Design and Use of PET Tomographs: The

Effect Of Slice Spacing

Tom R. Miller, Jerold W. Wallis, and Robert A. Grothe, Jr.

The Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri

With modern positron tomographs producing 14, 21, or
more transaxial slices, the effects of slice spacing on
quantitative reconstruction and three-dimensional displays
must be evaluated. This analysis can be approached in
terms of the partial volume effect, quantified by the recov-
ery coefficient, or in terms of sampling theory leading to
the concept of aliasing. The axial recovery coefficient
varies as a function of the position of an object in relation
to the slices, with greater variability for larger slice spacings
and finer axial resolutions. The aliased image power varies
in the same way. The variability in the recovery coefficient
and aliasing increase when smaller objects are imaged.
Tomographs should be designed with slice spacing ap-
proximately half the full-width at half-maximum axial reso-
lution of the tomograph; finer spacing does not appear to
confer significant advantages. Thus, quantification and
display in positron tomography depend on slice spacing,
resolution, and object size.
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In the early years of positron emission tomography
(PET), studies were performed with tomographs that
produced a single transaxial slice or, at most, seven
slices (/). More recently, machines have become avail-
able or are under development that can collect studies
consisting of 14, 21, or more transaxial slices (2-5).
Errors in quantification in the transaxial plane caused
by imperfect image resolution have been well studied
for the case of single-slice data (6-8). With the wide-
spread use of multi-slice machines, a further evaluation
of these issues with particular attention to the axial or
z-axis partial volume effect is warranted. The errors
introduced in quantitative analyses and three-dimen-
sional reconstructions caused by the poor sampling of
the older machines requires further study, and the
number of slices required for accurate PET imaging
with the modern machines needs to be determined.
First, the partial volume effect will be analyzed the-
oretically for both single-slice and multi-slice imaging.
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An important result of our work is that the partial
volume effect varies with respect to the positions of the
slices in relation to the imaged objects. This variability
is especially pronounced in the axial direction when
slice spacing is great. The variability will be shown to
be closely related in multi-slice imaging to the signal-
processing concept of aliasing. Graphical data will be
provided to permit evaluation of any PET tomograph
with use of the partial volume and aliasing concepts.
Implications for quantitative PET and for generation
of three-dimensional displays will be discussed.

METHODS

Analysis in the Object Domain and the Frequency
Domain

The errors introduced in multi-slice PET imaging due to
the finite number of slices and the system resolution can be
analyzed in the spatial, or object, domain in terms of the
familiar concepts of partial volume, recovery coefficient and
scatter, or “spillover,” fraction (6-8). Alternatively, the analy-
sis can be carried out in the spatial-frequency domain where
the imaging is considered as a sampling problem, thus, intro-
ducing the concept of aliasing caused by undersampling (9).
The seemingly disparate concepts of variable partial volume
effect and aliasing are, in fact, parallel ways of viewing the
uncertainty introduced by undersampling. These two ap-
proaches provide complementary insights into the problem of
sampling in PET tomographs: the concept of the recovery
coefficient is most relevant to problems of quantification while
the aliasing approach is of greater value in considerations of
three-dimensional display because the magnitude of aliasing
provides a global measure of the corruption of the acquired
image data by undersampling.

Spatial Domain Analysis—The Recovery
Coefficient

The recovery coefficient, RC, has been defined as the ratio
of the peak detected counts in an object with constant count
intensity to its actual count density in the absence of back-
ground or other structures (6, 7). The recovery coefficient used
in PET analysis assumes that the detector is centered upon an
object with uniform activity. Here, we generalize the concept
of the recovery coefficient to include the situation in which
the detector is not centered over the object. We define RC(Ax)
to be the ratio of the detected counts arising from a constant
object to the actual counts when the center of the object is
displaced by Ax from the center of the detector. The calcula-
tion of RC(Ax) assumes there is no activity outside the object.
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object. (The effect of outside activity raising the counts de-
tected in the object is discussed below.)

In an ideal imaging system with perfect spatial resolution,
RC(Ax) would be equal to unity or zero, depending upon
whether the detector were positioned over the object. In PET
imaging, RC(Ax) is dependent upon the total system blurring,
characterized by the point-spread function (PSF) as well as
the object size. The detected activity, I(x), at any point, x, in
the image is the convolution of the PSF with the activity
distribution of the object, O(x).

