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by small doses of ICI- 118,55 1 or of timolol. After this
selective inhibition of ICYP in the dog lung, binding of
ICYP in the heart was inhibitable by either propranolol or
timolol; the latter beta antagonist reduced the heart con
centration to 18% of total binding, a level comparable to
that attained in the rat. These results indicated that the
ICYP portrayed in the heart was largely bound to beta
receptors. The distribution of ICYP, which reflected the
sites of beta receptors in the left ventricle, appeared to be
diffuse.

The highly selective inhibition of lung binding of ICYP
should not impair future measurements aimed at quanti
fying the receptors in the myocardium. The method of
producing tomographic images can be adopted in any
Nuclear Medicine laboratory with a scintillation camera.
Moreover, an instrument capable of acquiring single pho
ton@emissiondata in dynamic and tomographic modes,

me (â€˜8F-3-OM-DOPA), one of the major metabolites of
8F-DOPA. This amino acid, primarily produced in the

liver, can readily cross the blood-brain barrier (BBB),
probably using the same large neutral amino acid (LNAA)
transport system as L-DOPA. 3-OM-DOPA appears to
have a uniform distribution throughout the brain in ro
dents ( 7) and in primates (8). Administration of â€˜4C-or
3H-labeled L-DOPA or â€˜8F-DOPAto rats or primates leads
to significant concentrations of 3-OM-DOPA in plasma
and a substantial background of 3-OM-DOPA in brain
(9â€”11).The other metaboiites of L-DOPA produced in
the periphery and found in plasma, mainly dopamine
(DA), homovanillic acid, 3,4-dihydroxyphenylaceijc acid,
and their sulfated conjugates, are not likely to cross the
BBB to any significant degree.

Some groups (3,12) have tried to increase the amount
of â€˜8F-DOPAavailable for entrance in the brain and,

The sensitivity of 18F-DOPApositron emission tomography
for imaging presynaptic dopamine systems is limited by the
amount of specific-to-nonspecific accumulation of radioactiv
ity in brain. In rhesus monkeys, we have been able to increase
this ratio by taking advantage of the lag time between 18F-
DOPAinjectionandthe formationof its mainmetabolite,the
amino acid 18F-fiuoromethoxydopa,the entrance of which into
brain is responsible for most of the brain's nonspecific radio
activity. By infusing an unlabeled amino acid, L-phenylalanine,

starting i 5 mm after 18F-DOPAadministration, we preferen
tially blocked the accumulation of 18F-fiuoromethoxydopaby
preventing its entrance into brain through competition at the
large neutral amino acid transport system of the blood-brain
barrier. This method appears as reliable as the original and
more sensitive, as demonstrated by the comparison of normal
and MPTP-treated animals under both conditions.

J NucI Med 1991; 32:1408â€”1413



iments, the effect on input into the heart produced little
change in the estimates of the binding parameters of the
mathematical model. In particular, the relative amounts
of specifically and nonspecificaliy bound ICYP were
largely unaffected. Within the myocardium the total con
centration of ICYP is relatively stable over hours and the
percent of deiodinated metabolite low.

The model appears to be valid even in the presence of
a substantial extra-cardiac metabolism of ICYP. At suffi
cient concentrations, other antagonists might be expected
to displace ICYP from the receptors. Yet, timolol, given
at 34,000 nmole/kg and 30 mm after the ICYP, did not
appreciably displace ICYP from the heart over the next 75
mm.Ontheotherhand,whengivensimultaneouslywith
or 15 mm before the ICYP, timolol prevented binding of
ICYP. This phenomenon ofdiffering interactions between
ICYP and timolol can be explained by the concept that
once ICYP becomes bound to the receptor, the bond is
very firm. For example, in vitro assays of binding and
dissociation of binding were carried out in the presence of
propranolol; the results showed that ICYP could be pre
vented from binding to beta receptors from the heart (to
give the nonspecific binding ofthe assay), but, once bound,
ICYP dissociated slowly from the receptors (5,9).

When increasing doses of ICYP were given to rats, the
pattern of binding of ICYP indicated that saturation of
receptors could be approached in vivo. The Scatchard
analysis ofthe data pointed to two affinity sites for binding;
in the higher affinity site, the Kd was 22 nM. Two affinity
sites have been described for the in vitro binding of ICYP
to beta receptors in membranes derived from guinea pig
hearts (9,10), but, because the in vivo binding was largely
attained from the first pass of blood and the in vitro
binding occurs at an equilibrium in the presence ofa given
concentration of ICYP, we did not expect the measure
ments of in vivo binding to be the same as those obtained
by in vitro assay in the heart of any species. The Kd for
the high affinity sites has been calculated to be 9â€”23pM
by in vitro assay of human (4â€”6,29),guinea pig (9), dog
(24), and rat (23) heart membranes. However, if it is
assumed that ICYP concentration available to the heart
was less than that in the arterial whole blood, then the in
vivo Kd would be less. For instance, if only the non
protein bound ICYP in plasma were available to the
receptors, the Kd would be 88 pM. Nevertheless, even
though the in vivo binding values may differ from the in
vitro values, the changes in binding produced by effects of
physiology and disease should be similar.

