
of computer algorithms for after-the-fact image align

ment. Head-holding devices, except for the most severe

(1), do not provide sufficient restraint to ensure exact
positional matching. Such devices are also difficult to
use across modalities such as computed tomography
(CT) and magnetic resonance imaging (MRI) because
their use is technically demanding. Anatomic markers
have been less widely used, but they too require trained
personnel for their use. After-the-fact image alignment
implies the application of some computational scheme
to bring images into registration, but sufficient three
dimensional data must be available before such proce
dures can even be contemplated.

It is only recently, when volumetric studies with high
enough axial sampling have become available with
MRI, CT, and PET, that computational methods for
registration have become appealing. One technique,
least-squares matching ofbrain surface coordinates, has
already been developed by Pelizzari and colleagues at
the University of Chicago (2â€”4). The least-squares
method is robust in that some missing or inconsistent
data can be tolerated; but nonlinear least squares is an
iterative technique often requiring good initial estimates

of the parameters for rapid convergence. Sometimes
convergence cannot be obtained without human inter
vention. Analytic techniques have also been proposed,
but these require either identification of corresponding
landmarks (5) or identification of a complete set of
points on the surface of the object to be regiStered@

(6,7).
This paper describes work on an analytic approach,

the principal axis transformation, which is appealing
because of its computational propertiesâ€”speed and
simplicity. Our goal was to evaluate this technique and
to establish its suitability for image registration. A pre
liminary report on this work was presented in abstract
form (8), and the principal axis transformation has
previously been described by Gamboa-Aldeco and
Chen (6) and by Faber and Stokely (9). Gamboa
Aldeco and Chen focused on applications to treatment
planning and Faber and Stokely compared registration
ofthe principal axes to a tensor-based moment method.
Our development, originated independently, focuses on
registration of XCT and MR data with PET; the theo
retical basis is identical but our implementation differs

We have developed a computational technique suitable for
registration of sets of image data covering the whole brain
volume which are translated and rotated with respect to
one another. The same computational method may be
used to register pairs of tomographic brain images which
are rotated and translated in the transverse section plane.
The technique is based on the classical theory of rigid
bodies,employingas its basisthe principalaxestransfor
mation. The performance of the method was studied by
simulation and with image data from PET, XCT, and MRI.
It was found that random errors in determining the brain
contour are well tolerated. Progressively coarser axial
sampling of data sets led to some degradation, but ac
ceptable performance was obtained with axial sampling
distances up to 10 mm. Given adequate digital sampling
of the object volume, we conclude that registration by the
principal axes transformation can be accomplished with
typical errors in the range of -@4mm. The advantages of
the technique are simplicity and speed of computation.

J NucIMed 1990;31:1717â€”1722

ositron emission tomography (PET) is a nuclear
medical imaging technique capable of providing quan
titative functional information in intact animals and in
human subjects. Because of its functional nature, PET
often requires anatomic reference information, ob
tamed on the same subject, to correlate patho-anatomic
and functional abnormalities. In addition, it is some
times desirable to compare serial studies in the same
individual. These requirements for anatomic reference
information and comparison ofrepeated measurements
has given rise to the technical requirement for image
registration, a need most clearly recognized in studies
of the human brain whose blood flow and metabolism

often exhibit detailed and characteristic patterns, from
one individual to another. Currently, the need for image
registration has been met with the use of head-holding
devices, anatomic markers and, recently, the invention
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outlines, image-by-image, to define the volumes of interest
which we refer to as VOIs in analogy to the more common
ROl abbreviation. Image sets were treated as rigid bodies with
uniform mass density functions.

It is desirableto separatethe effectsoffinite samplingfrom
those due to experimental errors, which are more difficult to
control. Two shapes were used to assess the errors resulting
from computing the principal axis transformation on a sam
pled grid. The calculations were performed with both outlines
(surfaces) and bit maps (volumes). First, a rhomboid approx
imating a line 18 cm long (The sampling distances were ox =
1 mm, Ã´y= 1 mm, and Ã´z= 3 mm) was generated by
computer. The longest axis of the rhomboid was aligned
parallelto the z-axisand then rotated about its center of mass
to known angles (1, 2, 4, 8, 12, 16, and 20 degrees). Second,
outlines and bit maps defining the complete cerebral hemi
spheres on volumetric MRI image sets were rotated in the
axial direction about the center of mass by 20Â°.In each case,
the center ofmass and angle with respect to the axial direction
were compared with the input data.

