
non-renal areas of interest in order to achieve a better
control of background correction.

Our original method is based on the properties of the
peripheral organ distribution volume (PODV) in com
plex mammillary systems already reported in part I of
the present paper (2).

RATIONALEFOR BACKGROUNDCORRECTION

Technetium-99m-DTPA complex is not significantly
bound to plasma proteins and, after its rapid intrave
nous injection, the externally recorded activity over any
ROI in the body is the sum ofdifferent components, in
variable and a priori unknown proportions from one
area to another: plasma, interstitial fluid, and, ifit exists,
the trapping organ. Moreover, most active organs, for
example the kidney, have a much denser vascularity
than the surrounding tissues.

The diagram of Figure 1 displays the total-body
plasma, interstitial fluids, and kidney compartments.
ROl 1 and ROI 2, respectively,representthe kidney
and background ROIs and are shown, delineated by
dotted lines, to emphasize the compartment overlap.

The measured time-activity curve in the renal ROl,
at time t, is a weighted sum of three components:

Kmeas(t) = Knet(t) + a . P(t) + @3. 1(t),@ 1)

= actual fraction of 1(t) in the renal ROl.

Extra-renal activity curve, from a second ROl
(BGROI) adjacent to the kidney is a weighted sum of

An original approach to background subtraction is pre
sented for @â€œTc-DTPAseparate glomerular filtration rate
(SGFR) estimation in man. The method is based on the
properties of the peripheral organ distribution volume
(PODV) in mammillary systems. These PODV properties
allow easy separation of the components of the renogram,
i.e., interstitialfluid,plasmaandrenalactivities.The pro
posed algorithmtakes advantageof the lineartime de
pendence of the kidney distribution volume, during the
renal uptake phase, to correct for the plasma residual
activity, which always remains after classical background
correction. Theoretically, the ratio between kidney uptake
and SOFA should be identical for both left and right
kidneys, even for very asymmetrical kidney functions. This
is best verified when the proposed plasma residual activity
correction is applied.

J NucIMed 1990;31:1710â€”1716

echnetium-99m-diethylenetriaminepentaacetic
acid (99mTcDTPA) separate glomerular filtration rate
(SGFR) estimation by external counting, with a scintil
lation camera, is, since Piepsz's first paper (1 ) in 1977,
a widely used nuclear medicine procedure.

Whatever algorithm is used, adequate correction of
non-renal activity counted in the renal region of interest
(ROl) is a crucial step of data processing. The ideal
background ROl should consist of the same plasma
and interstitial fluid proportions as the kidney ROI in
order to adequately estimate the net renal tracer content
but no such perfect background ROl a priori exists.

The present paper is concerned with the kinetic sep
aration of the various components in both renal and

where

Kmeas(t) =
Knet(t) =
P(t) =
a =

1(t) =

activity in renal ROl (%dose).
net kidney activity (%dose).
total plasma activity (%dose).
actual fraction of P(t) in the renal ROl.
total interstitial fluid activity (%dose).
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whose initial value, a' .V VBGo is determined from
the uniexponential fit (2).

The BGROI is thus decomposed in its two kinetic
components as:

@3'. 1(t) = BGmeas(t) â€”VBGo .p(t) (4)

a' .P(t) = VBGo.p(t) (5)

Subtracting Equation 4 from Equation 1, assuming
/3' = @,leads to a partially corrected kidney content:

Kâ€•corrâ€•(t)= Knet(t) + a .P(t). (6)

Applying PODV transformation to Equation 6, i.e.,
dividing by p(t), leads to:

Kâ€•corrâ€•(t Knet(t)
p(t) = p(t) +a.V. (7)

Kidney uptake, before tracer excretion, is a unidirec
tional process, its PODV linear fit (2) initial value VKo
estimates the a . \T constant.

The three components of Equation 1 are thus given
by:

Knet(t) = Kâ€•corrâ€•(t)â€”VKo .p(t) (8)

a.P(t) = VK0.p(t) (9)

and @3.I(t)given by Equation 4, assuming@ =

The RenogramBackgroundCorrection
For background correction purpose only, Equation 2

is subtracted from Equation 1 (assuming @â€˜= 13),lead
ing to a kidney â€œcorrectedâ€•curve analogous to Equation
6:

Kâ€•corrâ€•(t)= Knet(t) + (a â€”a') .P(t). (6a)

Linear fit of its PODY transform estimates the plasma
residue (a â€”a') . P(t), giving Knet(t).

