
spatial resolution, the counts from the structure of
interest are spread over a larger area in the image, and
the peak activity is reduced. Consequently, the activity
will be systematically underestimated until the size of
the object approaches three times the FWHM of the
point-spread function (PSF) of the imaging system (2â€”
4). Dividingthe measurementsby a â€œrecoverycoeffi
cientâ€•(the ratio of measured activity to true activity)
has been proposed as a method of correcting this bias
(3). This correction, however, requires a priori assump

tions about the size of the structure of interest (3). In
addition, counts from the adjacent background are
included in the region of interest (ROI) and contami
nate the measurement; this error cannot be corrected
by recovery coefficients (4,5). For these reasons, meas
urements obtained by ROI or peak methods from res
olution-limited images, although possibly clinically use
ful, are not statistically optimal estimates of the true
physical quantities in the object of interest.

Quantitation is only one of the tasks routinely per
formed on medical images. Other tasks, such as feature
detection, size discrimination, or shape recognition,
have been studied extensively using models based on
signal detection theory (6, 7). The process of deciding,

for example, whether or not a structure is present, can
be mathematically modeled in a statistically optimal
sense as a lesion-matched filter. This leads to the con
cept of the â€œidealobserver,â€• which uses all the infor
mation in the image and provides an upper limit on
performance in a given task. The performance of the
ideal observer can be described by the task signal-to
noise ratio (SNR), which is determined by the properties
of the imaging system and by the characteristics of the
task. SNR has been shown to predict human perform
ance in a variety of different tasks and under a wide
range of imaging conditions. Human performance is
typically lower than the ideal by a factor of about two
(8â€”13).This model, however, is not applicable to mul
tiparameter estimation tasks, such as quantitation in
nuclear medicine, in which the dependence ofthe image
on the parameters is nonlinear.

In a simulation study, we investigated the limitations of
quantitation in nuclear medicine using a maximum-likeli
hood (ML)estimation model. We estimated activity, size,
andpositionof a disk-shapedobjecton a circular,uniform
backgroundof unknownactivity.Theparameterestimates
wereunbiased,andtheirstandarderrorwas proportional
tothesquarerootofthetotalimagecounts.Theestimates
of object activity and size were strongly (negatively) cor
related;the positionestimates,however,were not corre
lated with estimates of any other parameters. This implies
that a priori knowledge of object location does not improve
precision. The minimal model of quantitation tasks should
incorporate unknown object activity and size as well as
unknownbackgroundactivity.The ML estimationproce
dure was used to investigate the trade-off between reso
lution and sensitivity in gamma camera collimator design.
The results implied that for complex tasks such as the
multiparameterestimationtaskinvestigatedhere,optimum
performance is achieved at a better resolution than that
previouslyfoundoptimalfor detectionof a well-specified
object in a known background.

J NucIMed 1990;31:1693â€”1701

rogress in the development ofnew radiopharmaceu
ticals has stimulated interest in the measurement of
parameters of metabolic, physiologic, and receptor
function from images ofthe tracer distribution obtained
with positron emission tomography (PET) or single
photon emission computed tomography (SPECT).
Many structures of interest (e.g., tumors, myocardium,
cerebral cortex, brain nuclei) are small relative to the
spatial resolution provided by current imaging systems,
i.e., 5-10 mm full-width-at-half-maximum (FWHM) for
PET and 10â€”25mm FWHM for SPECT (1). Quanti
fication is difficult for this reason. Because ofthe limited
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We propose to model quantitation of physical quan
tities as a parameter estimation problem in which the
parameters are the quantities of interest, such as the
size, location, and activity within a structure. This
approach allows us to determine the relationships be
tween physical properties of the imaging system, such

as spatial resolution and noise, and performance in
quantitative imaging tasks with several unknown pa
rameters. Our goal is to establish a realistic model of
quantitation which transcends the limits of the linear

â€œidealobserverâ€•model and allows a formal assessment
of these complex nonlinear tasks.