The effectof random errorswasassessedby addingGauss
ian random noise to the surface contours of MR data. In this
regard, ensembles of noisy data were generated by computer
simulation to produce noisy outlines and the corresponding
filled volumes. The effect of typical variations in the volume
boundarywasalsocheckedby performingthe calculationson
outlines and bit maps determined on MRI data which had
been rotated by known amounts, both in-plane and axially.

(1) The effect of variations in slice sampling was studied using
a volumetric set of MRI data of the brain. These data (Ã´z)
were resampled to yield slices with slice spacing of 6, 9, 12,
and 15 mm.

Wetestedthe methodon planarCT and PETdata obtained
on the same individual where careful axial positioning with a
plastic molded head holder determined corresponding slices.
Finally, we tested the method on volumetric MR data ob
tamed on the same individual in two different MR scanners
on scans acquired one year apart. No a priori attempt was
made to align the subject's head in the MR scans. Outlines of
the inner table of the skull were drawn on the CT and PET
data sets and, outlines of the cerebral cortex were drawn on
the two MR data sets. The method was used to obtain the
parameters for the translation and rotation needed to register
sets 1 and 2 over the cerebral hemispheres. These parameters
were used to reposition the CT data over the PET data and,
to reslice one ofthe MR data sets, yielding a new set of images
which should, all other things being equal, be registered with
the target set.

Calculations
Centers of mass were computed for the reference volumes

and/or their bounding surfaces as:

[-i, 9, 2] = Mean (Ix, y, x]),

from that of Gamboa-Aldeco, who match surfaces
rather than volumes.

THEORY

The principal axis transformation is known from the
classical theory of rigid bodies (10). A rigid body is
uniquely located by knowledge of the position of its
center ofmass and its orientation (rotation) with respect
to its center of mass. The center of mass, inertia matrix,
and principal axes can be determined for any rigid
body. For simple geometric shapes, the principal axes

coincide with the axes of symmetry, and, in general,
form an orthogonal coordinate system, with their origin
at the center of mass. When computed in the principal

axis coordinate system, the inertia matrix is diagonal.
Consider two sets of images in which it is possible to

identify corresponding volumes bounded by closed sur
faces, but make no assumptions about the orientation
or location ofthese â€œreferencevolumes.â€•Ifthe reference
volumes represent the same object, the centers of mass,

R, i = 1,2, of mass will represent the same physical
point in the object, independent oforientation or scale.
The inertia matrices, I@,for the two reference volumes
can be expressed as a similarity transformation:

Ii = S1IST,

where I represents the inertia matrix computed in the
principal axis coordinate system; and, the rotation ma

trix, S@,is the matrix of eigencolumns determined from
I), the eigencolumns are orthonormal vectors directed
along the principal axes. Geometrically, Equation 1 can
be interpreted as a rotation of the I relative to the
original image coordinate axes. I and â€˜2are related by:

7 â€” C' eTy C' c@T
@2

Registration of image 1 to image 2 can be obtained by
a translation to the center of mass coordinate system
followed by the rotation S1S@.

METHODS
Assuming the validity of the rigid body assumption, the

theory may still be limited in practice by resolution and
sampling effects as well as by errors in the specification of the
reference volumes. The sensitivity ofthe method to such errors
will determine its practicality in real-world applications. The
calculations can be performed on either the surface outlines
or filled volumes, but, as will be discussed later, there are
reasons to expect the calculations based on outlines to be
more sensitive to experimental error. The basic criteria for
evaluating the method are the position of the center of mass
and rotation ofthe object about the center of mass, properties
which uniquely determine the â€œlocationâ€•of a rigid body in
three-dimensional space. These experiments were performed
with simulated data, PET and CT data sets, and with high
resolution, volumetric MRI images of the brain. In the work
with image data, we used manual determination of surface

(2)

(3)

where x, y, z are the integer coordinates of an image voxel or
surface, the symbol Mean indicates the arithmetic mean over
the set of reference voxels or surface coordinates, and @,j@,2
denote the coordinates of the center of mass.