I(x) = f O(x’) PSF (x’ — x) dx’ (1)

In Figure 1, O(x) represents a one-dimensional object of length
d and constant intensity N. The PSF is modeled as a Gaussian
with standard deviation ¢ (Where FWHM = 2.35¢). The value
of RC(Ax) for this situation is given by:

df2+Ax
N PSF (x) dx

1(8%) _ _ —apean
N N

RC (Ax) = )
Because the recovery coeficient is independent of the object
intensity in the absence of background, RC(Ax) can be cal-
culated from the estimate of the object size if Ax is known.

Extension of Equation 2 to a multiple-detector system is
quite straightforward and illustrated in Figure 1 for an inter-
detector spacing S. The multi-detector recovery coefficient is
the maximum value of RC(Ax) among the n detectors:

multi-detector RC(Ax) = max (I(Ax — nS)/N)
= I(min|Ax — nS|)/N. (3)
Muiti-slice Imaging of a Bar
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FIGURE 1

The Gaussian biurring function with PSF and FWHM is shown
for three slices spaced a distance, S, apart. A bar with uniform
activity and diameter, d, is positioned a distance Ax from the
center of the middle slice.
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For a multi-detector system, RC(Ax) reaches its maximum
value when Ax is zero and its minimum value when Ax is S/
2. The variability can be assessed by a measure, E,, defined
as the difference between the maximum and minimum values
of the recovery coefficient normalized by the maximum value
of the recovery coefficient:

Rcmax - Rcmm
B T RGw

Since the exact axial position, Ax, is typically not known, the
appropriate way to deal with this variability is to recognize
that the actual recovery coefficient may have any value be-
tween its maximum at Ax = 0 (RCpa,) and its minimum at
Ax = §/2 (RCpin). Thus, E,. represents this uncertainty in the
recovery coefficient. For example, if a 10% maximum uncer-
tainty in the recovery coefficient were judged to be acceptable
in an experimental measurement, then E,. < 0.1 would be an
acceptable value. The use of the value RC(Ax = 0) to assess
the partial volume effect, as is generally done in PET studies,
may lead to dramatically incorrect results when the variability
of the recovery coefficient is significant. Substantial variability
reflects inadequate sampling.

The same concepts can be extended to three dimensions.
The mathematical derivations are more complex but follow
directly from the basic equations presented above. The three-
dimensional expressions for the spherical activity distributions
employed here are presented in detail in the paper by Kessler
et al. (8).

O]

Frequency Domain Analysis—Aliasing

Aliasing refers to the generation of artifactual data due to
inadequate sampling of a continuous function. Aliasing is best
treated in the context of digital signal processing theory em-
ploying frequency-domain analysis (9). The partial volume
effect is usually analyzed in the object domain and quantified
with use of the recovery coefficient, although, as discussed
below, the extent of variability of the recovery coefficient in a
multi-slice tomograph is linked to aliasing.

The detection and display of an image can be modeled as
a series of steps:

1. Blurring of the radioactivity distribution due to the
finite range and angular spread of the positrons, scat-
ter in the patient, and detector effects.

2. Sampling of the blurred radioactivity distributions.

3. Interpolation between sampled points to yield a
smooth final image.

The effect in the frequency domain of these steps is easily
shown graphically, as in Figure 2, where the power (the square
of the amplitude of the frequency terms) is shown as a function
of spatial frequency. The one-dimensional case will be consid-
ered here since the calculations can be easily generalized to
three dimensions as discussed above. Consider an object, such
as a 10-mm bar, that has been blurred by a Gaussian PSF
with FWHM = 10 mm. Sampling of the blurred radioactivity
distribution with slice spacing S in the object domain yields a
Nyquist frequency fy = 0.5 S in the frequency domain. The
sampling process leads to replication of the power spectrum
of the blurred object at every multiple of 2fy, as shown in the
figure. To combine slices in PET imaging to produce a three-
dimensional display, the sampled activity is reconstructed with
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Power Spectrum of Blurred, Sampled Bar
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The power of a blurred, sampled bar is shown. The primary
spectrum is shown along with the replicate due to sampling
arising at twice the Nyquist frequency. Note the overlap of
this replicate into the primary frequency range below the
Nyquist frequency.

use of an interpolating filter in the axial direction. This filter
can be a square-window function saving all frequencies up to
the Nyquist frequency while eliminating higher frequencies,
or a spatial-domain linear-interpolation filter, usually em-
ployed in PET reconstruction.

