniform and right parietal cortical deficit models (C), circumferential profiles for IRA(D)
and noisy IRAreconstructed image (E). In(C), because of the large degree of agreement, it is difficultto distinguish the circumferential
profilesfor the FBP fromthe uniformand deficitmodels, except in the regionof the deficit.In (D),because of the large degree of
agreement, it is difficult to distinguish the noise-free IRA and the theoretical circumferential profiles. In (C), FC, TC, PC, OC denote
frontal cortex, temporal cortex, panetal cortex and occipital cortex, respectively.
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indicates the accuracy of the IRA even in the presence of
a realistic level of statistical noise.

The brain model containing a single deficit is rather
oversimplified. We therefore simulated a sinusoidal brain
model (Fig. lC) in the absence of noise, using both FBP
(Fig. 5A) and IRA (Fig. 5B). Deviations in the FBP recon
structed image can be demonstrated quantitatively by
comparison of the circumferentialprofile with the theo
retical circumferential profile (Fig. 5C). The accuracy of
the IRA reconstructed image can be demonstrated quan
titatively by comparison ofthe circumferential profile with
the theoretical circumferential profile (Fig. 5D).

The simulated projection data for the sinusoidal model
were scaled to a total of 500,000 counts/slice, and Poisson
noise was added to the scaled projection data. The noisy
projection data were reconstructed using IRA (Fig. 5E). A
comparison of the circumferential profiles of the noisy
IRA reconstructed image and the theoretical image (Fig.

5D)indicatestheaccuracyofthe IRAevenin thepresence
of a realistic level of statistical noise.

Brain Slice Within a Three-Dimensional Brain Model
For the brain slice embedded within a three-dimensional

brain,@ had converged by the fourth iteration (Fig.
3). Thus, we chose to terminate the IRA at the fourth
iteration for brain slices embedded within a three-dimen
sional brain. The value ofa (Fig. 3) tends to decrease with
increasing iteration numbers. RMS,@ (Equation 5) is
essentially independent of an iteration number (not
shown).

A comparison of the noise-free attenuation-corrected
FBP (Fig. 6A) and the IRA (Fig. 6B) reconstructed images
for the right parietal cortical deficit model indicates the
superiorityof the IRA. Circumferentialprofiles(Fig. 6C)
quantitatively indicate the superiority of the IRA. Simi
laxly, a comparison ofthe noise-free attenuation-corrected
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FiGURE 5. Noise-freeFBP reconstructedimage(A)and noise-freeIRA reconstructedimage(B) for the sinusoidalbralnmodel,
circumferential profiles for FBP (C), circumferential profiles for IRA(D)and noisy IRAreconstructed image (E). In (D), because of the
largedegree of agreement, Itis difficultto distinguishthe noise-freeIRAand the theoreticalcircumferentialprofiles.
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FiGURE6. Noise-freeFBPreconstructedimage(A)andnoise
free IRAreconstructed image (B)for the right parietal cortical
deficitmodel in the presence of an out-of-slicecontribution(â€œ3-
Dâ€•),attenuation(â€œAâ€•),and scatter(â€•Sâ€•)inthe projectiondata, and
circumferential profiles for the true image, FBP and IRA(C). The
FBP image was corrected forattenuation(â€œACâ€•)using the Chang
method (7) with an attenuation coefficientof 0.12/cm (8,9). In
(C),because of the degree of agreement, it is difficultto distin
guish the noise-free IRA and the theoretical circumferential pro
files.

FBP (Fig. 7A) and the IRA (Fig. 7B) reconstructed images
for the sinusoidal as well as scatter plots (Figs. 7C-D)
quantitatively indicate the superiority of the IRA.

A comparison of the noisy attenuation-corrected FBP
(Fig. 8A) and the IRA (Fig. 8B) reconstructed images for
the right parietal cortical deficit model indicates the supe
rionty ofthe IRA. Circumferential profiles (Fig. 8C) quan
titatively indicate the superiority of the IRA. Similarly, a
comparison of the noisy attenuation-corrected FBP (Fig.
9A) and the IRA (Fig. 9B) reconstructed images for the
sinusoidal model again indicates the superiority of the
IRA. Scatter plots (Fig. 7C, 9C) again quantitatively mdi

cate the superiority of the IRA.
Except for the region containing the deficit, the FBP

40 60 80 100 120 140 160
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FIGURE 7. Noise-freeFBPreconstructedimage(A)andnoise
free IRAreconstructed image(B)for the sinusoidalmodelin the
presence of an out-of-slicecontribution,attenuationand scatter
in the projectiondata, and scatter plots for FBP(C)and IRA (D)
versusthe true image. The FBP image was corrected for atten
uation using the Chang method (7) with an attenuation coefficient
of0.12/cm(8,9).