Transformation to the center of mass coordinate system
was performed according to the usual formulas:

[x', y', z'J = [x, y, z] â€”@ 9, 2]. (4)
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0.5Â° for a point 100 mm from the center of mass is

given approximately by rM = 0.9 mm.
(5) Calculations made using surface outlines were more

sensitive to random noise in the boundary determina
(6) tion than were those using volumes. The effect of noise

on calculations using surfaces and volumes is shown in
Figures 1 and 2. Figure 1 shows the RMS error in
position (translation error) of the center of mass as a

function of noise added to the surface outlines deter
mined on NMR images. Similarly, Figure 2 shows the
RMS error in rotation about the â€œzâ€•principal axis as a
function of Gaussian random noise in the contours.

The calculations show translational and rotational er
rors are three to six times greater for registration using
surfaces rather than volumes. Similarly, when surfaces
were redrawn on data sets rotated by known angles the
errors using bit maps (volumes) were much smaller.

For example, after 20-degree axial rotation and redraw
ing of the surfaces to simulate typical experimental
error, the calculation on bit maps resulted in an error

of 1.2Â°,whereas the calculation on the outlines differed
by 8.4Â°.

The effect of increasing the axial sampling distance
on location of the center of mass and rotational error

is shown in Figures 3 and 4, respectively. At the largest
sampling distances, there are more unique ways of
sampling the object and this is reflected in the figures
by the increasing number ofpoints plotted. As expected,
the error due to missing samples increases with the
sampling distance. At 3 mm sampling distance, remov
ing every other sample had negligible effect; but at a

sampling distance of 15 mm the error in the location
of the axial component of the center of mass can be as
much as 0.5 mm and the rotation error (axial) was as

The moments and products of inertia were computed as:

@ 4,, I::] = Mean([x'2, y'2, z'2])

[I ,I , I ] = Mean([x'y', x'z', y'z']).
xy x: y:

ComputerPrograms
We developed a set of computer programs, written in

FORTRAN-77, to perform the principal axis transformation
and to evaluate its performance in image registration. These
included programs to compute the center of mass and inertia
matrix. A second program, computed the eigenvectors, and,
thus, the S matrices, using standard subroutines from the
IMSL FORTRAN subroutine library. We imposed additional
criteria on the eigenvectors, requiring a right-handed coordi
nate system, with the positive â€œz-directionâ€•along the subject's
long axis, from foot toward head. Linear interpolation and
image scaling, based on the pixel size in the reconstructed
images, were used in the image translation and rotation steps.

Image Data
PET data were gathered with a Scanditronix PC-384 posi

tron camera with three rings of BOO crystals. PET image
resolution was 8 mm in-plane and 12 mm axially. Transverse
section reconstruction was performed with the filtered back
projection method, producing images of 128 x 128 pixels with
dimensions of 2.55 mm2. A General Electric 8800 scanner
(Milwaukee, WI) was used to perform XCT studies. Recon
structed XCT images were acquired in the medium resolution
body mode producing reconstructed images with a pixel size
of 1.95 mm and a slice thickness of 10 mm. The same
individually molded plastic-foam headholder was employed
for both PET and CT scan sessions to define corresponding
slices. We acquired three-dimensional volumetric MR image
data of a volunteer on two occasions, one year apart, on
scanners at different locations. In each case, we used a Siemens
Magnetom 1.0 Tesla imaging system (Des Plaines, IL). The
image acquisition performed was a coronal FLASH sequence
with repetition time 40 msec, echo time 15 msec, pulse angle
500, and matrix size 256 x 256 x 63 with in-plane spatial

resolution of 1.17 mm and a contiguous slice thickness of
3.125 mm.

RESULTS

Effect of Sampling Grid
Small effects, generally negligible, can be ascribed to

digital sampling. Rotation of a the test rhomboid
(approximating a line 18 cm long) line as described
above had no effect on the computation of the center
of mass. The difference between intended and com
puted rotation angle varied from 0.05Â°â€”0.48Â°.When the
calculations were performed on bit maps and outlines
(determined on NMR data of the human brain) which

were rotated 20.0Â°,the position of the center of mass
varied by less than 0.005 mm; and the rotation angle
differed by 0. 16Â°.To put these results in perspective,
the maximum positional error due to misrotation of
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FIGURE1
RMS error in the location of the center of mass (translatmon
error) of a volumetric set of MR brain images. Simulations
were performedby addingGaussiandistributed noise to the
originalcerebraloutlines.Thenoisewasaddedto eachpoint
within the xy-planeof the originaloutline in a radialdirection
fromthe centerof massto simulateerrorin the drawingof
the outlines.Eachplotted valuerepresents100 noiseruns.