The error arising from sampling and reconstruction can be
thought of as both the loss of information above the Nyquist
frequency and the corruption of the information below the
Nyquist by its superposition with artifact-producing “aliased”
components from the secondary and higher replicates. The
degree of aliasing will depend on the frequency content of the
object (related to the object shape), the degree of blurring, and
the sampling interval. The magnitude of the aliasing can be
assessed for a given object and imaging conditions by consid-
ering the power contribution of frequency components above
the Nyquist frequency in the blurred image before sampling
relative to the total power in the image (Fig. 3). It is this image
power above the Nyquist frequency that is folded back, or
aliased. An error measured, E,, can be defined that represents
the proportion of the total image power which is aliased:

f |O(f) MTF(f)|* df
power aliased 4

~ total image power

- ()
f |O(f) MTF(f)|* df
o

Here MTF(f) is the modulation transfer function, the Fourier
transform of the PSF, and O(f) is the Fourier transform of the
object.

The object-domain concept of the recovery coefficient,
presented in the previous section, is mathematically related to
the frequency-domain concept of aliasing. This relationship is
a consequence of the fact that the object- and frequency-
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The aliased and un-aliased components are shown for the
power spectrum of Figure 2.

domain representations are a Fourier transform pair (9).
While the Fourier integrals representing the recovery coeffi-
cient can be written, the mathematics is cumbersome and
sheds few insights directly. A better appreciation of the rela-
tionship between aliasing and variability in the recovery coef-
ficient is achieved by consideration of their dependencies, as
illustrated graphically below. When there is no aliasing (E, =
0), the recovery coefficient for a multi-detector system will
not change as a function of detector placement (E.. = 0). The
variability of the recovery coefficient correlates with the
amount of power aliased, assessed above by the error measures
E.. and E,. Both quantities decrease with closer sample spac-
ing, increased object size, and increased blurring.

Theoretical Calculations

The equations presented above were used to generate a
series of graphs of E.. and E, for typical ranges of parameters
for PET tomographs and object sizes.

Experimental Measurements

To validate the theoretical calculations, an experiment was
performed with use of SuperPETT IIb, a time-of-flight tomo-
graph, operating in the 7-slice mode. Slice spacing, S, is 14.5
mm and axial resolution is 11 mm FWHM. A plastic sphere
with inside diameter of 15 mm was filled with fluorine-18 at
a concentration of 80 uCi/cc (3 MBg/cc). After obtaining a
transmission scan, the sphere was positioned on the center
axis of the tomograph near the center slice. Images were then
collected for 5 min. Data collection was repeated as the sphere
was advanced in 2-mm increments axially for a total transla-
tion of 14 mm. Next, a sphere with diameter 38 mm was filled
with fluorine-18 of the same concentration and imaged for
2.5 min at several axial positions. Measurement with this large
sphere served to calibrate the sensitivity of the tomograph
since the calculated recovery coefficient is very close to unity
(0.98-1.00) with only a small variation with position.
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The 7-slice data were reconstructed with use of a confi-
dence-weighted algorithm (10) employing a Gaussian filter
function in the transaxial plane with FWHM = 10 mm. This
filter value is very close to the 11 mm axial blurring of the
tomograph, thus insuring an essentially isotropic, three-di-
mensional blurring function. The reconstruction algorithm
incorporates corrections for differences between in-slice and
cross-slice sensitivities. After adjustment for radioactive decay,
the recovery coefficient was computed according to Equation
3 for each sphere position.

RESULTS

To assess the variability of the recovery coefficient in
a multi-slice tomograph, the three-dimensional versions
of Equations 2 and 3 were used to compute the recovery
coefficient for a sphere as a function of Ax, the position
of the sphere in relation to the midpoints of the two
nearest slices. Figure 4 shows the three-dimensional
recovery coefficients for imaging in SuperPETT IIb in
the 7-slice mode. For the sphere with a larger diameter
compared to the axial resolution of the tomograph (d
= 38 mm, d/FWHM = 3.5) used in the calibration
measurements, there is variation of only a few percent
with offset, Ax, and the data are not shown. However,
for the smaller sphere (d = 15 mm, d/FWHM = 1.4),
there is a large variation in the recovery coefficient. The
small discrepancy at mid-slice may be related to slight
deviation of the axial blurring from a Gaussian shape.

