Detection of Extrapulmonary Tuberculosis with Gallium-67 Scan and Computed Tomography

Seoung-Oh Yang, Yung I. Lee, Duck H. Chung, Myung C. Lee, Chang-Soon Koh, Byung I. Choi, Jung-Gi Im, Jae H. Park, Man C. Han and Chu-Wan Kim

Division of Nuclear Medicine, Department of Diagnostic Radiology, Dong-A University Hospital, and Departments of Nuclear Medicine, and Radiology, Seoul National University Hospital, Korea

We evaluated 23 patients with extrapulmonary tuberculosis (TB) with 67Ga imaging to assess its usefulness in the diagnosis of this condition. We performed computed tomography (CT) in 17 patients to assess CT features of extrapulmonary TB in comparison with findings from 67Ga scans. Nineteen of 23 patients (83%) had positive findings on 67Ga scans. One of five patients with tuberculosis mediastinal lymphadenopathy, two patients with cervical lymphadenitis and a patient with renal TB had negative 67Ga scans. It was observed that the detection of previously unrecognized primary foci of TB, without concomitant pulmonary TB, was possible using 67Ga imaging in five patients (22%). The 67Ga scan was relatively sensitive for the localization of extrapulmonary TB. It is suggested that the 67Ga scan could serve as a screening method, when followed by CT and ultrasonography, for the initial detection of occult tuberculous lesions, especially in patients with prolonged fever.

Gallium-67 is useful in the detection of active inflammatory lesions and certain tumors (1). It has been used widely in the evaluation of various pulmonary diseases including tuberculosis (TB) (2-7). Siemensen et al. (8) reported pulmonary uptake of radiogallium in 97% of patients with active TB. There have been, however, very few reports on the evaluation of extrapulmonary TB using the 67Ga scan (9,10). Thus, further exploration is needed to validate its clinical role in the diagnosis of extrapulmonary TB.

In the present study, we attempt to demonstrate the utility of 67Ga imaging for detecting extrapulmonary TB in patients with prolonged fever. We performed 67Ga scanning on all 23 patients and computed tomography (CT) on 17. The comparative roles of 67Ga and CT scanning in the diagnosis of extrapulmonary TB are discussed.

MATERIALS AND METHODS

The study group consisted of 23 patients with histologically (biopsies in 18, bacilli culture in 3) or response-to-medication proven extrapulmonary TB. The age of the patients ranged from 22 to 67 yr, with a mean age of 42 yr. There were 13 males and 10 females. Fourteen patients had various sites of lymphadenopathy; three had peritonitis; three had spinal TB; two had intestinal TB; and one had renal TB. Concurrent active pulmonary TB was found in seven patients (32%) by a sputum culture and old tuberculous lung lesion in two patients on a chest radiography. Acquired immunodeficiency syndrome (AIDS), myelodysplastic syndrome and diabetes mellitus were identified in one patient each. Tuberculous pleural effusions were seen in two patients and pericardial effusion in one patient.

Each patient received 185 MBq (5 mCi) of gallium citrate intravenously. Scanning was performed with a 7500 Orbiter gamma camera (Siemens Medical Systems, Iselin, NJ) using a large field of view and a medium-energy parallel-hole collimator, with a 20% window centered on the 93, 185 and 300 keV photopeaks, at 24, 48, and 72 hr after injection of gallium citrate. Anterior and posterior views of the whole body were obtained as well as spot views of suspicious areas. Two radiologists were involved in the interpretation of the 67Ga images. Care was taken to differentiate physiologic gallium accumulations in the spine, sternum, ribs and colon from pathologic uptake by analyzing the pattern of distribution and temporal course.

Of the 23 patients, 17 (11 patients had tuberculous lymphadenopathy; three patients had spinal TB; two patients had tuberculous peritonitis; one patient had intestinal TB) also underwent CT to assess the extent of the abnormality. The CT scans were obtained on a GE CT/T 9800 scanner (General Electric Medical Systems, Milwaukee, WI). CT scans were obtained before and after the intravenous bolus administration of 100-150 ml of water-soluble contrast media (Rayvist, Schering; Conray, Mallinkrodt) with a contiguous 10 mm slice thickness and 10-mm interval. All abdominal CT scans were taken after oral ingestion of dilute methylglucamine diatrizoate (Gastrografin, Squibb). The CT images were analyzed for the attenuation, enhancement pattern and extent of lesions.