The InitialValue of the PODVTime Function
From the PODV definition, its initial value Vo is

easily interpreted as the early distribution volume of
the tracer. In compartmental models, the instantaneous
mixing of the tracer is assumed before any significant
uptake occurs in any peripheral compartment. There
fore, VKo, after the complete decomposition process,
is indeed an estimate of the plasma volume seen in the
renal ROI, i.e., it is related to the vascular volume of
the kidney. If a blood-pool tracer is injected, Knet(t)
and fi . 1(t) of Equation 1 and @â€˜. 1(t) of Equation 2 are
nonexistent and the two equations simplify to the
plasma components, a .P(t) and a' .P(t) only. The a
and a' fractions obtained from a blood-pool agent study
should be identical to those calculated by the decom
position process after DTPA injection.

Validationof the PODVApproach
(3) For unidirectional processes, such as the kidney early

uptake, the linear system convolution theorem reduces

PLASMA
(P-Vp) INTERSTITIAL

FLUIDS (I)

a /3

KIDNEY
K(net)

ROl I

FIGURE1
Diagramof total plasma,interstitialfluid, and kidneycompart
ments.The dotted linesdelineatethe renal(AOl 1)and back
ground(AOl2)ROIs(seetext).

BGmeas(t) = a' .P(t) + f3' .1(t), (2)

BGmeas(t) = activity in BGROI (%dose).
a' = actual fraction of P(t) in the BGROI.

@3' = actual fraction of 1(t) in the BGROI.

In an ideal BGROI, a' and fi' should be equal
respectively to a and @3of the renal ROI but no ROI
can simultaneously fulfill such criteria.

In the present paper, we assume that a BGROI drawn
immediately below the kidney ROI will fulfill one of

the criteria, that is @9'= @,but not the other as it is well
known that the vascular network in the kidney is much
denser than in the surrounding tissues, that is a' < a.
The classical background subtraction, with such a
BGROI, may thus adequately correct for the interstitial
fluid activity but will actually leave a significant amount
of uncorrected plasma activity (3). However, kinetic

properties ofthe PODV (2) are easily used for adequate
correction of this plasma residual activity.

The PODVApproach
The Decomposition Algorithm. The interstitial fluid

is seen as a peripheral compartment, its activity results

from bidirectional exchange process with the plasma
central reference compartment. By definition (2), and
as P(t) is equal to plasma volume, V, times plasma
concentration at time t, p(t), its PODV is:

BGmeas(t) _ @3'.I(t) ,

p(t)@ p(t)
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two components (after size equalization with the renal
ROI):

where
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FIGURE2
Posteriorview of the renalregionshowingthe renaland
backgroundROls (A)and the cardiacROI(B).

to a proportionality between uptake and clearance. The
proportionality factor is common for both kidneys, in
any particular individual, even with very asymmetrical
kidney functions:

LK(t) 1' RK(t)
LSGFR Jo p(r) dr = RSGFR â€˜ (10)

A validation of the PODV approach may thus be

based on this identity, which must be best verified with
adequate background correction.

MATERIALSAND METHODS
Adult female and male patients, referred to the department

of nuclear medicine for total or separate GFR estimation,
constitute our patient population; normally functioning kid
neys and various pathologies are included such as chronic
renal insufficiency, diabetes, lithiasis, pyeloureteral junction
stenosis, or suspected renovascular hypertension.

StandardData Acquisition
Data acquisitionswereperformedwitha largefieldof view

gamma camera (Elscint DYMAX or Siemens LFOV),
equipped with a general-purpose low-energy parallel-hole
collimator.

Identical syringes, tracer dose, and standard were counted
in identical geometric conditions and corrected for counting
nonlinearity of the camera.

The well-hydrated patient emptied his bladder before data
acquisition and was positioned supine on a thin plexiglas
table. The camera detector, placed underneath, simultane
ously views parts of the heart chambers and the two kidneys.

The 99mTc@DTPA(Mallinckrodt-Holland) dose of 2.5
MBq/Kg body weight (BW) is rapidly injected in a large
antecubital vein and 15-sec 64 x 64 frames are recorded for
20 mm. Between15 and 20 mm after injection(the sampling
time is accurately recorded), a blood sample was withdrawn
from a large vein of the opposite arm.

After completion ofthe dynamic acquisition, static left and
right lateral views are acquired for depth attenuation correc
tion. Injected dose counts were corrected for postinjection
residue by a second syringe counting. Patient's height and
weight are measured at the time of investigation in order to
estimate the body surface area (BSA) from Dubois's formula.

