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Between Distribution Parameters,SampleStatistics

and ReferenceRanges Definedas MeanÂ±2Standard
DeviationsStandard

Proportionof valueswithinMean
deviation the referencerangeDistribution

/L@ 95.4%Sample
R s Variable

where X and s are the sample mean and standard devia
tion, respectively. (The more statistically sophisticated
reader will recognize that @tÂ±2o@actually gives a 95.4%
coverage and that the â€œcorrectâ€•formula is @zÂ±l.96oc We
have elected to use the former since it is familiar to more
readers; the difference is small and, for practical purposes,
unimportant.) On the surface, Equation 1 has the appear

ance ofstatistical validity. So much so, in fact, that medical
journals rarely (if ever) question this way of defining and
presenting a reference range. Despite widespread use, few

clinicians appreciatethe assumptions, limitations, and po
tential dangers of this approach. A major difficulty arises
from the confusing statistical practice ofapplying the terms
â€œmeanâ€•and â€œvarianceâ€•to both population parameters
and samplestatistics(Table1).The distributionfunction
for measurements arising from a given population are
characterized by parameters which are, in general, un
known and unknowable (with absolute precision). A ran
domly sampled subset ofthe population provides the data
needed to compute statistics such as the sample mean and
sample variance that are used as estimators of the distri
bution mean and distribution variance, respectively. It is
the precision with which the sample statistics estimate
their respective distribution parameters that determines
the validity ofa traditionally-defined reference range. This
precision, however, is highly dependent upon the sample

size so that sample sizes ofless than 50 can lead to serious
inaccuracies (1). On the other hand, the suggestion that
each moderate- to large-sized hospital should evaluate
100â€”120reference individuals for each sex and age group
(2,3) is not realistic for the constrained resources of the
average nuclear medicine department (not to mention the
ethical question of irradiating such a large population).

The process of developing and validating a quantitative test
includesdeterminationofa referencerange.Traditionallythis
has been taken as the mean Â±2standarddeviationsfor a
randomsamplingfroma referencepopulation.However,this
method fails to recognize the substantial variability in the
sample mean and standard deviation for the small sample
sizes frequently encountered in nuclear medicine. A new
approach, wh@hinvolves calculating confidence intervals for
the upper and lower bounds of the traditionally defined range,
recognizes three ranges of values: normal, indeterminate, and
abnormal. The principles of this approach are illustrated using
differential renal function in twelve renal transplant donors.
The @â€œTc-DTPAdifferential uptake between 1 and 2 mmgave
a traditionally-definedsingle-kidneyrange of 50% Â±8%,
whereas with our method the normal range would be 50% Â±
6% with indeterminate ranges of 37%â€”44%and 56%â€”63%.
These values are consistent with the wide variation in refer
ence ranges reported in the literature, and suggest that much
of this variabilitymay be a statisticalartifact resultingfrom
inadequate sample sizes. A nomogram has been derived that
permits the power of the reference range determination to be
easilycalculatedfrom the samplesize. Analysisof the effect
of sample size on the accuracy of the upper and lower bounds
of thereferencerangeisadvocatedwheneversmallreference
populations are used.
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etermination of the reference range is one of the
most fundamental steps in validating a quantitative test
for clinical use. Traditionally this has been accomplished
by prospectively performing the new test on a reference
group that is considered representative of some larger
population. When the data appear to fit a normal (Gaus
sian) distribution then the reference range, intended to
include 95% ofthe values presentin this largerpopulation,
is commonly taken as

,@Â±2 s, Eq.!
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We feel that explicitlydeterminingconfidenceintervals
for the reference range boundaries represents a compro
mise between the small sample sizes inherent to nuclear
medicine and the desire for statistical rigor.This approach
is illustrated using data derived from differential renal
function measurements in a small series of normals.

MATERIALSAND METhODS

Assume that Y@and s are the mean and standard deviation

derivedfroma randomsampledrawnfroma populationthatis
known to be normallydistributed.The calculationof 95% con
fidence intervalsfor X is a technique covered in any introductory
course in statistics. According to the central limit theorem the
bounds are givenby

2sx Â±â€”p,
â€˜In

4)

4)
1-'

Eq.2

where n is the sample size. Confidence intervals for s are also
easilycomputed,althoughthis is rarelydiscussedin the medical
literature (4). Such an oversight is regrettable since the error
associatedwith s is alwayslarger than the error associatedwith

@.The 95% confidence interval for s is given by

(@/@L@

10 100

Sample Size (n)

FIGURE1. Effectsof samplesizeon the nondichotomous
referencerange.

are values reflectingour confidence that a given percentile point
Eq 3 ofthe population lies below a given cutoff. After selecting a level

. of probability for containing the true boundary point (typically
80%,90%,95%,or99%),wecanfindfactorsk, andk2inTable
2 suchthat

XÂ±k1.s and XÂ±k2.s

wherea and b are the 0.975 and 0.025 CrIticalvaluesfor a Chi
square distribution with n â€”1degrees offreedom (available from
any set ofstatistical tables). When the true distribution mean (@)
is known there is a statisticalgain in calculatingthe confidence
interval for s which becomes

(@/@;@)2

Eq.5

givenormal-indeterminateand indeterminate-abnormalbound
ary points, respectively,for a referencerange that will include
95%ofthereferencepopulation(s).