PrincipalAxes Transformation â€¢Alpert et al 1719



0.00 0.5 1.0 1.5 2.0
RMS ERROR in CONTOUR (mm)

R
0
T
A
T

N

E
R
R
0
R

E
G

R
0
T
A

I.
0
N

E
R
R
0
R

E
G

4

0
2- 0

o0888@
C 0 8@@@ 0

00@ 0

0 0@@

-2 0@ 0
0

0
-4 0

0 5 10 15 20 25 30
SAMPLING DISTANCE (mm)

FIGURE4
Rotationalerror in the computedangleof the zâ€•principalaxis
of an MR image for progressively coarser axial (z) sampling.
The samplesare the same as those in the previous graph.
Each point representsa different set of samplesat the mdi
cated samplingdistance.

DISCUSSION

FIGURE 5
Alignmentof a PET and CT scan on the same patient within
the transaxial(x-y)plane.Axial (z) alignmentwas done exter
nallywith a head holder. One combinedPET and CT slice is
shownbefore(left)andafter(right)alignment.In additionto
the coordinatetransformation,the CT imageis scaled.

FIGURE2
RMSerror in the rotationangle(rotationerror)of a volumetric
set of MR brain images. Simulationswere performed using
the same noisy outlines as in Figure 1. The principal axis.
transformationdeterminedthe rotation about the â€œzâ€•eigen
vector. Each value represents 100 noise runs.
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FIGURE 3
Translationalerror in the computedaxial (z)componentof the
center of mass of an MR image for progressively coarser axial
(z) sampling.The originaldata are sampled with 3-mm slice
thickness.Sampleswere then removedand the resultant z
positmonshift plotted. Eachpoint representsa different set of
samplesat the indicatedsamplingdistance.

much as 1Â°;and the maximum errors were even larger
for sampling distances >1 5 mm.

Examples ofimage registration, obtained by the prim
cipal axis transformation, are shown in Figures 5 and
6. Figure5 illustratesuse of the methodto refinethe
localization provided by a molded plastic headholder.
It was assumed that the axial position was determined
by the headholder, but that the position and rotation of
the slice could vary within the plane. Figure 6 shows
the results of applying the method to two sets of MR
data obtained on the same individual using different
MR scanners without any a priori attempt to match
head position. It is interesting to note in Figure 6 that
only the cerebral hemispheres and cerebellum appear
to be registered. This is because the rigid body assump
tion fails outside the brain.

We have developed a computational technique suit
able for registration of pairs of tomographic brain im
ages that are rotated and translated in the transverse
section plane or for pairs of image sets covering the
whole brain volume. The validity of the approach
hinges on the assumption that the brain does not de
form, or move within the cranium, when imaged in
different orientations. But Talairach et al. (11) in their
carefully performed studies, using stereotactic methods
and the superimposition of pneumoencephalograms,
were unable to detect deformations or movements.

A theoretical limitation of the method arises when
aligning objects with a high degree of symmetry, as for
example, spheres or regular polyhedrons; symmetries
may result in eigenvector solutions which are not
unique. Such limitations are not likely to be of practical
significance in medical applications.
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FIGURE6
Illustrationof a three-dimensionalreg
istrationof twovolumetricMRscansof
the brain. The scans were performed
on the same subject, using two differ
ent MR scanners.The time intervalbe
tweenscanswas =1 yr. Two slicesare
shown, SL1 and SL2. The data in cob
umn 1 were chosen visually, from a
completelysampledvolumetricset (see
text),to roughlycorrespondto thedata
from the secondscan session(column
2). Column 3 illustrates the result of the
principalaxes registration of set 1 to
set 2, providing visual confirmationof
the alIgnment.

