Planar Myocardial Perfusion Imaging with Technetium-99m-Teboroxime: Comparison by Vascular Territory with Thallium-201 and Coronary Angiography

Seth T. Dahlberg, Howard Weinstein, Robert C. Hendel, Brenda McSherry, and Jeffrey A. Leppo

Departments of Nuclear Medicine and Medicine (Division of Cardiology) and the Myocardial Isotope Research Laboratory, University of Massachusetts Medical Center, Worcester, Massachusetts; and Department of Medicine (Sections of Cardiology and Critical Care), Northwestern University Medical School, Chicago, Illinois

Myocardial perfusion agents labeled with 99mTc offer improved physical imaging properties compared to 201Tl. Teboroxime is a new 99mTc-labeled compound for myocardial perfusion imaging that shows a high myocardial extraction and rapid clearance. Sixty-seven patients underwent planar teboroxime imaging with a rapid acquisition protocol. Agreement of teboroxime and 201Tl for the presence or absence of disease occurred in 56/65 patients (86%). There was agreement (normal or abnormal) between the two agents in 156/195 vessels (80%) and 457/585 segments (78%). When abnormal segments (ischemia or infarction) were compared, teboroxime showed significantly more ischemic segments (89/135, 66%) than did 201Tl (73/135, 54%, p < 0.05). Teboroxime offers accuracy comparable to 201Tl for the diagnosis of coronary artery disease and may improve the detection of ischemic or viable myocardium. In addition, its rapid myocardial clearance permits stress/rest imaging in 60–90 min.

Myocardial perfusion imaging with 201Tl is a well established technique for the evaluation of coronary artery disease that demonstrates good sensitivity and specificity for the diagnosis of coronary stenoses when compared with coronary angiography (1–3). However, despite its widespread use and proven utility, thallium has several deficiencies as an imaging agent. The low photon energy of 80 keV is not ideal for Anger camera imaging and results in soft-tissue attenuation artifact. In addition, the relatively long half-life of 201Tl limits the patient dose, which results in lower photon fluence.

Technetium-99m has physical properties that are well suited to Anger camera imaging, while its short half-life allows a high administered activity. Recently two 99mTc-labeled myocardial perfusion agents, sestamibi and teboroxime, have been released for clinical use. Sestamibi is a hexakis isonitrile compound that has a prolonged myocardial retention, while teboroxime is a BATO compound that has a very high myocardial extraction and rapid myocardial clearance (4–6).

The rapid myocardial clearance of teboroxime permits serial stress-rest imaging in as little as 60–90 min (7,8). To evaluate the utility of this compound for the detection of coronary artery disease, we compared myocardial perfusion imaging with teboroxime and thallium in a group of patients being evaluated for coronary artery disease.

MATERIALS AND METHODS

Patients

Sixty-seven patients were recruited from those undergoing cardiac catheterization or thallium scintigraphy within the preceding 3 mo. Patients were greater than 18 yr of age, and women with child-bearing potential were excluded. Informed consent was obtained from each patient after the study was approved by the Human Studies Review board at the University of Massachusetts Medical Center. Sixty-five patients underwent both 201Tl and teboroxime imaging, with 25 of these patients also undergoing coronary angiography. Two additional patients underwent teboroxime imaging and coronary angiography without 201Tl imaging. When patients had both 201Tl and teboroxime imaging, 201Tl was performed first.

Technetium-99m-Teboroxime Preparation

Teboroxime was obtained as a lyophilized kit from Squibb Diagnostics, Princeton, NJ. A maximum of 100 mCi (99mTc) pertechnetate in 1 ml of saline was added to each vial. The vial was placed upright in a 100°C water bath for 15 min and allowed to cool to room temperature. Radiochemical purity was checked with paper chromatography as previously described (7). Radiochemical purity exceeded 90% in all cases.

Thallium-201 Scintigraphy

All patients underwent a maximum symptom-limited treadmill exercise test using the standard Bruce protocol. Electrocar-
diagrams, blood pressures and heart rates were recorded during each stage of exercise and cardiac rhythm was continuously monitored. At peak exercise 2.0–2.8 mCi of 201Tl were injected intravenously and exercise continued for 30–60 sec. Planar Anger camera imaging using the 80 keV photopeak of 201Tl was performed with images acquired in a 128 × 128 matrix. The 45° left anterior oblique (LAO), anterior and left lateral views were obtained for 7 min each. Delayed 201Tl imaging was performed 3–4 hr later in a similar manner.