Eq.4 The width of the indeterminateclassesis inverselyrelated to
the sample size. A simple index ofthe width ofthe indeterminate
intervalsis given by the ratioofintermediate-to-normal class size:

R = (s,,,.,@â€”Smjn)/Smjnif @LISknown

R = (k2â€”k1)/k1

wherea andb arethe 0.975 and0.025 criticalvaluesfora Chi
squaredistributionwith n degreesoffreedom (note that a degree
offreedomhasnotbeenlostinestimating@).Thecriticalpoints
0.025and0.975canbealteredtoreflectthetoleranceoftheerror
in s that is considered acceptable.

The upperandlowerreferencerangelimits,X â€”2s and@ +
2s, are themselvesstatisticsfor which 95% confidenceintervals
can be determined. These intervals can then be used to define a
newtypeof referencerange.First,considerthe casewhere@ is
knownand let the lowerand upper bounds for s describedabove
be denoted5minand s,,,@,respectively.It is clearthatany value
greaterthan@ + 2.s,,,,.@or lessthan@ â€”2.s,@,is highlylikelyto
be abnormal,whereasvaluesbetween@iâ€”2.g,,,3,,and@ + 2.
are highly likely to be normal. This leaves two ranges of values
for which the error in s does not provide sufficient power to
characterizethem as one or the other, and are best regardedas
indeterminate. Thus, three classes of values are distinguished
rather than the usual â€œnormal-abnormalâ€•dichotomy. With an
infinitely large sample the indeterminate range collapses leaving
the traditionallydefined normal and abnormal classes (Fig. 1).

A similar approachcan be usedwhen @iis not known, except
that the simultaneous variation in@ needs to be considered in
addition to the errorin s. Our method representsan extension of
the toleranceintervalmethodas it is appliedto referencerange
quantitation. We make use of one-sided tolerance factors which

Eq.6

if @iis not known. Eq. 7

As the sample size increases R decreasesand approacheszero in
the limit. Figure 2 illustrates this sample size dependence and
can be used as a nomogram for rapid calculation of the sample
size requiredto provide a given level of precision in the reference
range. Predictablythere is a large reduction in R for each incre
ment in the sample size when the initial sample size is less than
30. However,even with 100subjectsthe indeterminate interval
is still more than one-third the size of the normal interval if a
95%confidenceisdesired.

StudyPopulation
The study population consisted of 13 consecutive potential

related renal transplant donors who had been referred to the
nuclear medicine department for assessment of renal function.
Of these, twelve had archived studies that were complete and
analyzable. All subjects were free of a history of previous renal
disease and hypertension and had normal renal function as
assessedby creatinineclearance,urinary sediment analysis,and
urinary protein excretion.Scintigraphicexaminationswere per
formedwith technetium-99m-DTPA740 MBq followedby â€˜@â€˜i
orthoiodohippurate (OIH) 7 MBq. An Elscint LFOV camera
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TABLE2One-sided
Tolerance Factors (k1, k2)for@ Â±2@atFourDifferent

Levels of Uncertainty (p = 80, 90, 95,99%)'n

p=80% p=90% p=95% p=99%

. This table is abridged and adapated from Tables 1.1-1 .13 of Ref.
(5) courtesy of Marcel Dekker Inc.

computer system was used to acquire data over a 30-mm period
aftereach injection. The kidney outlines and a single background
regionofinterest were identifiedby a single operator.Differential
renal functions based upon uptakes between 1 and 2 mm were
determined for the DTPA and OIH studies. The analysis was
repeated by a second person without knowledge of the first
analysis. There was extremely close correlation in the results

(s.e.c. 1.3% for DTPA and 1.6% for OIH). Values for the left
kidneyconstitutethe rawdata for the remainingdiscussion.