4

We noted above that the boundaries of the volumes
to be registered were delineated manually. The need for
such segmentation prior to registration is common to
all surface and volume matching algorithms described
to date. However, it should be noted that a variety of
automatic and semiautomatic image segmentation al
gorithms have been described.

Studies with the principal axis transformation have
been used to align PET and CT studies in two dimen
sions and MRI data in three dimensions. Since the
registration is analytic, requiring only computations of
moments and matrix inversion, it offers advantages of
speed and simplicity over iterative methods such as
least squares. Calculation ofthe moments and the prim
cipal axis transformation requires@ mm on a Digital
Equipment Corp (Maynard, MA) VAX-l 1/780 com
puter with no special arthimetic acceleration hardware.
The quality of the registration appears to be limited by
two factors: (1) the three-dimensional sampling of the
volume by the imaging device; and (2) the ability to
delineate exactly corresponding volumes in the two
image sets. Even so, we conclude that it is possible to
achieve registration ofbrain data in which typical errors
will be @lmm.

Because of a lack of suitable volumetric PET and
MRI data in the same subject, we were unable to
directly verify registration between PET and MRI.
However, registration between volumetric MRI data
sets was such that the data were essentially indistim
guishable, raising the practical question, how good a
registration do we need? Data gathered in our labora
tory for a PET camera with 8 mm in-plane and 12 mm

axial resolution indicates that a 2.5-mm in-plane shift
between cerebral blood flow studies results in an average

error of 2 ml/min/lOO g and a worst case error of 10
ml/min/lOO g. Such errors are barely tolerable and
would presumably be worse with higher tomographic
resolution. So, registration should ideally be better than
2 mm in all directions.

The work by Englestad and his colleagues (7) is
related to this work in that it uses the first and second
moments of image ROIs. Engelstad et al. assume that
the surface of the brain or skull can be approximated
by an ellipse and use the center of mass and the second

moments to compute the equation of the ellipses for
corresponding slices. These equations determine the in
plane translation and rotations needed for registration
in two dimensions. Their work can be seen as a special
case of the principal axis transformation, which makes
it unnecessary to assume an approximating geometric
shape such as an ellipse. Furthermore, their technique
could, in principal, be extended to three dimensions;
the derivation ofthe enalogous three-dimensional equa
tions assume an ellipsoid of revolution, and could
achieve equivalent results at the cost of tedious, brute
force algebraic manipulation.

We noted earlier that Gamboa-Aldeco and Chen (6)
have also studied the principal axis transformation for
image registration. Their paper is noteworthy for an
elegant derivation of the theory. However, it should be
pointed out that their implementation employed the
surface elements bounding the volume rather than the
volume elements themselves. Theoretically, the surface
elements contain all the information necessary for com
puting the principal axes. However, consideration of
the effect of noise on the moments and products of
inertia as well the direct comparisons reported here
suggest that use of all the volume elements in the
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computation produces a result which is less sensitive to
systematic and random errors.

It is possible to suggest a relationship between least
squares techniques and this work. Froimowitz and Mat
thysse (12) compared the conformation of the tyrosine
portion of the enkephalins and morphine-like opiates
by computing the minimum RMS distance between the
conformers. They showed for two rigid bodies K and
K', each composed of N points internally connected,
that the minimum sum ofthe squares distance between
correspondingpoints is achieved by a calculation equiv
alent to the principal axis transformation.

Computational approaches to image registration

have a practical advantage over methods which rely on
anatomic markers or protocols which attempt to select

slices which correspond exactly. The advantage is im

proved technical feasibility, lessening the demands on
personnel to use special headholders or to affix ama
tomic markers. Making a choice among the computa
tional techniques depends on a number of factors that
have not been completely studied. For example, it is
expected that least-squares will be robust against errors
due to data with random errors, but since it depends
on iterative, nonlinear parameter estimation methods,
convergence problems may result from missing or in
consistent data. On the other hand, the principal axes

method is analytic, and, hence, does not suffer from
convergence problems, but is likely to be more vulner
able to missing data. Prospective users should prefer
the least-squares approach if missing data (e.g., an in
completely sampled hemispheric volume) are likely to
occur in their imaging procedures. Otherwise, the prim
cipal axes method offers advantages in speed and sim
plicity.
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