Teboroxime Scintigraphy

Exercise testing, as described for 201Tl scintigraphy, was performed. At peak exercise, 17 to 25 mCi 99mTc-teboroxime were injected followed by planar myocardial imaging. Patients were then rapidly positioned (seated or standing) in front of the gamma camera. Patient imaging was begun within 1 min of the discontinuation of exercise.

The first 45 patients underwent planar imaging using a dynamic acquisition protocol. The heart was continuously monitored on the video display of the gamma camera, and images were acquired in dynamic acquisition mode in a 64 × 64 matrix at 20 sec/frame. Patients were rotated in a chair or while standing, and 40–80 sec (2–4 frames) of data were obtained in the anterior, 45° LAO and left lateral positions after blood-pool clearance. A similar imaging protocol was repeated at rest after a second injection of teboroxime.

The next 22 patients underwent planar teboroxime imaging using a static imaging protocol. The 45° LAO, anterior and left lateral images were acquired in static mode in a 128 × 128 matrix with 45 sec/image. Similar imaging was also performed at rest after a second injection of teboroxime.

The imaging sequence varied, with 46 patients undergoing stress imaging first and 21 patients undergoing rest imaging followed by stress imaging. In all patients, images were collected within 5 min of teboroxime injection. Because of the rapid myocardial clearance of teboroxime, there was no apparent difference between the two imaging sequences. In addition, no differences were noted in the correlation of the teboroxime images from dynamic or static studies, so all studies were combined. All images were considered to be of diagnostic quality. Of note, the static images appeared of slightly higher visual quality than the summed dynamic frames. The stress/rest teboroxime studies were completed within 1–2 hr as opposed to the 3–4 hr required for stress/redistribution 201Tl imaging.

Image Analysis

Both the teboroxime and the 201Tl scans were analyzed on a computer display and on film by at least two observers who were blinded to patient data. Each scan was divided into nine segments (three segments/view), and the activity in each segment was visually assessed. Segments that were abnormal with stress imaging were visually assessed for improvement with rest imaging. Those segments that showed no change from stress to rest were considered to represent myocardial infarct while segments that showed definite improvement from stress to rest were interpreted as ischemia. Segmental perfusion abnormalities were assigned to the three coronary artery territories as shown in Figure 1. Segments 1, 4 and 9 were assigned to the left anterior descending artery, segments 3, 5 and 7 to the right coronary artery and segment 6 to the left circumflex artery. Isolated apical defects (segments 2 or 8) were interpreted as diagnostic for coronary artery disease, but were nonspecific for vessel territory.

RESULTS

Patient Population

The 67 patients included 53 men and 14 women with a mean age of 58 ± 12 yr. Thirty-six patients (54%) had a history of myocardial infarction, 29 (43%) were treated with beta antagonists and 30 (45%) were treated with calcium antagonist medications. Medications were not routinely discontinued before the exercise tests.

Exercise Parameters

The comparative exercise variables for stress 201Tl and teboroxime tests (Table 1) showed similar final exercise stage, exercise
detection and heart rate-blood pressure product. Slightly more patients had ECG ST-depression at a higher mean percentage of maximum predicted heart rate during the 201Tl exercise tests than during the teboroxime tests.

Detection of Coronary Artery Disease

Stress teboroxime and 201Tl imaging were concordant for the presence of coronary artery disease in 56/65 patients (86%, K = 0.62). Agreement was 85% in patients with a history of myocardial infarction and 87% in those without. The overall sensitivity by planar teboroxime imaging was 90% (19/21) and 90% (18/20) by 201Tl for the detection of coronary artery disease in the subgroup of patients who underwent coronary angiography. In the few patients who did not have coronary artery disease by coronary angiography, the specificity was 70% (3/6) by teboroxime imaging and 40% (2/5) by 201Tl imaging. Only nine patients with coronary angiography had no history of myocardial infarction. In this subgroup, the sensitivities of teboroxime and 201Tl were 71% and 86%, while the specificities were both 50%.