Statistically optimal estimation methods have been
extensively used in fields such as radar and communi
cations ( 7). To estimate a parameter from a set of
observed data, a model must be formulated which
expresses the parameters in terms ofthe measured data.
For data without errors, the deviation between the
model and the data vanishes when the true parameter
is used in the model. To estimate the parameter in the
presence of statistical errors, a figure-of-merit is needed
which describes the agreement between the model and
the observed data for a given choice of the parameter
value. To obtain the â€œbestâ€•estimate this figure-of-merit
must be maximized. A figure-of-merit which is widely
used is the maximum-likelihood (ML) criterion, by
which the deviation between the model and the data is

described in terms of the error distribution of the oh
served data. The â€œbestâ€•parameter estimate in the ML
sense has the highest statistical likelihood to represent
the true parameter in the data ( 7,14â€”17). For high SNR
data, ML estimates are unbiased, have minimum vari
ance (efficiency), and approach the true parameter
value for large sample sizes (consistency); no other
estimation rule yields more information about the pa
rameters (sufficiency) ( 7). ML estimation is also related
to the concept of the likelihood ratio used in signal
detection theory (6, 7,13) and has been applied to image
resolution (18), tracer kinetic modeling and curve fit
ting (14,19,20), and tomographic reconstruction (21).
Carson (2) used ML reconstruction to calculate the
activity within ROIs whose shape, size, and position
was known a priori.

In the present study, we investigate the properties of
a ML estimator as a model ofthe quantitation problem
for various physical conditions to derive the fundamen
tal limitations of quantitation from nuclear medicine
images and give an example of applying the ML esti

mation model to collimator optimization for quantita
tion.

METHODS

Estimation Model
We will use the ML criterion to fit an analytical model,

M(@),of the image as a function of the parameter vector, @,

to the measured image. M(f,) is a vector whose elements are
the pixels in the image. The model used in the work reported
here incorporates a disk-shaped object surrounded by a uni
form background. The parameters to be estimated are disk
activity (aD),radius (rD),and position (xo, Yo)and background
activity (a@); background size and location are assumed
known. The analytical model includes blurring by a Gaussian
PSF with resolution (variance)of r2 and truncation of the
background to a uniform circular area of radius r@ surround
ing the object.

The likelihoodthat a givenset ofparameters, @,for a given
object has resulted in a particular measured image can be
expressed in a statistical sense in terms of the underlying error
(noise) distribution. The probability of an observed photon
count rate is described by the Poisson distribution. For more
than 15 detected counts, however, the Poisson distribution
can be approximated by the more tractable normal distribu
tion. For stationary white Gaussian noise, the individual pixel
errors due to the statistical fluctuation of the image data are
independent. The covariance matrix ofthese errors, therefore,
is diagonal and the estimation task reduces to least squares
estimation. In images reconstructed from projections by fil
tered backprojection, however, these errors are correlated and
simple least-squares estimation does not fulfill the ML crite
non. The correlations are described by the covariance matrix,
C, which for stationary noise is the Fourier transform of the
noise-power spectrum (NPS) (22â€”24).The single-pixel prob
ability for the parameter vector, @,can therefore be described
by a multivariate normal distribution, and the likelihood, L,
of j5for the entire measured image, I, is given by the product
of all the pixel probabilities:

L(i@)= (2ir)@/2 CI â€”1/2

exp {-@ [I - M(@)JTC'[I - M(@)]}@ (1)

where n is the number of pixels. Instead of maximizing the
likelihood function Lff:@)itself, the negative logarithm is usu
ally minimized. Eliminating all expressions which do not
depend on the parameters leaves the following objective func
tion, X, to be minimized:

X(f,) = [I â€”M(@)]TC'[I â€”M(f,)]. (2)