RESULTS

Sensitivity of the 67Ga Scan

As shown in Table 1, the sensitivity of the 67Ga scan in detecting extrapulmonary TB was 83%. Nineteen of 23 patients showed positive accumulation of radiogallium.

Received Jan. 22, 1992; revision accepted Jul. 17, 1992.
For reprints contact: Seoung-Oh Yang, MD, Department of Diagnostic Radiology, Dong-A University Hospital, 1, S-Ka, Dongdaesin-Dong, Seo-Ku, Pusan 602-163, Korea.
TABLE 1
Comparative Results of 67Ga and CT Scans in Extrapulmonary TB (n = 23)

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Chief complaint</th>
<th>Site of TB</th>
<th>67Ga scan*</th>
<th>CT</th>
<th>Methods of confirmation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neck mass</td>
<td>Cervical L/N</td>
<td>Negative</td>
<td>NA</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Weight loss</td>
<td>Cervical L/N</td>
<td>Negative</td>
<td>NA</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cough, Fever</td>
<td>Mediastinal L/N</td>
<td>Positive</td>
<td>Carnal L/N</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fever</td>
<td>Mediastinal L/N</td>
<td>Negative</td>
<td>Hilar L/N</td>
<td>Biopsy</td>
<td>Leukopenia*</td>
</tr>
<tr>
<td>5</td>
<td>Weight loss</td>
<td>Mediastinal L/N</td>
<td>Positive</td>
<td>Mediastinal L/N</td>
<td>Biopsy</td>
<td>AIDS</td>
</tr>
<tr>
<td>6</td>
<td>Fever</td>
<td>Mediastinal L/N</td>
<td>Positive</td>
<td>NA</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fever</td>
<td>Mediastinal L/N</td>
<td>Positive</td>
<td>Mediastinal L/N</td>
<td>Biopsy</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>8</td>
<td>Fever</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Multiple L/N</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Weight loss</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Multiple L/N</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fever</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Mesenteric L/N</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fever</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Multiple L/N</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mass, Fever</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Mesenteric L/N</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fever</td>
<td>Abdominal L/N</td>
<td>Positive</td>
<td>Multiple L/N</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fever</td>
<td>Pelvic L/N</td>
<td>Positive</td>
<td>Obturator L/N</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pain, Fever</td>
<td>Peritoneum</td>
<td>Positive</td>
<td>Ascites</td>
<td>AFB culture</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fever</td>
<td>Peritoneum</td>
<td>Positive</td>
<td>Ascites</td>
<td>Anti-TB therapy</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fever</td>
<td>Peritoneum</td>
<td>Positive</td>
<td>Ascites</td>
<td>Anti-TB therapy</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Back pain</td>
<td>Spine</td>
<td>Positive</td>
<td>Bony destruction</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Back pain</td>
<td>Spine</td>
<td>Positive</td>
<td>Bony destruction</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fever</td>
<td>Spine</td>
<td>Positive</td>
<td>Bony destruction</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Diarrhea</td>
<td>Intestine</td>
<td>Positive</td>
<td>Wall thickening</td>
<td>AFB culture</td>
<td>Fistula</td>
</tr>
<tr>
<td>22</td>
<td>Fever</td>
<td>Intestine</td>
<td>Positive</td>
<td>NA</td>
<td>Anti-TB therapy</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Weight loss</td>
<td>Kidney</td>
<td>Negative</td>
<td>NA</td>
<td>AFB culture</td>
<td></td>
</tr>
</tbody>
</table>

Overall positive rate of 67Ga scan in extrapulmonary TB was 19/23 (83%).

*Leukopenia (leukocyte count: 1.6 x 10^9/liter) because of myelodysplastic syndrome.

L/N = lymph nodes and NA = not applicable.