reconstructed values for the right parietal cortical deficit
model in the absence of noise deviate significantly from
the true values in a manner which reflects anatomical
variations (compare Figs. lD and 6C). A scatter plot of
the relative % errors in 1,111 grey matter voxels (omitting
the 20 voxels within the deficit region) in a noise-free FBP
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FIGURE8. Noisy(â€œNâ€•)FBPreconstructedimage(A)andnoisy
IRA reconstructed image (B) for the right panetal cortical deficit
model in the presence of an out-of-slice contribution, attenuation
and scatter in the projection data, and circumferential profiles for
the true image, FBP and IRA(C). The FBP image was corrected
for attenuation using the Chang method (7) with an attenuation
coefficientof 0.12/cm (8,9).

reconstructed image (horizontal axis) and the relative %
errors in a noisy IRA reconstructed image (vertical axis)
for the right pai-ietal cortical deficit model indicates that
there is an insignificant dependence of the errors in the
IRA image upon the errors in the FBP image (Fig. 10).
Since the errors in the FBP image represent the effects of
anatomical variation, the insignificant correlation (r =
0.07 1) indicates that the IRA has removed the effects of
anatomical variation from the reconstructed image. The
wider spread of the errors for FBP in the absence of noise
(â€”50%to +40%) than for the IRA in the presence of noise
(â€”20%to +20%) indicates the superior quantitative ac
curacy ofthe IRA.

40 60 80 100
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120 140 160

noise is not shown, since itwas nearlyidenticalwiththat for FBP
in the absenceof noise(Fig.7C).The FBP imagewas corrected
for attenuation using the Chang method (7) withan attenuation
coefficient of 0.12/cm (8,9).
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FIGURE9. NoisyFBPreconstructedimage(A)andnoisyIRA
reconstructed image (B)for the sinusoidal model in the presence
of an out-of-slice contribution, attenuation and scatter in the
projection data, scatter plot for IRA versus the true image (C)
and scatter plotfornoise-freeIRAplus added Poisson noise (D).
The scatter plot for (0) was computed to show that the broad
ening of the scatter plot in the presence of noise in comparison
with the scatter plot in the absence of noise (Fig. 7D), which
resulted primarilyfrom the statistics of the noise rather than from
a degradation of the accuracy of the IRAin the presence of noise.
The noise was added to the noise-free IRAscatter plot using the
rejection method (10) based upon the total counts in the projec
tion data equal to 2 x 106 and the fact that 52% of the counts in
the projectiondata were nonscattered counts originatingfrom
within the sliceto be reconstructedand the â€œnaivepredictionâ€•of
Budinger et al. (12). The scatter plot for FBP in the presence of
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change, because of its random nature statistical noise
cannot be compensated for by the IRA, and its presence
prevents the IRA from providing a perfect compensation
for finite detector response. Noise thus represents a fun
damental limitation of our ability to determine the image
in a quantitatively accurate manner.

These simulation studies and the IRA incorporated
several unique features: (a) the application of realistic
three-dimensional distance- (between the source of radio
activity and the detector) and depth- (between the source
of radioactivity and the boundary of the scattering me
dium) dependent detector response function; (b) the ap
plication of the realistic Hoffman mathematical three
dimensional brain model; and (c) a high-resolution MRI
anatomical image was used in order to compensate for
artifacts due to anatomical variations.

Since we have not presented a rigorous mathematical
proofofthe convergence ofthe IRA, the method's validity
is demonstrated by the empirical results presented in this
paper. These results are sufficient to show that realistic
grey matter radioactivity distribution can be accurately
estimated using the IRA. In a recent paper (13), an alter
nate iterative reconstruction method was applied to real
istic simulated projection data derived from the mathe
matical Hoffman brain model (6) in the absence of scatter
and noise, and in the presence ofattenuation and distance
dependent detector response. This method (three-dimen
sional maximum likelihood-EM) resulted in a % RMS
error which was similar to that for FBP. Since we have
shown here the superiority ofIRA over FBP, we conclude
that the IRA is also superior to three-dimensional maxi
mum likelihood-EM. In a second recent paper (14), an
EM algorithm was applied iteratively to measured three
dimensional Hoffman physical phantom projection data
in the frequency domain, again utilizing a distance-dc
pendent detector response. Quantitative results were not
presented; however, the visual appearance of the recon
structed images was similar to that for FBP. We are not
aware of other simulation studies using an iterative recon
struction method applied to a realistic brain model and a
realistic detector response function. Three recent reports
have appeared in which high-resolution anatomical infor
mation was incorporated during the reconstruction of
emission tomographic images (15â€”17).