The noisein the imagecan be made uncorrelatedby filtering
with the inverse Fourier transform of the reciprocal of the
square foot ofthe NPS, a procedure known as â€œprewhiteningâ€•
(7,25). Essentially, each point ofthe residual vector, [I-M(@)J,
is weighted inversely by the expectation value of the noise at
the corresponding point in frequency space, i.e., the square
root of the NPS. One might expect singularities in the pre
whitening filter, given the theoretical form of the image NPS
(23),whichcontainszero-valuedcomponentsat lowfrequen
cies. Non-zero, low-frequency components have, however,
been reported in spectra measured from transmission and
emission computed tomography scanners(22,24,26). We have
shown that these components can result from two-dimen
sional aliasing due to the discrete representation of the recon
structed image (24), and nonstationary ofthe projection NPS
(22). After prewhitening,the imagenoise is uncorrelatedand
least squaresestimation usingthe prewhitenedmodel fulfills
the ML criterion. Because the image has been modified by the
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prewhitening operation, the model must be similarly altered.
Assuming no zero-valued noise-power components, we obtain
for the prewhitened model:

X(f) = [F'IF@I@NPSâ€•2â€”F@M(@MTFNPS@2@12, (3)

where F denotes the Fourier transform and F@ its inverse.
The product MTF NPS@ is the square root of the noise
equivalent quanta spectrum (NEQ), i.e., the spatial frequency
distribution ofthe signal-to-noise ratio. This function is widely
used to describe imaging systems (13,26â€”28).

The minimum of the objective function, X(f,), cannot be
found analytically because it is nonlinear in the parameters.
We use an iterative nonlinear fitting algorithm (29) which has
been found to perform well even in the presence of large
residuals, i.e., when the minimum ofX(@3)is much larger than
zero (30). The expression for the disk model in the frequency
domain is:

.. rr@JI(2irrDfr)F@M(p)$= â€˜@(aDâ€”a@)@ exp[â€”2@ri(x@f@

r@J ,(27r@fr)l exp(â€”2ir2r2f@)
+ yof@)]+ a@ fr I NPS(f@, f@)'@2

where f@,f@,and fr denote rectilinear and radial frequency
space coordinates. The analytical model in the parameters to
be estimated (aD, rD, x0, Yo, and a@) is shown as the Fourier
transform of an expression involving Bessel functions of the
fixed kind, the Gaussian MTF with standard deviation a, and
the NPS of the imaging system.

There exists a unique, invertible relationship between the
spatial and frequency domains; it is, therefore, equivalent to
perform the fit either in real space or in frequency space (7).
We elected to perform the entire fitting operation in frequency
space because of the simplicity of the expression in Equation
4 compared to its inverse Fourier transform.

In order to exclude effects due to potential cumulative
roundoff errors, we used double-precision arithmetic for the
fitting subroutines as well as for all function and gradient
calculations. The Fourier transform and prewhitening opera
tions, which are outside the fitting process, were computed in
single precision. All fits were calculated to single precision
convergence using the convergence criteria proposed by Den
nis (29). This implies that further iterations would not yield
statistically significant changes in the likelihood function (1 7).
Fitting to the convergence tolerance for double precision did
not noticeably change the results but required substantially
longer computation times. All calculations were performed
on a Micro VAX II minicomputer (Digital Equipment Corp.,
Maynard, MA).

SimulationExperiments
Three sets of simulation experiments were performed. The

first studied estimation of parameters from images in which
the noise was uncorrelated (white). White noise characterizes
planar gamma-camera images. The purpose of this study was
to determine the relationships between performance of an
optimal estimator in quantitation tasks and the basic physical
properties of the imaging system, i.e., spatial resolution and
level of noise. The performance of the ML estimator is com
pared to that ofthe familiar ROI-based estimation procedures.
The purpose of the second set of experiments was to validate

the ML estimation procedure in the presence ofthe negatively
correlated noise that characterizes images, such as those from
SPECT systems, that are constructed from projections. For
these images, the estimation procedure was applied to the
prewhitened images. The validity of the ML estimation pro
cedure in tomographic noise was shown by its equivalence to
estimation from the raw projection data, in which the noise
was white. The third set ofexperiments applied these methods
to a practical design problem, determining the optimal size of
collimator holes. Here resolution and noise are coupled, i.e.,
decreasing hole size simultaneously improves resolution and
increases the level of noise. This implies that there is an
optimal configuration for a particular imaging task.