We confronted the question of whether, ICYP, a lipo
philic and therefore potentially internalized antagonist,
was binding to beta receptors within cells as well as surface
receptors; the internalized receptors are oflow affinity and
presumed to be non-functional. Timolol, too, is lipophilic
and could inhibit binding of ICYP to internalized low
affinity receptors as well as to surface receptors, but CGP
12177 is a hydrophilic antagonist that is not internalized

(19,20) and would be expected to inhibit binding only to
the surface receptors. Because the slope of the inhibition
curve produced by timolol was steep, it appeared that
timolol was inhibiting the binding of ICYP only to one
class of high affinity receptors. The data do not suggest
inhibition ofbinding to low affinity internalized receptors.
CGP-l2177 which should inhibit binding only to the
surface receptors of cells produced a curve that was signif
icantly less steep than that of timolol, but the reason for
the difference is not clear.

Isoproterenol, a beta agonist, also inhibited ICYP bind
ing to the heart. Although isoproterenol differs from the
antagonists in pharmacologic action and in the interaction
with beta receptors, it did not produce an inhibition curve
with a slope that was different from that of timolol. Of
importance is that, with sufficient levels of inhibition, the
in vivo method is capable of defining slopes of inhibition
curves.

The patterns of inhibition of binding by several beta
antagonists gave further support to the concept that ICYP
is bound to beta receptors in vivo. The EC-50 of timolol
was about one-eighth that of propranolol giving relative
potencies for the two agents in this model of receptor
measurement that were similar to those described for their
pharmacologic activities (18). As a non-selective beta an
tagonist, ICYP should bind to both beta-i and beta-2
receptors, but inhibition of binding to these subgroups of
receptors will differ if antagonists with selective subgroup
activities are employed. In fact, ICYP binding to the heart
where beta-l receptors predominate (22â€”24)was inhibited
significantly more by the beta-l antagonist, atenoiol, than
by the beta-2 antagonist, ICI-l 18,55 1, and the reverse
relationship in potencies was observed in the lung where
beta-2 receptors predominate (25,26).

Also, stereospecificity tests were consistent with ICYP
binding to the receptor. It is possible that some of the (+)
ICYP in the racemic (Â±) ICYP bound to low affinity
receptors (9,10) so that the measured â€œspecificâ€•binding
of (Â±)was somewhat greater than 50% of the binding of
(â€”)ICYP. Nevertheless, the slope of the inhibition curve

of(Â±) ICYP was not different from that of(â€”) ICYP.
A correlation was shown between the beta receptor

density in human atrial myocardium and circulating lym
phocytes (29), but it seems unlikely that such a relation
ship would hold for all diseases and, in any case, the beta
receptor density in lymphocytes could not reflect changes
in distribution ofthe receptors within a heart. Employment
of a I1C-labeled antagonist and positron emission tomog
raphy to depict the beta receptors in the heart has been
reported only in abstract form thus far (30â€”33),and, even
if successful, such an approach will be limited to centers
with the capability of positron emission tomography. We
attained the goal of scintigraphic portrayal of the beta
receptors in the heart ofliving animals by giving 5 mCi of
â€˜23I-ICYPto dogs. To obtain well-defined images of the
heart, it was necessary to suppress lung binding of ICYP
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by small doses of ICI- 118,55 1 or of timolol. After this
selective inhibition of ICYP in the dog lung, binding of
ICYP in the heart was inhibitabie by either propranolol or
timolol; the latter beta antagonist reduced the heart con
centration to 18% of total binding, a level comparable to
that attained in the rat. These results indicated that the
ICYP portrayed in the heart was largely bound to beta
receptors. The distribution of ICYP, which reflected the
sites of beta receptors in the left ventricle, appeared to be
diffuse.

The highly selective inhibition oflung binding of ICYP
should not impair future measurements aimed at quanti
fying the receptors in the myocardium. The method of
producing tomographic images can be adopted in any
Nuclear Medicine laboratory with a scintillation camera.
Moreover, an instrument capable of acquiring single pho
ton emission data in dynamic and tomographic modes,
such as SPRINT (34), may be able to give estimates of
blood flow and ofBmax and Kd ofbinding following bolus
injections of two doses of â€˜231-ICYP,one with high- and
one with low-specific activity (35â€”37).Finally, the ab
sorbed dose of radiation from the procedure should be
acceptable in patients.

Ultimately, scintigraphy ofthe post-synaptic beta recep
tors may be combined with scintigraphy ofthe pre-synaptic
neuron obtained by using â€˜231-MIBG(38) or@ â€˜C-hydrox
yephedrine (39) to give a more complete functional picture
of adrenergic neurons in the heart.

In summary, the non-selective beta antagonist ICYP
appears to bind to beta receptors in vivo. The concentra
tions of the bound ICYP are sufficient to enable scinti
graphic portrayal of the presumed beta receptors of the
heart when the ICYP is labeled with 1231The method has
the potential to reveal changes in the distribution of beta
receptors within the heart and changes in global concen
trations of receptors, and thereby give new knowledge of
the role of the adrenergic nervous system in health and
disease.
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