One patient with myelodysplastic syndrome (Patient 4) had a negative 67Ga scan but was shown to have tuberculous mediastinal lymphadenopathy by mediastinoscopic biopsy. He was the only patient with leukopenia (leukocyte count: 1.6 x 10^9/liter) in the present study. One patient with renal TB (Patient 23), who had a positive urine culture for acid-fast bacilli (AFB), had no discernible abnormality on 48- and 72-hr images of the 67Ga scan. The patient data and results of the 67Ga and CT scanning according to lesion location are summarized in Table 1.

Findings of the 67Ga Scan and CT

Gallium-67 scanning in extrapulmonary TB demonstrated focal or diffuse increased uptake which persisted at 72 hr after injection of gallium (Fig. 1A). The images obtained at 48 hr after injection were sufficient to localize the lesion in all except one case with intestinal TB which was detectable only on 72-hr image of the 67Ga scan. Enlargement of lymph nodes with central low attenuation and rim enhancement at CT was the most common finding in four patients with tuberculous abdominal lymphadenopathy and four patients with mediastinal lymphadenitis (Fig. 1B). In three patients with spinal TB (Patients 18, 19, 20), 67Ga images showed focal areas of increased radioactivity in the vertebrae, while CT scans revealed bone destruction in the vertebral body delineated by marginal sclerosis (Fig. 2).

Comparative Roles of the 67Ga Scan and CT

Table 1 shows the order of diagnostic protocols employed to obtain the final diagnosis of extrapulmonary TB. In five patients (Patients 10, 11, 13, 14, 22), there were no apparent clinical manifestations when observed by conventional radiography (chest PA) and laboratory tests. One patient with unsuspected pelvic lymphadenitis (Patient 14) showed positive 67Ga scan and also a subsequent CT exhibited presence of left pelvic lymphadenopathy (Fig. 3). The use of anti-tuberculous agents resulted in clinical improvement in all five.

In another patient with mesenteric lymphadenopathy (Patient 12), the 67Ga scan showed a distinct radioactivity along the mesenteric root, and the CT scan revealed inhomogeneous, low-attenuation mesenteric lymph nodes (Fig. 4). Gallium-67 scans of three patients with tuberculous peritonitis (Patients 15, 16, 17) showed diffuse abnormal abdominal activity (Fig. 5A), although the CT scan failed to give specific information about active inflammation. In one patient with intestinal TB and colocutaneous fistula (Patient 21), the 67Ga scan showed focal uptake along the fistulous tract and distal ileum (Fig. 5B).

On the basis of above results, CT seemed to be effective in delineating the anatomy and extent of lesions prior to biopsy, especially in lymphadenopathy of the mediastium and abdomen. Rather specific diagnosis of extrapulmonary TB was made in eight patients (Patients 3, 4, 5, 7, 9,
10, 12, 13) with lymphadenopathy, characterized by central low-attenuation and rim enhancement in CT (11–13). In contrast, in the five patients (Patients 10, 11, 13, 14, 22) of previously unlocalized extrapulmonary TB, it is clear that the 67Ga scan was a valuable screening method.

DISCUSSION

Extrapulmonary TB (skeletal, mediastinal, peritoneal, renal TB and others) is often overlooked and its diagnosis is delayed because of nonspecific symptoms and frequent lack of concomitant pulmonary involvement (9,14–16). Radioactive gallium scanning was first introduced by Edwards and Hayes in patients with Hodgkin’s disease (17). The 67Ga scan has been very useful in the diagnosis of certain malignant neoplasms, acute inflammatory disease, diffuse interstitial lung disease, sarcoidosis, and active TB (4–8). Since the initial observations, gallium has been widely used in the workup of patients with unexplainable prolonged fever or fever of unknown origin (FUO). It was demonstrated by Habibian et al. and Kissin and Williamson that a 67Ga scan in patients with FUO can show a high diagnostic sensitivity (18,19). For detecting acute infections, 111In-WBC scanning is preferred, whereas 67Ga scan has higher sensitivity for diagnosis of chronic and granulomatous inflammation (20,21). A comparative study using 111In-WBCs and 67Ga scanning in tuberculous enteritis revealed a slight advantage of 67Ga scan over 111In-WBC scan (22). Palestro et al. concluded that while 67Ga scan is more useful for detecting TB and *Pneumocystis carinii* pneumonia, the 111In-WBC scan is superior to the 67Ga scan in the detection of other nonpulmonary infections in 101 patients with AIDS (23). With developments in other imaging modalities, including ultrasonography (US), CT and magnetic resonance imaging (MRI), the role of the 67Ga scan has changed considerably (24–26). McNeil et al., in a prospective study of patients with fever.
Detection of Extrapulmonary Tuberculosis with 67Ga Scan • Yang et al