Data Processing
RO! Selectionand CurveGeneration.Two composite im

ages were obtained: the first (Fig. 2A), by adding frames near
the maximal renal activity, is used to draw the left and right
renal and background ROIs, the second (Fig. 2B) by adding
early frames near the left ventricular peak activity to visualize
the cardiac chambers and draw the epicardial ROl. After
drawing ROIs as shown in Figure 2, left and right renal and
background activity curves, Kmeas(t) and BGmeas(t), respec

where

LK(t)
RK(t)
LSGFR

RSGFR

= left kidney uptake at time t.

= right kidney uptake at time t.

= left kidney SGFR.

= right kidney SGFR.

tively, were generated (Fig. 3A) as well as a cardiac-activity
curve.

The kidney activity time curves were corrected (Eq. 6a) by
subtracting homolateral background activity (after size equal
ization of the ROIs). Renal curves are corrected for attenua
tion with an experimentally measured coefficient of0.l 15/cm
and expressed in percent of the injected dose (Fig. 3B). The
left and right, 2â€”3mm, non-Vo corrected kidney uptakes were
derived.

The cardiac activity time curve was calibrated in plasma
tracer concentration (Fig. 3B) by setting its value, at blood
sampling time, equal to the actual value measured in a plasma
volume of 1 ml and expressed in percent of the dose per liter.

Correction for Residual Plasma Activity. Each kidney
PODV time curve (Fig.3C) was fitted linearlyin the limited
time interval ranging from the beginning ofthe second minute
to the end of the third minute after injection, before any
filtered activity is excreted to the bladder. The y-intercept
(VRESo)of the PODV fit was subtracted from both experi
mental and fitted curves.

Clearance and Net Uptake Cakulation. The VRESo cor
rected fitted curve, after PODV inverse transformation, i.e.,
multiplication by the plasma concentration curve, p(t), leads
to a vascular-free activity curve Kfit(t) matchingthe net kidney
activity curve, Knet(t), in the interval of fit. The time deriva
tive of Kfit(t) was divided by the plasma concentration curve
and led to a true but â€œnoisyâ€•plateau (Fig. 3D), the average of
which is the kidney SGFR. This result was then normalized
to a standard BSA of 1.73 m2.
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The VRESo-correctedkidney PODV time curve is also
PODV inversetransformedand net, 2â€”3mm, Vo corrected,
left and right kidney uptakes were calculated in percent of the
injected dose.

The ConvolutionIntegral
The convolution integral was independently estimated, as

in Equation 10, from left and right data, in a group of 101
patients, without and with correction of the vascular residue
by dividing the 2â€”3mm renal uptake by the corresponding
SGFR. The patient group consisted of 55 females and 46
males, aged 14 to 87 yr, with total GFRs ranging from 14 to
185 ml/min. Asymmetrical renal function was frequently
encountered in our population (left to right SGFR ratio vary
ing from 0.19 to 7.2).

The KidneyVascularComponent
VKoand VBGowereestimatedin a 20-patientgroupafter

99mTCDTPA injection and their ratio VKo/VBGo was cal
culated. In 10 other patients, receiving 99mTc..H5A(human
serum albumin) for cardiac angiography,the activitieswere
measured at blood-pool equilibrium, in renal (QK), and back
ground (QBG) ROIs, similar to those used for SGFR estima
tion, and their ratio QK/QBG was calculated.

RESULTS

Decomposition of the Renogram
Figure 4A illustrates, in a case of normal GFR, the

decomposition ofthe kidney activity curve into its three
components, i.e., vascular, interstitial, and renal com
ponents. Figure 4B demonstrates the result of the pro
cedure in a case of impaired kidney function (30% of
normal) and emphasizes the critical need of adequate
background correction (66% oftotal renal ROI activity
at the time of maximum kidney uptake).

It has to be noticed that these two cases might give

the impression that full background correction, despite
its influence on the net renal uptake, has no effect on
the shape of the uptake phase of the renogram and
consequently on the SGFR results: this fact is actually
fortuitous.

The ConvolutionIntegral
Figure 5 illustrates the relationship between the left

and right uptake to SGFR ratios (Eq. 10), calculated
without VRESo correction ofthe uptakes: considerable
scattering is observed (Y = 49.9 + 0.49X; r = 0.55).