RESULTS

The values for@ and s derived from our study popula
tion are presented in Table 3. The results with OIH were
very similar to those obtained with DTPA. The statistic
550 @5the standard deviation based upon the assumption

that@ is known to be 50%. Reference ranges based upon
S50 will be much more convenient to use since they will be

symmetric about 50%. There is nothing in the definition
ofthe standarddeviation as a measure ofdispersion about
a central value which is violated as long as we have good

A
80%95%@@ Confidence Intervol

lOOt

!10

0I
1 10 100 1000

Sample Size (n)

B
8O%@@5%@@ Confidence Interval

Â¶100@

@:@ â€¢@

0.1 â€˜ I
10 100 1000

Sample Size (n)

2(0.96,15.59)(0.71,31 .26)(0.52, 62.56)(0.15,312.86)3(1
.09,6.24)(0.88,8.99)(0.71 ,12.82)(0.43,28.85)4(1.17,4.64)(0.98,6.02)(0.84,

7.71)(0.58,13.43)5(1
.24,3.98)(1 .06,4.91)(0.92,5.98)(0.68,9.20)6(1.29,3.62)(1.12,4.33)(0.99,

5.11)(0.76,7.32)7(1.33,3.39)(1.17,3.97)(1.05,
4.60)(0.83,6.27)8(1

.36,3.23)(1 .21,3.72)(1 .09,4.24)(0.88,5.60)9(1.39,3.11)(1.24,3.54)(1.13,
3.99)(0.93,5.13)10(1.41,3.01)(1.27,3.40)(1.16,
3.80)(0.97,4.79)11(1.43,2.94)(1.30,3.29)(1.19,
3.65)(1.00,4.53)12(1.45,2.87)(1.32,3.20)(1.22,
3.53)(1.04,4.32)13(1.47,2.82)(1.34,3.13)(1.24,
3.43)(1.06,4.15)14(1

.48,2.77)(1 .36,3.06)(1 .26, 3.34)(1.09,4.00)15(1.50,2.74)(1.38,3.01)(1.28,
3.27)(1.11,3.88)1
6(1 .51,2.70)(1 .39,2.96)(1 .30, 3.20)(1 .13,3.78)17(1.52,2.67)(1.41,2.91)(1.32,

3.15)(1.15,3.69)18(1.53,2.64)(1.42,2.88)(1.33,
3.10)(1.17,3.61)19(1.54,2.62)(1.43,2.84)(1.34,
3.05)(1.19,3.54)20(1

.55,2.60)(1 .44,2.81)(1 .36, 3.01)(1.20,3.48)21(1

.56,2.58)(1 .45,2.78)(1 .37, 2.98)(1.22,3.42)22(1

.57,2.56)(1 .46,2.76)(1 .38, 2.95)(1.23,3.37)23(1

.57,2.54)(1 .47,2.73)(1 .39, 2.91)(1.24,3.32)24(1.58,2.52)(1.48,2.71)(1.40,
2.89)(1.25,3.28)25(1

.59,2.51)(1 .49,2.69)(1 .41, 2.86)(1.27,3.24)30(1

.61,2.45)(1 .52,2.61)(1 .45, 2.76)(1.32,3.08)35(1.64,2.41)(1.55,2.55)(1.48,
2.68)(1.36,2.97)40(1

.66,2.37)(1 .58,2.50)(1 .51, 2.62)(1.39,2.88)45(1.67,2.34)(1.60,2.46)(1.53,
2.57)(1.42,2.81)50(1

.68,2.32)(1 .61,2.43)(1 .55, 2.54)(1.44,2.75)60(1

.71 ,2.28)(1 .64,2.38)(1 .58, 2.48)(1.48,2.67)70(1

.72,2.26)(1 .66,2.35)(1 .61, 2.43)(1 .51,2.60)80(1

.74,2.24)(1 .68,2.32)(1 .63, 2.39)(1.53,2.55)90(1.75,2.22)(1.69,2.30)(1.64,
2.37)(1.56,2.51)100(1

.76,2.20)(1 .71,2.28)(1 .66, 2.34)(1 .57,2.48)

FIGURE2. Relationshipbetweensamplesizeandreference
range precision(A) for confidenceintervalsof 80%, 90%, 95%,
and 99%. (A) If the true mean(@)is known. (B) If the true mean
(IL) @5not known.

theoretical reasons for choosing @t.This choice is supported
by anatomical and radiological data which indicates the
left kidney to be only marginally largerthan the right (6).