Detection of Disease in Individual Coronary Vessels

In the 65 patients with both teboroxime and 201Tl imaging, disease in individual coronary arteries was diagnosed using the patterns in Figure 1. The overall agreement of teboroxime and 201Tl (Table 2) for the presence of disease in individual coronary arteries was 80% (K = 0.56). This agreement ranged from 75% for disease in the left anterior descending artery to 83% for disease in the left circumflex artery. The sensitivities and specificities of teboroxime and 201Tl imaging for the detection of disease in individual vessels in the subgroup of patients who underwent coronary angiography are shown in Table 3. There was no significant difference between the sensitivity or specificity of teboroxime versus 201Tl in any of the individual vessel territories. Both teboroxime and 201Tl tended toward lower sensitivity (28%, 28%) and higher specificity (85%, 82%) for left circumflex disease than for disease of the left anterior descending or right coronary arteries. However, when comparing detection of disease in individual coronary arteries, only the difference in sensitivity of teboroxime imaging for disease in the left anterior descending artery versus the left circumflex artery was significant.

Segmental Analysis

Perfusion in each of the nine segments (Fig. 1) was compared in the 65 patients who had both teboroxime and 201Tl images. There was good agreement for normal versus abnormal perfusion (Fig. 2) with concordance in 457/585 segments (78%, K = 0.51). However, when the pattern of uptake (normal, ischemia, infarct) of teboroxime and 201Tl was compared (Fig. 3), there was concordance in 407/585 segments (70%, K = 0.40) indicating only fair agreement. Because preliminary data suggested that more abnormal segments were interpreted as ischemia with teboroxime than with 201Tl imaging (7), the pattern of abnormality was further analyzed in the abnormal segments. When only the segments which were abnormal by both teboroxime and 201Tl were compared (Fig. 4) for the type of abnormality (ischemia or infarction), there were significantly more ischemic segments on the teboroxime images than on the 201Tl images (p < 0.05). A patient example (Fig. 5) illustrates the greater areas of ischemia seen on a teboroxime scan compared to a 201Tl scan.

DISCUSSION

Teboroxime is a lipophilic BATO compound that demonstrates both a higher myocardial extraction and less diffusion limitation than 201Tl over a wide range of coronary flows (4,12). However, in the range of increased coronary blood flow caused by exercise, both teboroxime

TABLE 1

<table>
<thead>
<tr>
<th>Exercise stage</th>
<th>Teboroxime</th>
<th>201Tl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 ± 1</td>
<td>3.1 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>Exercise duration (min.)</td>
<td>8.1 ± 2.8</td>
<td>8.4 ± 2.7</td>
</tr>
<tr>
<td>% Maximum predicted heart rate</td>
<td>81 ± 3</td>
<td>86 ± 12*</td>
</tr>
<tr>
<td>Double product (mm Hg x bpm)</td>
<td>22,928 ± 7303</td>
<td>24,360 ± 7428</td>
</tr>
<tr>
<td>Chest pain</td>
<td>11/64 17%</td>
<td>16/64 25%</td>
</tr>
<tr>
<td>ECG ST-depression ≥1 mm</td>
<td>16/65 25%</td>
<td>25/65 38%*</td>
</tr>
</tbody>
</table>

* p < 0.05, teboroxime vs. 201Tl exercise tests.

TABLE 2

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Agreement</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>49/65</td>
<td>75</td>
</tr>
<tr>
<td>RCA</td>
<td>53/65</td>
<td>81</td>
</tr>
<tr>
<td>LCX</td>
<td>54/65</td>
<td>83</td>
</tr>
<tr>
<td>Overall</td>
<td>156/195</td>
<td>80, K = 0.56</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teboroxime</td>
<td>201Tl</td>
<td>Teboroxime</td>
</tr>
<tr>
<td>LAD</td>
<td>70</td>
<td>62</td>
</tr>
<tr>
<td>RCA</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>LCX</td>
<td>28*</td>
<td>28</td>
</tr>
<tr>
<td>Overall</td>
<td>56</td>
<td>45</td>
</tr>
</tbody>
</table>

* LAD = left anterior descending; RCA = right coronary artery; LCX = left circumflex.

p < 0.05 vs. teboroxime LAD sensitivity.
and thallium can accurately assess regional perfusion, suggesting that the two agents would show comparable results with stress exercise perfusion imaging (13).

The results of this study indicate that teboroxime and 201TI give comparable diagnostic information with planar exercise perfusion imaging. The two agents were concordant for the presence of coronary artery disease in 56/65 patients (86%). In the subgroup of patients who underwent coronary angiography, teboroxime and 201TI showed a similar (90%) sensitivity for the detection of coronary artery disease.