Estimation in White Noise
For our Monte Carlo simulation, we generated images with

disk activity twice the background activity. To approximate
the magnitude of the expected noise level in a scintigram,
stationary, white, Gaussian-distributed noise corresponding to
the average count level in the image was added to each pixel
in the real-space image. We used linear congruential random

(4) generators with shuffling and a rejection technique to generate

a Gaussian distribution (1 7). For all experimental conditions
which were directly compared, we used the same random
sequence.

The covariance matrix was computed from the true param
eter values t@iand @Ljand from the parameter estimates pi and
pi from n=200 samples. The elements ofthe covariance matrix
are given by:

cii= @:(Paâ€”m@Xp@â€”mi). (5)

From this we calculated the standard error of each parameter
and the correlations between pairs of parameters. Further
more, to distinguish between random errors and bias, the
accuracy, defined as the percent deviation of the mean of the
estimates from the true parameters, and the precision, defined
as the percent standard deviation about the mean of the
estimates, were calculated for all parameters. We tested the
assumption ofnormal distribution ofthe parameter estimates
using the Kolmogorov-Smirnov test (1 7). To test for trends,
we calculated the average residuals (deviations between the
modeland the data) and the averageresidualpowerspectrum
from the residuals at the solution for each image. The param
eter variance calculated from a finite number of replications
becomes more stable as the number of replications increases.
In a preliminary experiment to determine the number of
replications necessary to ensure a good estimate ofthe param
eter variance, we simulated 40,000 images of a disk with a
diameter equal to the FWHM resolution. We calculated the
standard deviation of the estimated parameters from 100
samples of 5 to 400 replications to determine the number of
replications subsequently used in the study. The dependence
of the standard error on the number of replications was
determined by log-log linear regression. Unless stated other
wise, 200 images were used in subsequent experiments. In
preliminary experiments, we had varied the object location
within the background area and had not found an influence
on the parameter estimates. Therefore, the object position was
kept constant near the center of the background for all simu
lation experiments.
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To study the dependence ofstandard error on image counts,
we varied the total number of counts in the image from l0@
to l0@for two resolution values: 4 and 6 pixels FWHM. For
these experiments, disk diameters ranged from 4 to 16 pixels
and the background diameter was 20 pixels. These fits were
performed on 32x32 image matrices; all other experimental
conditions used 64x64 pixel image representations. The
standard error was plotted versus the number ofcounts in the
image on a log/log scale and again the slope determined by
linear regression.

Of special interest in nuclear medicine is quantitation of
activity in objects small compared to the system resolution.
We simulated high (106) count images for disk diameters
ranging from 0.7 to 3 times the FWHM ofthe Gaussian point
spread function; the FWHM was 6 pixels and the background
diameter 40 pixels. For the same set of images, estimates of
regional activity were also calculated as the average over and
the peak within a ROl corresponding in size and location to
the disk. To study the potential of quantification in smaller
structures, we also generated very high SNR images (108
counts) for disks ofdiameters 0.2 to I times the FWHM.

In detection experiments, it has been shown that observer
performance is reduced when the location of the feature is
unknown to the observer ( 10,11,31,32). We compared the
performance of the ML-estimator under these circumstances
to a three-parameter estimation problem in which the position
of the feature was known. We used disk diameters ranging
from 3 to 16 pixels on a background of 40 pixels diameter, a
FWHM of8 pixels, and l0@counts in the image. The param
eter means for activity, size, and background were compared
to those from the five-parameter model using the paired t
test; the parameter variances were compared using Student's
f-test(15,16).

Estimation in Tomographic Noise
To demonstratethat estimationfrom the prewhitenedim

age is equivalent to estimation from the corresponding projec
tion set, we generated 128 projections of the disk model with
128 projection elements using the projection-slice theorem

(33). We added Gaussian-distributed white noise of constant
variance to each projection element as described above and
reconstructed on a 64x64 matrix by the convolution-backpro
jection algorithm, using an unwindowed ramp filter (34) and
linear interpolation. Each image was â€˜prewhitened'to remove
the correlations in the image noise using a filter based on the
NPS described by Kijewski and Judy (24). We then estimated
from the prewhitened images disk activity, size, and back
ground activity. We also estimated the parameters directly
from the projection data by fitting the model ofthe projection
data in the parametersâ€”as described by the projection-slice
theoremâ€”to the projection data where the noise is uncorre
lated and no prewhitening is required. We compared the
performance of both methods for a disk activity twice that of
the background and disk diameters ranging from 4.8 to 28
pixels for a FWHM of 6 pixels and a background diameter of
40 pixels.