When the IRA is applied to a real brain image rather
than to a simulated brain image, a high-resolution MRI
anatomical image is needed in order to compensate for
artifacts due to anatomical variations. The anatomical
images will need to be segmented into grey matter regions
and registered with the SPECT images. This study did not
utilize an actual MRI image but assumed instead that the
true shape of the grey matter distribution, as well as the
exact nature of the detector response, attenuation and
scatter were precisely known a priori. The simulated re
constructions presented here were therefore more accurate
than could be achieved when imaging a real brain using

FIGURE 10. Scatter plotof the relative% errors in 1,111 grey
matter voxels(omittingthe 20 voxelswithinthe deficitregion)in
a noise-freeFBPreconstructed image in the absence of an out
of-slice contribution, attenuation, or scatter (horizontal axis) and
the relative% errors ina noisyIRAreconstructedimagewiththe
same parameters(verticalaxis)forthe rightpanetalcorticaldeficit
model. The errors in the FBP image represent the effects of
anatomical variation,so that the insignificantcorrelation (r =
0.071) indicatesthat the IRAhas removedthe anatomicalvaria
tioneffects fromthe reconstructed image.

DISCUSSION

Cortical circumferential profiles demonstrate that FBP
reconstructed images can exhibit significant quantitative
deviations from the true radioactivity distribution for a
uniform (Fig. 4C), deficit (Fig. 4C) and sinusoidal (Fig.
5C) model. In particular, the apparent deficits in the
simulated reconstructed image ofthe uniform model (Fig.
4C) indicate that it may be difficult to interpret an appar
ent deficit in a physically measured human brain image as
resulting from a true radioactivity deficit or from an
imaging artifact. In order to compensate for these degra
dations, we have developed the IRA, which utilizes a
realistic model of the data collection process.

The IRA is designed for the reconstruction only of grey
matter images. These images must be acquired at a time
when true radioactivity in the white matter within the
actual brain is negligible compared with true radioactivity
in the grey matter. The IRA incorporates an accurate
model of the three-dimensional detector response and
utilizes an MRI image which defines the anatomical fea
tures of the brain being imaged by segmenting the grey,
white and ventricular regions. It is the assumption of
radioactivity localization exclusively in the grey matter
that permits the efficient incorporation ofthe MRI image.

For both the two- and three-dimensional models, in the
presence or absence of attenuation, scatter and noise, the
IRA reconstructed images are much closer to the true
radioactivity distribution, and the ambiguity of interpret
ing a deficit as being real or artifactual is removed. Al
though the reconstructed IRA image will allow us to
diagnose a deficit as arising from a true physiological

1233IterativeReconstruction in SPECT Grey Matter Imaging â€¢Kimet al



simulate cerebral blood flow and metabolic images for PET. IEEE Trans
NuciSci l990;37:616â€”620.

7. ChangLT. A methodfor attenuationcorrectionin radionuclidecomputed
tomography. IEEE Trans Nuc/Sci 1978;NS-25:638â€”643.

8. Harris CC, Greer KL, Jaszczak Ri, et al. Tc-99m attenuation coefficients
in water-filled phantoms determined with gamma cameras. Med Phys
1984;l 1:681â€”685.

9. JaszczakRi, F'oydCE,ColemanRE. Scattercompensationtechniquesfor
SPECT. IEEE Trans NuciSci 1985;32:786â€”793.

10. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes
in C: the art of scientific computing. Cambridge: Cambridge University
Press; 1988:221â€”223.

I 1. Links JM, Loats HL, Holcomb HH, LoafsSE, Stumpf MJ, WagnerHN
Jr. Cortical circumferential pmfthng an objective approach to cortical
quantification in emission tomography [Abstractl. J Nuci Med l989;30:
816.

12. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH.
Quantitative potentials of dynamic emission computed tomography. J
NuciMed 1978;l9:309â€”315.

13. Gilland DR, JaszczakRi, BowsherJE, et al. Quantitative SPECT brain
imaging effects of attenuation and detector response. IEEE NSS Confer
enceRecord 1992:inpress.

14. Zeng GL, Gullberg 01. Frequency domain implementation of the three
dimensional geometiic point response correction in SPECF imagin@ IEEE
NSS ConferenceRecord l992:inpress.

15. Chen C-I, Ouyang X, Wong WH, Hu X. Improvement of PET image
reconstruction using high-resolution anatomic images. IEEE NSS Confer
enceRecord l992:in press.

16. Politte DO, Snyder DL. Image reconstruction for positron-emissionto
mographywhenanatomicalboundariesare known.IEEENSS Conference
Record l992:in press

17. Kim Hi, Zeeberg BR, Reba RC. Iterative reconstruction algorithm which
incorporates a high resolution anatomical image: simultaneous correction
for 3-D detector response, attenuation, and scatter in SPECT neuroreceptor
imaging. IEEE NSS Conference Record 1992:in press.

an experimentally acquired MRI image with imperfect
segmentation and registration.
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