Figure 6 shows the same relationship after VRESO
correction of the uptakes: no significant difference can
be seen with the identity line; regression parameters are
Y = 1. 1 + 0.98X, with a correlation coefficient r =
0.99.

The KidneyVascularComponent
Table 1 shows, separately for left and right kidneys,

a comparison of the ratio between VKo and VBGo
estimated in kidney and background ROIs and the ratio
between the vascular activity measured in similar ROIs,
QK and QBG, after HSA injection. There is no signif
icant difference on either side: on the left, the ratio is
1.49 Â±0. 14 for DTPA and 1.46 Â±0. 13 for HSA; on
the right, the ratio is 1.56 Â±0. 17 for DTPA and 1.48 Â±
0.13 for HSA.

DISCUSSION

Since Piepsz et al (1), proposed in 1977 the first
method to estimate @mTc@DTPASGFR in man from
data recorded with a gamma camera by external count
ing, many alternative methods have been proposed (4â€”
10). An extensive review of these methods has been

recently published by Russel (11).
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I recent paper, Gruenewald et al. (14) used ROIs above

showed the penrenal BGROI to be appropriate. In a

and below each kidney without discussing their choice.
Other background ROIs have been considered, supra
renal or between the upper or lower kidney poles, these
choices have not been explicitly validated (15).

There is an evident inter-patient difference in the two
__________ componentfractionsbecauseof the highvariabilityof
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Classificationof BackgroundCorrectionMethods

Choice of the BGROI for extra-renal activity correc
tion, i.e., a BGROI in which the plasma and interstitial
fluid components are identical to those of the kidney

ROl, currently remains a wide matter of debate.
In fact, published methods are based on various

assumptions, all of them being concerned with the
fractions a, /3, a' and /3' of Equations 1 and 2. Most of
these methods may be classified into three groups: 1)
empirical methods attempting to simultaneously equal
ize a and /3 to a' and /3'; 2) methods whose main
purpose is to equalize the vascular fractions a and a';
and 3) methods which try to equalize /3 and @3'for
partial correction in a first step and correction of the

vascular residue in a second step.
Empirical Methods Assuming a = a' and /3 = /3'. In

their paper (1 ), Piepsz et al. drew a narrow BGROI

surrounding each kidney and found reasonable GFR
values in the expected range. Peters et al. (12,13)

Y.tl+.98
r-.99
n@101
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TABLE I
Initial Distribution Volume and IntravascularActivityLeft

kidneyRightkidneyVKo/VBGo

QK/QBGVKo/VBGoQK/QBGDTPA
HSADTPAHSAn

21 102010mean
1.49 1.461.561.48s.d.
0.14 0.130.170.13n

= numberof patients.

are not significantly different behind or below the nor
mally positioned kidneys and such BGROI adequately
approximates the interstitial fluid component of the
renal ROI activity curve. However, the vascular com
ponent is significantly underestimated but is ade
quately corrected by VRESo subtraction in the PODV
approach.

Rutland (1 7,18) previously published a two-step ki
netically based background correction. The vascular
residual activity is also estimated by a linear regression
algorithm but from a completely different theoretical
approach. This method is used by Piepsz in a recent
paper (19).

Validation of the PODV Approach
The convolution integral provides, as in Equation

10, an identity relation between left and right kidney
uptake to SGFR ratios. These ratios are actually very
sensitive to background correction.

Underestimation of the plasma component of the
renal ROI has opposite effects on the uptake and SGFR
values: uptake increases and SGFR decreases propor
tionally to the plasma residue. As background correc
tions are independently performed on left and right
kidney curves, the probability to verify Equation 10
identity is low unless both background corrections are
adequate.

This identity is valid even for very asymmetrical
kidney functions and might constitute a very strong test
for checking any background correction method. The
PODV approach presented in this first application ful
fills this condition.

The proposed method for background correction is
easily usable in everyday practice and gives highly con
fident results even in case of very low GFR values.
Moreover, complete kinetic separation of the three
components of the renal ROl activity curve becomes
simple through PODV properties.

The next part of this work is in preparation and will
illustrate the predictive value of our PODV model with
99mTCDTPA When extrapolated to 20 mm, the 2â€”3-
mm renal PODV linear fit not only allows accurate
estimaton of the 20-mm bladder activity but also gives
its true time behavior over the whole study. This last
property confirms our original PODV model as an
adequate tool for quantitative tracer analysis in clinical
nuclear medicine.
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