Diagnosis of Segmental Necrosis in a Pancreas Transplant by Thallium-201 Perfusion Scintigraphy

Harry Hirsch, Mariano Fernandez-Ulloa, Rino Munda, Robert A. Fisher, Jonathan S. Moulton, and Christopher J. Huth

Departments of Nuclear Medicine, Transplant Surgery, and Radiology, University of Cincinnati Medical Center, Cincinnati, Ohio

Thallium-201 was used to image a patient with a pancreatic transplant. Incomplete visualization of the graft on the ^{201}Tl scan, compared to CT, led to the diagnosis of segmental necrosis of the tail of the graft. Due to the low background and favorable target-to-non-target ratio, ^{201}Tl pancreas scintigraphy may be useful in the follow-up of pancreatic transplants.

The initial flow and blood-pool phase of the $^{99m}\text{Tc}-\text{DTPA}$ renal study has been shown to be a sensitive though nonspecific indicator of flow status of the neighboring pancreatic transplant (1,2). We present a case where ^{201}Tl was used as a pancreatic imaging agent with marked improvement in organ visualization.

CASE REPORT

A 28-yr-old male with longstanding insulin-dependent diabetes mellitus underwent a simultaneous cadaveric kidney/pancreas transplantation. The kidney was implanted in the left iliac fossa and the pancreas, measuring approximately 20 cm, on the right by a pancreaticoduodenocystostomy. As the donor’s celiac trunk had been used to harvest the liver, the splenic artery, supplying the pancreas, was grafted to the donor’s superior mesenteric artery (3) and then to the external iliac artery of the recipient. A routine immunosuppressive protocol was started (1). The patient was normoglycemic, requiring only insulin coverage for his parenteral nutrition. Creatine was 2.1 mg/ml off dialysis. On the sixth postoperative day, the white blood cell count had risen to 19,600/mm3, glucose to 289 mg/ml, and creatinine to 2.6 mg/ml. Ultrasound (US) showed an enlarged pancreatic head and body. The tail was not visualized due to overlying gas. Doppler US showed possible absent flow in the splenic vein. On computed tomography (CT) without contrast, inflammatory changes surrounding the pancreas and two high-density tubular structures within the pancreatic tail suggestive of thrombosed vessels (Fig. 1) were noted.

A ^{99m}Tc-DTPA study was performed with a 7500 Siemens Orbiter peaked at 140 keV with a 15% window. Upon intravenous injection of 15 mCi, 2-sec frames were obtained for 1 min followed by a 600,000 count blood-pool image and sequential 5-min images for the same time (Fig. 2). There was good perfusion of the enlarged head and body. The tail could not be assessed with certainty due to high background activity.

The following day, a ^{201}Tl study was obtained with the same camera peaked at 81 and 167 keV, with windows of 30% and 20%, respectively. After intravenous injection of 2 mCi ^{201}Tl, sequential 5-min images were obtained up to 30 min (Fig. 3). The head and body showed good uptake of the radioisotope from the first image on and measured 5 to 6 cm each using a lead marker as reference. Background decreased markedly after 5 min. The tail, which on CT extended to the right flank, remained photopenic, indicating absent perfusion of that segment.

The patient underwent surgery. A 9-cm necrotic tail was resected. On pathologic examination, extensive fatty necrosis and vascular thrombosis of the small vessels was seen. Biopsy of the kidney showed mild acute tubular necrosis. A peripancreatic abscess was percutaneously drained 2 wk later. The patient has remained euglycemic.

DISCUSSION

Most complications of pancreatic transplantation in the initial postoperative period are surgical with intra-abdominal infection and vascular thrombosis as leading causes, followed by pancreatitis, peripancreatic inflammatory collections, and other less frequent problems. Rejection accounts for the other failures and is usually more important in later stages (1,4).

Since percutaneous biopsy has a high rate of complications, the clinician relies on a combination of noninvasive tests. Glucose, C-peptide, urine amylose, and creatinine to monitor associated kidney rejection, are helpful though each have their own limitations.

Currently, perfusion of the transplant is most often monitored by Doppler US and with ^{99m}Tc-DTPA flow and blood-pool imaging (5–6). The latter has a high sensitivity,
FIGURE 1. CT section through the head (A) and the tail (B) of the transplant showing edema of the head (arrows) and thrombosed vessels in the tail (short arrows).

but lower specificity (2). Technetium-99m-DTPA scintigraphy alone or in combination with urine amylase and serum creatinine has also been used successfully to monitor early rejection (7,8). Caution remains as there are several unexplained false-positive and false-negative studies (6), and confirmation by arteriography in the case of absent perfusion has been suggested (1). Anatomic delineation of surgical complications is usually better with US or CT (9). Magnetic resonance imaging has shown promise both for surgical complications and for rejection. It is hampered, however, by false-positives for the latter in the postoperative period (10).

Since its introduction as a myocardial imaging agent (8), 201Tl has been useful in several other areas, e.g., in parathyroid and metastatic tumor imaging and to assess muscle perfusion, based on its high peripheral extraction.

FIGURE 2. Technetium-99m-DTPA flow and blood-pool images show adequate flow (arrow) and blood-pool activity in the head (arrow heads). The tail is not clearly visualized. A corresponding 201Tl image shows good uptake in the head only (short arrows). Note the low background.

We found little information on its kinetics in the pancreas (8,11), perhaps because it is included in the small intestine fraction in most biodistribution studies. In view of a blood clearance half-time of 5.1 min (8), a 5-min image performed 25–30 min postinjection should give excellent results since background caused by blood-pool activity will be low. While assessment of 99mTc-DTPA images is hampered, especially in the postoperative period as in our case, by edema and inflammation of surrounding tissues, high contrast can be attained with 201Tl in this situation. We have also imaged four other patients with 201Tl who were at least 6 mo postoperative after an uncomplicated transplantation and who were euglycemic, all in the non-fasting state. Figure 3 shows one such study with good visualization of the graft and very low background. Although the intestinal tract is outlined, it usually does not overlap the pancreas in the supine position and has not interfered with visualization of the graft.

Because 201Tl uptake is also dependent on cellular viability, it might be helpful in the early detection of rejection. The newer brain radiopharmaceuticals are now being used to image the native pancreas (12), and the newer cardiac agents may give good results as well. Further studies should include comparison of these agents in the case of transplants.

ACKNOWLEDGMENTS

The authors wish to thank Ruth A. McDevitt, BSN for her technical assistance and Ms. Shirley M. Chandler for assistance with the photographs.

1606 The Journal of Nuclear Medicine • Vol. 32 • No. 8 • August 1991
REFERENCES