In addition to diagnosing the presence of coronary artery disease, 201TI imaging can determine the particular vessels that are abnormal (2). In this study, 201TI and teboroxime imaging were in agreement about the individual coronary vessels with disease in 80% of the 195 coronary arteries. When compared in the subgroup with coronary angiography, there was no difference in the sensitivity or specificity of teboroxime versus 201TI for the detection of diseased vessels. Both agents showed a similar tendency toward a lower sensitivity for detection of disease in the left circumflex coronary artery. This lower sensitivity for circumflex disease has been reported in previous studies of planar 201TI imaging (14,15). It may be related to the overlap of myocardium that occurs with planar imaging or to our image analysis which required a defect in one specific segment (posterolateral) for the diagnosis of circumflex disease. Although SPECT 201TI imaging offers greater accuracy for detection of disease in specific coronary vessels,
the rapid myocardial clearance of teboroxime may pose a difficulty with SPECT imaging systems (i.e., single-head, step-and-shoot systems) that are designed to collect 201Tl scans.

A comparison of perfusion in each myocardial segment showed a good agreement for the presence of an initial stress defect (normal versus abnormal) between teboroxime and 201Tl. However, when segments were classified as normal, ischemia or infarct, the agreement between teboroxime and 201Tl was only fair. An analysis of the segments classified as abnormal by both agents indicates that teboroxime imaging classifies significantly more segments as ischemic (versus infarcted) than does stress/rest 201Tl. The segmental detection of a transient stress defect with teboroxime but infarct with 201Tl may be the result of separate stress and rest teboroxime injections. Separate stress and rest studies with 201Tl or studies utilizing reinjection can demonstrate more ischemic segments than a single stress injection followed by redistribution imaging (16,17).

The high extraction and rapid washout of teboroxime may also result in a higher detection of ischemic segments by allowing completion of teboroxime imaging in 5–10 min versus 20–25 min for 201Tl. This results in a stress image that is free of any contribution by the pattern of rest blood flow during image acquisition. Although teboroxime imaging might also diagnose more areas of ischemia by more accurately reflecting a wider range of coronary flow than 201Tl, that property appears less important in this study. Most of the patients achieved relatively low heart rates (perhaps due to antianginal therapy or to underlying coronary disease), which would result in less than maximal regional flow disparity. The stress 201Tl and teboroxime images of coronary blood flow during exercise detected similar defects (Fig. 2). The higher percentage of maximal heart rate and increased incidence of chest pain (Table 1) after the 201Tl stress may have been due to a training effect since 201Tl was performed first. This could only have increased the detection of ischemic segments on the 201Tl stress studies. Therefore, the linearity of myocardial teboroxime uptake over low to high coronary flow rates is probably less important in accounting for the greater number of ischemic segments detected with teboroxime imaging. Further studies comparing teboroxime imaging with 201Tl reinjection are clearly warranted to assess whether the tracer (teboroxime) or the protocol (separate stress/rest injections) accounts for the improved detection of transient defects.

There are several limitations to this study. Although all patients underwent planar teboroxime imaging, the protocol varied with both stress/rest and rest/stress studies performed. Both dynamic and static acquisition studies were also performed. However, despite these variations in the protocol, all patients underwent rapid planar imaging that was completed within 5 min of teboroxime injection, and there were no systemic differences noted in any of the subgroups. We are currently using the static acquisition protocol because of a subjective assessment of improved image quality.

Not all patients underwent coronary angiography, and almost all who did had coronary disease suggesting a strong selection bias in our study. Such a selection bias may inflate perfusion imaging sensitivity and lower apparent specificity (18).

CONCLUSIONS

Teboroxime and 201Tl perfusion imaging give comparable diagnostic information in patients undergoing exercise testing for assessment of coronary artery disease. However, the rapid myocardial clearance of teboroxime allows much faster patient throughput than standard 201Tl imaging. The separate stress/rest tracer injections of teboroxime also result in a higher detection of ischemic segments than does stress and delay 201Tl imaging. Our results, as well as the possible prognostic significance of enhanced ischemia detection, warrant further study of teboroxime myocardial perfusion imaging.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Public Health Grant HL34199 of the National Heart, Lung, and Blood Institute, Bethesda, MD, by a Grant-in-Aid from the American Heart Association (#890978) and by Squibb Diagnostics, Princeton, NJ. This work was done during the tenure of a Clinician Scientist Award from the American Heart Association.

REFERENCES