Additional recovery coefficients were computed from
Equations 2 and 3 for differing sphere diameters, slice
spacings, and system resolutions. Figure 5 shows the
effect of slice spacing for SuperPETT IIb when spacing
is changed from 14.5 mm (7-slice mode) to 7.25 mm
(14-slice mode). Note that the maximum recovery coef-
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The experimentally measured recovery coefficient and the
calculated, theoretical value is shown for a sphere with diam-
eter of 15 mm imaged in SuperPETT lIb operating in the 7-
slice mode.
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The theoretically computed recovery coefficients are shown
as a function of offset for the 7-slice imaging situation of
Figure 4 (thin line) and for the same tomograph operating in
the 14-slice mode where S = 7.25 mm (heavy line). Note that
the maximum recovery coefficient (RCnax) is the same in both
cases while the minimum value (RCmi) is much lower when
slice spacing is greater (S = 14.5 mm).

ficient with the sphere centered on the slice is the same
in both cases while the minimum recovery coefficient
is much lower with the larger spacing.

While the analysis to this point has focused on the
variability in the recovery coefficient, it is also impor-
tant to emphasize that the magnitude of the recovery
coeficient is strongly dependent on object size. Figure
6 shows recovery coefficients for differing sphere sizes
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Theoretical recovery coefficients are shown for 7-slice imaging
in SuperPETT lIb of spheres with diameters d. Sphere sizes
are expressed as the ratio d/FWHM where axial resolution =
11 mm. Note the values near unity for imaging of large spheres
and more variable recovery coefficients when smaller spheres
are imaged.
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(expressed as the ratio d/FWHM) for SuperPETT IIb
in the 7-slice mode. These graphs show that the recovery
coefficient varies with position while, as pointed out
previously (6-8), it diminishes substantially with
smaller objects.

The ratio of the maximum change in the recovery
coefficient to the maximum recovery coefficient, E,.
(Eq. 4), is shown in Figures 7A-B for fixed rations of d/
FWHM and S/FWHM, respectively. The results of the
frequency-domain calculations based on Equation 5 are
shown in Figures 7C-D for the same fixed rations. The
slight ripple and the failure of E, to go to zero in the
aliasing figures is artifactual and arises from use of a
simulated sphere with steep edges, leading to ringing in
the power spectrum and infinitely-high frequency
terms. The data in Figures 7A and 7C are useful in
selecting a desirable slice spacing, while Figures 7B and
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7D show the effect of axial object size for fixed slice
spacings.

The data in Figures 7A-D can readily be used to
evaluate any tomograph based on its published specifi-
cations. For example, for SuperPETT IIb in the 7-slice
mode (S = 14.5 mm, resolution = 11 mm FWHM, S/
FWHM = 1.32), quantitative measurements will have
an error in the recovery coefficient E,. of 0.31 when an
object with axial extent d = 2 FWHM is imaged (Fig.
7A). The error drops to essentially zero for images of a
4-5 cm object (d/FWHM = 3.5-4.5). From Equation
4, the E of 0.31 indicates a maximum uncertainty in
the recovery coefficient of 31%. Similar inspection of
Figure 7C shows a large degree of aliasing for imaging
of a small object with negligible error with the 4-5 cm
object.

These data assume an isotropic blurring function
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The measures of variation in the recovery coefficient, E, are shown in panels A and B while aliasing error, E,, is presented in
panels C and D for fixed ratios of sphere diameter-to-resolution (d/FWHM) and of slice spacing-to-resolution (S/FWHM). In the
last figure, rations of S/FWHM <0.75 are not shown because the error values are essentially zero.
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with equal axial and transaxial resolutions. While the
reported transaxial resolution of many tomographs is
much better than the axial resolution, in practical, noisy
imaging situations the transaxial data are frequently
reconstructed with resolution approximately equal to
the axial resolution. In any case, use of a sharper
resolution in the transaxial plane does not significantly
alter the conclusions presented here.