![Figure 3](image1.png)

FIGURE 3. A 45-yr-old woman with fever, weight loss and no localizing area of inflammation (Patient 14) confirmed surgically as TB. (A) Gallium-67 scan taken 24 hr after injection shows a focal area of the increased radioactivity in the left pelvic cavity. (B) Corresponding contrast-enhanced CT scan shows the left pelvic lymphadenopathy with internal inhomogeneous low density and peripheral enhancing rim (arrows).

Using receiver operating characteristic analysis, reported that CT, US and 67Ga scans have similar capabilities in detecting septic foci and that sensitivity can be increased by using any two of them (10). However, there have been few reports on the evaluation of extrapulmonary TB using the 67Ga scan. Our results showed a high sensitivity of the 67Ga scan in the detection of extrapulmonary TB. It is noteworthy that the sensitivity would have been 90% (19/21), if two patients with small sized (less than 2 cm in diameter) cervical lymphadenopathy (Patients 1 and 2) with negative 67Ga scans were excluded. One leukopenic patient with mediastinal TB and underlying myelodysplastic syndrome was negative on the 67Ga scan. This false-negative result may have been due in part to leukopenia (27), but the exact cause of the negative result was not determined.

![Figure 4](image2.png)

FIGURE 4. A 42-yr-old man with fever and palpable abdominal mass (Patient 12) confirmed surgically as mesenteric TB. (A) Gallium-67 scan taken 48 hr after injection shows the increased radioactivity in the mid-abdomen along the mesenteric root (arrowheads). (B) Contrast-enhanced CT scan shows lymphadenopathy in the mesentery around the superior mesenteric vessels as multifocal inhomogeneous low-attenuation areas (arrows).

In addition to the detection of focal inflammatory lesions, the 67Ga scan may often contribute to an early diagnosis of unsuspected systemic disease (28). Another advantage of the 67Ga scan is that the whole body is evaluated at once; serendipitous findings in 12% of patients were reported on the 67Ga scan (10,28). One of the most important problems in the application of the 67Ga scan is its low specificity. Therefore, correlation with the CT scan and the biopsy of positive lesions on the 67Ga scan are mandatory to diagnose extrapulmonary TB. In the patient with extrapulmonary TB and underlying systemic disease, early detection of a primary focus is important to avoid delay in proper management. In recent years, the incidence of TB has actually been increasing in contrast to the steady decline of previous years (14,16,29). Recent reports have emphasized that TB may develop during the course of human immunodeficiency virus (HIV) infection before the development of other illnesses suggestive of AIDS (30). It has been observed that many extrapulmonary manifestations of TB developed in patients with AIDS (31).

On contrast-enhanced CT scans, tuberculous mediastinal and abdominal lymphadenopathy typically show lymph nodes with central low-attenuation and peripheral rim enhancement representing caseating necrosis and hyperemic granulation tissue, respectively (11–13). Typical
CT findings of tuberculous spondylitis are calcified paraspinal masses with thick, irregular rim and anterior vertebral body destruction (32).

In patients with FUO and no localizing symptoms, the 67Ga scan and other inflammatory imaging methods such as 111In-WBC (21,23), 99mTc-HMPAO leukocyte (33,34), and 111In-labeled IgG scan (35,36) should be considered in the diagnostic workup before administering drugs that may mask the site of infection. Selective application of the 67Ga scan in unlocalized FUO as early as possible to detect a primary lesion and then CT (or US) for anatomical and pathologic specificity are recommended. This can be followed by a biopsy or culture. It would be also appropriate to perform a 67Ga scan in patients with documented extrapulmonary TB as a follow-up procedure, as there are few other methods for determining disease activity like sputum AFB in pulmonary TB.

