
myocardium, which might also be useful for improving
the control of digitalis therapy.
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I n their article on the selection and
testing of ouabain analogs for car

diac imaging, Fujibayashi and his col
leagues have re-opened for us a chap
ter in one of the earlier books in flu
clear medicine: radiopharmacy. First,
their exploration of analogs had em
bedded two challenges: which bullet is
most magic in seeking out the myo
cardium in preference to other sites,
with special attention to other nearby
sites; which could interfere with image
interpretation? And which bullet will
carry a strangeâ€”a biologically for
eignâ€”gamma-emitting element (pref
erably iodine or technetium) to the
target? The chemistry imposes two de
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mands: to find the magic carrier and
to devise a bond sufficiently attractive
to remain attached to the carrier for
several hours, while under the influ
ence of the body's fluids, without so
altering the handling of the com
pound that it might lose some of its
magic.

Phase one of the search used the
biologically perfect master spy, 3H,
which allows the candidate bullet to
be tested for its magical qualities: How
well will it seek the target when it has
to carry no (biologically) sinister
gamma-emitting baggage? Com
pounds A and B passed the test. (Per
haps the radiopharmacists in Dr. Fu
jibayashi's group added to their store
of knowledge about the nature of the
interaction between ouabain, its bio
chemical close cousins, and the myo
cardial membrane in the process of

looking at these data. Why A and B,
and not C and D?)

In phase two, selection of the
gamma-carrying element, has meant
â€œtryiodine firstâ€•in the â€œbeforetech
netiumâ€• decades, and then â€œwe
should consider technetiumâ€•in the
subsequent history of radiopharmacy.
The radiochemical triumph of taming
1231 among its lesser imaging-friendly

cousins is a legacy to subsequent gen
erations. Tracer iodine is more expen
sive and less available than tracer
technetium, but the art of modern
radiopharmacy delivery services, at
least in big cities, addresses this issue.

Phase three, the first to engage the
nuclear medicine department with its
imaging equipment, requires the
choice of a surrogate for man, the
animal model. Some care is required:
a small kinship of myocardial tracers
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recently explored worked well in dogs,
but not in humans, in a slightly earlier
saga on the way to sestamibi and te
boroxime (1). If phase three is suc
cessful (ouabain has made it this far
with this publication), phase four will
match it up to the existing arsenal of
radio-bullets, thallium, sestamibi, te
boroxime, and perhaps others that are
under development, to discover a pos
sible advantage.

The critical tests, the myocardium/
blood, myocardium/liver, and myo
cardium/lung ratios are competitive
(2,3). The tracer will go on to the
bedside via pathways that are well
known to pharmaceutical houses.
Will it compete with existing myocar
dial imaging agents?

Or is there another benefit algo
rithm? What can we learn from the
saturation kinetics shown in Figure 3?
Should we, like early nuclear mcdi
cine pioneers, be more interested in
this tracer for its functional imaging
potential, the localization and quan
titation of Na-K ATPase? Will oua
bain offer the cardiologist a new tool,
the semiquantitative analysis of a
myocardial enzyme, either as a meas
urement of the patient's capacity to

respond to higher doses of digoxin, or
as a predictor of a myocardial meta
bolic reserve?

Could a three-dimensional cardiac
ouabain map be registered in com
puter memory and compared with a
thallium or sestamibi map, done be
fore or after, providing a regional
measurement ofenzyme distribution?
Would a rest-exercise ouabain map
disclose metabolic distress, or stunned
myocardium, with greater interpretive
benefit than the comparable ischemic
distress imaged with now popular per
fusion agents?

Fujibayashi shows remarkable
speculative reticence by givingjust the
bare bones of what has been accom
plished, with the single clinical sugges
tion that digoxin therapy might be
guided by such imaging. I believe that
it would be the rare patient whose
need for fine-tuned digoxin require
ments would be sufficiently critical to
justify serial imaging to make a dosing
decision. However, the invention of
an in vivo, three-dimensional map for
any enzyme system is news. We are
invited to consider a family, or per
haps a larger kinship, of potential re
search and clinical derivatives of this

new magic bullet and its potential ap
plications.

In this paper, we are reminded of
our dependence on our chemist and
pharmacologist colleagues for point
ing to new opportunities. And we are
in parallel reminded of the obligation
of the compleat clinician to sort out
the physiological and clinical appli
cations of such opportunities as may
bring benefit to our patients and our
research.

Richard Pierson, Jr.
St. Luke's-Roosevelt Hospital

New York, New York
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