DISCUSSION

In early research in positron tomography, machines
were used that produced only a single transaxial slice.
Later, tomographs with 4-7 slice capability were devel-
oped (/). More recently, machines have become avail-
able that generate 21 or more closely-spaced transaxial
slices (2-5). Thus, it is necessary to study the implica-
tions of slice spacing on quantitative analysis and three-
dimensional display of PET data. A key factor in multi-
slice imaging is the partial volume effect. In the early
research with single-slice machines, structures were fre-
quently imaged that had a large axial extent, such as
experimentally induced myocardial infarcts in dogs.
Thus, the partial volume effect in the axial direction
could safely be ignored, with attention focused on cor-
rections applied to the data in the transaxial plane.
These corrections have been thoroughly evaluated and
are quantified in the transaxial plane by the recovery
coefficient (6-8). For large objects, the loss of counts
arises from the blur inherent in the imaging process;
the sampling-dependent uncertainty is negligible be-
cause of the very fine spacing in the transaxial plane
due to the small pixel size employed in image acquisi-
tion and reconstruction.

Imaging in multi-slice tomographs of objects with
small axial extent or large rates of axial variations raises
two important questions: 1) What is the nature of the
partial volume effect, quantified by the recovery coef-
ficient, in the axial direction? and 2) How many slices
are required in a tomograph to yield quantitatively
accurate results and three-dimensional images without
significant artifacts? Here we address these two ques-
tions, the first by analysis of the axial behavior of the
recovery coefficient for realistic imaging situations and
the second by use of the recovery coefficient and by a
traditional analysis of the effects of undersampling,
leading to aliasing in the spatial-frequency domain. The
effects of noise, differing straight- and cross-slice sensi-
tivities, and varying off-axis resolution are not included
in this analysis since they are not fundamental to the
present considerations although they lead to well-
known effects on actual images.

In this work, we show that the recovery coefficient
varies with the position of the object in relation to the
slice (see Equations 2-4 and Figs. 1, 4-6). If the location
of the imaged object is known in relation to the slice
positions, then an accurate partial volume correction
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can be applied if the object size and resolution of the
imaging system are known. However, if the offset of
the object Ax from the slice center is not known, then
the recovery coefficient used in quantitative experi-
ments will have an associated uncertainty. This uncer-
tainty will depend upon the axial extent of the object,
the slice spacing, and the axial blur of the tomograph
(Fig. 7).

An alternative approach to studying the effect of
differing slice spacings (related to the number of slices
in the tomograph) is by a frequency-domain analysis of
sampling that leads to the concept of aliasing. The
recovery coefficient approach is most directly applicable
to quantification of slice data and is more familiar to
practitioners of positron tomography. The aliasing con-
cept is, however, better suited to evaluation of artifacts
produced in generation of three-dimensional images (9,
11). Three-dimensional algorithms are frequently quite
complex, involving interpolation, filtering, ray tracing,
and other steps. Thus, a general measure of the degree
of corrupted information inherent in the data before
digital manipulation is required. Aliased power is such
a general measure. Furthermore, considerations of the
frequency content of an image, e.g., in Figure 3, is
useful in design of digital filters and interpolation func-
tions (12). This classical sampling analysis is presented
above with results for typical object sizes and PET
tomographs (Figs. 7C-D). Since the aliasing power will
never be exactly zero and depends on object shape, the
acceptable magnitude of aliasing is somewhat subjec-
tive. However, infinitesimal aliasing power (E, = 0) will
never lead to errors while modest amounts of aliasing
should be tolerable in real imaging situations since the
degrading effects of noise will tend to mask the effects
of small amounts of aliasing.

Note that, for a given object, aliasing depends on the
blur in the imaging system as well as upon the slice
spacing. Thus, in designing a PET tomograph these two
parameters should be matched, i.e., a large number of
slices giving extremely close spacing is not warranted if
axial resolution is poor, and wide spacing is undesirable
if resolution is high.

