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Nizar A. Mullani 
UniversiO' qf Texas Mea~cal School 

Houston, Texas 

REPLY: We appreciate the careful study of our paper by Mr. 
Mullani, an experienced and innovative PET researcher. We 
believe the points raised in his letter do not affect the conclu- 
sions drawn in our paper. Each of his points are addressed 
below. 

1. The "resolution frequency" is an ill-defined concept for 
a blurring function, such as a Gaussian, which tapers off 
continuously. Thus, we chose not to use that concept in our 
paper. Instead, we computed the correct integrals exactly and 
left it to the reader to draw conclusions from the graphical 
data. The fact that our results are expressed in units of full- 
width at half maximum (FWHM) does not mean that this 
measurement was assigned any special significance. Data de- 
rived from Mullani's phantom do not refute our conclusions. 

2. The frequency-domain characteristics of a bar and a 
sphere are indeed different. The case of a flat object, such as 
a myocardial wall lying in the transaxial plane, can be treated 
by analysis of a "'slab" of activity with infinite extent in the 
transaxial plane and finite axial dimension. Thus, the integral 
expressions reduce to the simple one-dimensional form. Fig- 
ure I shows a new analysis for this case presented along with 
the three-dimensional data from our paper. Note that the 
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FIGURE 1 
The measure of variation in the recovery coefficient, E~, is 
shown as a function of the ratio of slice spacing-to-resolution 
(S/FWHM). Results are shown for the two ratios of object 
size-to-resolution (d/FWHM) for a sphere and a stab. 

uncertainty in the recovery coefficient (Erc) is actually less f¢ 
the one-dimensional case than for the sphere, a result appar 
ently opposite to that suggested by Mullani. This finding : 
intuitively plausible if one considers that the maximum actix 
ity in a sphere declines with increasing axial offset because e 
transaxiat blurting of the progressively smaller cross-sectiona 
area of the sphere. The infinite slab has constant activity as 
function of offset except near the edge of the bar. Note that 
the recovery coefficient for a sphere will be lower than that 
for a bar of the same thickness; however, our analysis refers 
to the variability of the recovery coefficient with position, not 
its actual value. Results for the aliasing measure (Q~) are also 
very similar for the slab and the sphere. 

3. We agree that the acceptable sampling error depends on 
the application. That is the reason we presented complete 
graphical data; the investigator or tomograph designer can 
choose the appropriate slice spacing according to the imaging 
situation. Note that variability in the recovery coefficient only 
falls to zero for infinitely close spacing. 

In summary, we believe our principal conclusion, slice 
spacing should be approximately one-half the full-width at 
half-maximum, is valid. We believe we are in basic agreement 
with Mullani. In fact, his great practical experience with 
tomograph design strengthens our shared opinions. 

Tom R. Miller 
Jerold W. Wallis 

Robert A. Grothe, Jr. 
Mallinckrodt Institute of Radiology 

St. Louis, Missouri 

Geometric Methods for Determining Left 
Ventricular Volume 

TO THE EDITOR: The article "Left Ventricular Volume 
Calculation Using a Count-Based Ratio Method Applied to 
Multigated Radionuctide Angiography" by Massardo et al. ( 1 ) 
adequately delineates the disadvantages of geometric methods 
for determining left ventricular volume by radiocardiography 
and describes the limitations of heretofore reported count- 
proportional nongeometric methods. The authors describe the 
theory and application of a "count-proportional reference 
volume" method for determination of left ventricular vol- 
umes. They imply that this method avoids the pitfalls of 
geometric methods and retains the advantages of a nongeo- 
metric count proportional technique without the need for 
blood sampling and attenuation correction. 

I suggest that this implication is erroneous. The method 
described is nothing more than a geometric model employing 
a sphere and an indirect measurement of  its diameter rather 
than the more sophisticated prolate ellipsoid as described by 
Dodge et al. (2) for contrast angiocardiography and as applied 
to radiocardiography by Strauss et al. (3). 

Consider the prolate ellipsoid representing the left ventricle 
(LV) generated by rotation of the ellipse 

X 2 y2 

where L and S are the long- and short-axes, respectively. 
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