The reference range for DTPA is compared with prey
ously published reference ranges (7,8,9) in Figure 3. Analy
sis of the pooled data from the above studies gives a
standard deviation of 3.6% (95% confidence interval 3.2â€”
4.2). This translates into a traditionally-defined symmetric
normal range of 50% Â±7.3%. The nondichotomous tol
erance interval method gives a normal range of 50% Â±
6.4% flanked by comparatively small indeterminate ranges
of4l.6%â€”43.6%and 56.4%â€”58.4%.In this case the statis
tical precision afforded by the pooled sample size (n =
124) probably does not warrant the added complexity of
a nondichotomous reference range.
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DTPAI@OIH1@Raw

StatisticsMean(@)51.3

(48.8-53.7)51.0(48.7-53.3)StDev(s)4.0

(2.8-6.8)3.9(2.7-6.6)StDev(s@o)4.2

(2.9-6.6)4.0(2.8-6.4)Symmetric
referencerangeNormal44.2-55.844.4-55.6Indeterminate36.8-44.2

55.8-63.237.1-44.455.6-62.9Abnormal<36.8

> 63.2<37.1 >62.9Asymmetric

referencerangeNormal46.4-56.245.2-55.8Indeterminate37.2-46.4

56.2-65.537.2-46.255.8-64.8AbnOrmal<37.2

>65.5<37.2 >64.8

. CurrentPooled(n=12)

Gruenwald [8] (n-

Chiarini [6](n-45)124)(nâ€”SO)

TABLE 3
Differential Left Kidney Functions (%) and Derived

Nondichotomous Reference Ranges

uncertainty in the standarddeviation arising from the use
of relativelysmallsamplesizes.In our studythe normal
rangeforsinglekidneyfunctionwouldtypicallybe stated
as 50%Â±8%.Ournondichotomousapproachleadsto a
normalrangeof 50%Â±6%,withindeterminaterangesof
37%-44% and 56%â€”63%,and abnormal ranges of less
than37%orgreaterthan63%.

In general,nonparametricmethodsarepreferredsince
they make no assumptions about the shape of the under
lying distribution. Two such approaches are the 2.5â€”97.5
interpercentile intervals (10) and nonparametric tolerance
limits (11,12). Althoughthe formercan theoreticallybe
used with as few as 40 cases, in practice a considerably
larger sample is necessary to give reasonable statistical
accuracy. The latter is also unusable with small samples
and would only give an 18%probability ofcontaining the
true 95% reference interval if only 12 cases were available
as in thecurrentstudy(13).

The major advantageof a parametricmethod is its
ability to generate distribution predictions based upon a
smaller number of patients. The choice ofthe distribution
then becomescriticalsince a wrongchoice can produce
misleading results Ironically, determining the shape of a
distribution typically requires a much larger sample than
estimating the 2.5â€”97.5percentile points (14,15). Pars
metric tolerance limits have been a popular way to quan
titate the effect of sample size on the reference interval
(12). Finding a 95% coverage requires the use of a wider
referencerangeas the sample size decreases,while the
abnormal range simultaneously becomes smaller. A value
falling outside ofthe bounds@ Â±2s might then be accepted
asnormal(ie.,theStatisticalpowerofthe referencesample
is insufficient to â€œproveâ€•that this value falls outside the
range @LÂ±ii). Clearly this leads to a reduction in the
abilityto correctlyclassifyabnormalresults.Intuitively
both the normaland abnormalrangesshouldshrinkas
the errorin ourestimatesfor@ and@ increases.

Criticismsthatourmethodis overlyconservativein its
definition of the upper and lower bounds are justified
insofar as values laying outside ofa 95% confidence inter
val based upon the upperend ofa 95% confidence interval
for the standarddeviationare almostcertainto be truly
abnormal.However,flexibilityin the choiceof P forthe
tolerance factors (or, if@@is known, in the critical points
of the Chi-square distribution) provides a mechanism for
specifying less severe conditions for â€œnormalcy.â€•

Q@riy, the preoccupation with finding the â€œcorrectâ€•
cut-offpoint betweennormaland abnormalignoresthe
arbitrary nature in any such choice. We have formalized
whatshouldbeintuitivelyobvious:somevaluesfallwithin
a statisticalgreyzoneandcannotbecategorizedasnormal
or abnormal, but this borderline range can be decreased
with larger sample sizes. Since small reference populations
will continue to be a fact of life in most nuclear medicine
facilities,we advocatean explicitanalysisof samplesize
effects as a routine step in reference range determination.

65 . Gruenwald [7]
(n=16)

@ 60

0

C)
@ 55

@ 50

a) 45

Cl') 40

35

FIGURE3. Publishedreferenceintervalsfordifferentialrenal
functioncomparedwith the current study. DOttedlinesrepresent
the normal-indeterminateand indeterminate-normaldivisionsfor
the DTPAdata from the current study.
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DISCUSSION

Many methods have been described for extracting a
reference range from a set ofdata. However, it is useful to
remember that these are only estimates of the true refer
ence rangewhich is, in general,unknowable.We have
attempted to illustrate this principle in the context of
differential renal function using DTPA and OIH, the two
mostfrequentlyusedrenalradiopharmaceuticals.Consid
erable variability exists in the published literature with
respect to the normal degree of asymmetry in this param
eter. Most of this variabilitycan be explainedby the
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