The specific, practical implications of this and earlier
work for the design and use of PET tomographs are
relatively straightforward. First, the maximum value of
the recovery coefficient should be calculated from
knowledge of object size and tomograph resolution, as
pointed out previously (6-8). This recovery coefficient
will be less than unity (see Fig. 6). Then, the uncertainty
in the recovery coefficient due to axial position, evident
in Figure 6, is computed from the data in Figures 7A-
B. If a maximum error in the computed recovery coef-
ficient of approximately 10% is deemed to be acceptable
then, from Equation 4, E.. = 0.1. For moderate-size
objects (d/FWHM = 1.5-2), Figure 7A then leads to
the estimate S/FWHM = 0.5-0.7. Note also that the
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graph of E, (Fig. 7C), begins to rise dramatically from
essentially zero for moderate-size objects when S/
FWHM = 0.75. Thus, for typical objects, the slice
spacing of the tomograph should be approximately
50%-75% of the z-axis resolution (FWHM). A closer
slice spacing, frequently leading to a more costly ma-
chine with more slices, does not confer advantages,
while a larger slice spacing (implying fewer slices) can
result in significant uncertainty in the recovery coeffi-
cient (a large E,.) and substantial aliasing (large E,). If
only objects with large axial extent are imaged, e.g., d/
FWHM = 3-4, then a larger slice spacing can be
tolerated. In that case, a tomograph with fewer slices
will give acceptable results. Thus, tomographs now in
use, such as SuperPETT IIb with 14 slices (S/FWHM
= 0.66), have adequately close slice spacing for all
applications, while the older 7-slice machines, e.g.,
SuperPETT I, will produce relatively artifact-free data
only when imaging objects with known axial extents of
several cm.

These considerations assume structures that do not
move during data acquisition, such as the brain. For
studies of the heart where there is cardiac and respira-
tory motion, the criteria can be relaxed somewhat be-
cause there may be substantial axial motion, leading to
blurring of the radioactivity distribution.

The concepts of aliasing and variability of the recov-
ery coefficient seem to be quite unrelated since the
conceptual approaches and mathematical expressions
are very different. In fact, both concepts provide ways
to assess the degree of undersampling, as described in
the Methods section; one operating in the spatial do-
main and the other in the mathematically equivalent
frequency domain. The partial volume effect is usually
thought of as arising from the blur inherent in imaging.
This analysis shows that, for a given object size, the
peak value of the recovery coefficient is a function of
blur while the variability in the recovery coefficient is
directly related to the sampling interval as well as the
blur, thus suggesting an aliasing phenomenon. In this
sense, the partial volume effect, quantified by the re-
covery coefficient, is due both to blur and to aliasing.

The paper of Kessler et al. (8) pointed out that the
recovery coefficient as originally defined must be mod-
ified in the presence of background activity, and that
the coefficient is different for hot and cold objects. The
principle conclusions presented here are based on a
situation with no background or spillover. While the
mathematics required to handle these additional effects
is straightforward, the computations are tedious and
lead to many confusing special cases. Addition of back-
ground and spillover tends to reduce contrast, thus
somewhat relaxing the criteria developed here. We be-
lieve consideration of the pure case is best since the
analysis leads to the most strict and straightforward
conclusions.
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The use of the term “partial volume effect” has not
been consistent in earlier work. Frequently, usage of
the term has tended to follow that of the early literature
in computed tomography, referring to a reduction in
detected activity due to axial spacing greater than object
size. In contrast, loss of detected activity due to blurring
in the transaxial plane has been quantified by a “recov-
ery coefficient” that does not consider detector spacing
because of the close proximity of the detected elements
(pixels) in the transaxial plane (6-8). In fact, as was
shown in the Methods section, the loss of data due to
the axial undersampling (the traditional partial volume
effect) is fundamentally the same as the effect in the
transaxial plane; in both cases the recovery coefficient
is determined by the relationship between the object
size and the blur in the imaging system and by the
detector spacing. In the transaxial plane, the detector
spacing (pixel size) is very small in relation to image
blur and, hence, the variability in recovery coefficient
is negligible. In contrast, the recovery coefficient may
vary significantly in the axial direction due to wide slice
spacing. Thus, we prefer to think of the “partial volume
effect” as fundamentally a single phenomenon, quan-
tified by the recovery coefficient, in both the axial and
transaxial planes. In the axial direction, the recovery
coefficient may deviate significantly from its maximum
value, which depends only upon blur, and assume lower
values when the detected activity is not centered on a
slice.

In summary, the relationship between slice spacing,
resolution, and object size should be considered when
designing or purchasing PET tomographs and when
interpreting tomographic data. Failure to appreciate this
relationship can lead to significant errors in quantifi-
cation of PET data and in three-dimensional recon-
structions.
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