In conclusion, the 67Ga scan is sensitive in the localization of extrapulmonary TB, particularly in patients with suspected inflammatory lesions. The 67Ga scan may play an important role in the detection of occult tuberculous lesions, and CT can be helpful for more exact localization and specific diagnosis.

ACKNOWLEDGMENTS

The authors would like to thank Hwa-sook Cha for preparing the manuscript and Robert J. Perchan, PhD and Yong-chun Choi, MD, PhD for their advice.

REFERENCES

25. Gagliardì PD, Hoffer PB, Rosenfield AT. Correlative imaging in abdominal

SELF-STUDY TEST
Pulmonary Nuclear Medicine
Questions are taken from the Nuclear Medicine Self-Study Program I, published by The Society of Nuclear Medicine

DIRECTIONS
The following items consist of a heading followed by numbered options related to that heading. Select those options you think are true and those you think are false.

True statements concerning 99mTc DTPA aerosol inhalation studies include:
1. The normal effective pulmonary clearance half-time is approximately 3 hr.
2. The size of the aerosol droplets ranges from 2-4 μM in diameter.
3. The radiation dose to the lung is about the same as that for a typical 133Xe ventilation study.
4. There normally is a substantial amount of focal, central airways deposition.
5. They must be performed before perfusion scintigraphy.
6. The pulmonary clearance of 99mTc DTPA aerosol is accelerated by which of the following conditions?
 7. cigarette smoking
 8. adult respiratory distress syndrome
 9. idiopathic pulmonary fibrosis
 10. hyaline membrane disease

True statements concerning the pulmonary accumulation of radioiodinated propanediamine (HIPDM) include:
11. It is inhibited by aubain.
12. It is diminished in the presence of chlorpromazine.
13. It is saturable.
14. It is Na+/K+ ATPase-dependent.
15. It is increased in the presence of propranolol.

SELF-STUDY TEST
Pulmonary Medicine

ITEMS 1-5: 99mTc-DTPA Aerosol
ANSWERS: 1, F; 2, F; 3, F; 4, F; 5, F
Several of these statements represent common misconceptions about radiodiagnostic scintigraphy. After inhalation, the aerosolized 99mTc activity enters the lung by direct absorption into the bloodstream across the alveolar-capillary membrane with a normal biological half-time of approximately 1 hr. Thus, the overall effective half-time is slightly less than 1 hr, because of the simultaneous decay of 99mTc. This pulmonary clearance time can be altered in the presence of various types of pulmonary pathology, as addressed in the next question. The relatively rapid pulmonary clearance of 99mTc assures that the radiation dose to the lung will be small. In fact, typical radiation exposure from a conventional perfusion aerosol inhalation study is less than 100 mrad to the lungs, compared with several hundred millirads from a typical 133Xe rebreathing ventilation study.
Current radiodiagnostic preparations achieve relative uniform peripheral deposition of activity because the size of the aerosol particles generated by the nebulizer is in the submicron range. Aerosol particle diameters are in the 0.5-0.8 micron range, rather than the 2-4 micron range. Aerosol generators that produce 2-4 micron radioaerosols yield substantial degrees of focal, central airways deposition, even in the presence of normal breathing or with only relatively mild central airflow turbulence. Although central deposition of submicronic radioaerosols may occur in patients with excessive bronchial secretions or those with active bronchospasm, only mild degrees of central deposition are seen in smokers and patients with mild to moderate degrees of obstructive airways disease. Thus, adequate peripheral deposition is obtained to permit accurate evaluation of ventilation-perfusion match and mismatch.
Radioaerosol studies with 99mTc DTPA can be performed either before or after the perfusion dose is administered. When the studies are performed prior to perfusion scanning, the radioaerosol nebulizer is loaded with approximately 30 mCi of activity. After several minutes of breathing the radioaerosol, approximately 750 µCi of activity is actually deposited in the lungs. This amount of activity would be insufficient to evaluate the distribution of ventilation if a usual dose (3-5 mCi) of 99mTc particles had already been given for perfusion scintigraphy. Consequently, if a post-perfusion aerosol inhalation study is desired, the administered activity of 99mTc particles should be reduced to no more than 1 mCi, and this should be followed by radioaerosol inhalation from a nebulizer (continued on page 2137)