Optimization of a Collimator for Estimation of
Regional Activity

To optimize a collimator for estimation from planar im
ages, we incrementally varied the resolution. The count effi
ciency (10@counts at a FWHM resolution of 6.0 pixels) was

proportional to the square of the resolution (35), disks with
diameters ranging from 8 to 24 pixels for a fixed background
diameter of 40 pixels were estimated. To ensure that our
findings were not affected by real-space truncation of the
background area (Gaussian PSF) or changes in the sampling
of the object, we performed the same calculations with disk
diameter fixed at 12 pixels while background diameter varied
from 24 to 48 pixels. The optimal resolution was defined as
that which resulted in the minimal standard error for the
estimate of the parameter of interest as calculated from a 4th
order polynomial fit (the lowest order fit to give a correlation
coefficient of 1.0).

RESULTS

As expected, the standard deviation of the precision
of the estimates derived from the simulations and the
bias decreased with the inverse square root of the num
ber of replications; the slope of the log/log representa
tion was â€”0.53with a correlation coefficient of r2>0.99
for the activity and the size estimates. The estimates of
the object activity, radius and background activity as
well as the position estimates were normally distributed
(Kolmogorov-Smirnov test, p<0.05). Therefore, confi
dence limits for the estimated parameters can be cal
culated based on the normal distribution, and the paired
t-test and F-test are appropriate to analyze the results.
The average residuals were random by visual inspec
tion, and the average residual power spectrum was
constant for images with white noise. After prewhiten
ing the tomographic images and fitting to the appropri
ate prewhitened model, the residual power spectrum
was, again, constant, as were the residuals after esti
mation from the projections.

For fixed resolution and disk diameter, the standard
error ofthe activity estimate was also inversely propor
tional to the square root of the total number of counts
in the image over a wide range of counts; the slope in
the log/log representation ranged from â€”0.49to â€”0.52
with a correlation coefficient r@>0.99.

In the 106 count images, the accuracy of the ML
estimator exceeded the precision for all parameters by
about an order of magnitude over the entire range of
disk sizes. We will, therefore, report the total standard
error to characterize the estimator in the remaining
simulation experiments. For 106image counts, the ac
curacy of the ML estimate of activity was superior to
the conventional ROI and peak estimates, both of
which are heavily biased; the precision, however, was
worse (Fig. 1).

Although the activity and size estimates were of
primary interest, examination of estimates of other
parameters and the correlations between pairs of them
was enlightening. The standard errors of the estimates
ofdisk activity and disk diameter were of similar order,
while the error on the position estimates was of the
same order of magnitude as the bias of the size and
activity estimates. For all situations studied we found a
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lated the optimal resolution from the polynomial coef

ficients and plotted the optimal resolution (normalized

to the disk diameter) against the background size (nor

malized to the disk diameter); the sets of curves from
the simulations which varied the object size for a fixed
background and from those which varied the back
ground size for a given object diameter agree within
experimental errors and show no effects of truncation

or sampling. The optimal resolution increased with
increasing background size both for activity estimation
and for size estimation (Fig. 5).

DISCUSSION

The results of the simulation experiments using the
ML model allow us to assess the effects of system
resolution and sensitivity on quantitation from nuclear
medicine images and the trade-offs involved in system
design in a more complex, realistic imaging task than
has been studied before.

The Characteristicsof the ML Estimator
For a high SNR, a ML estimator is expected to be

unbiased; in our implementation, the bias was small
relative to the variance of the estimates. The precision
of our estimates scaled with @Jif@(the standard devia
tion of the image data) as expected. The estimates were
normally distributed, and the residuals after conver
gence of the fitting procedure were constant in real
space as well as in frequency space. These properties
gave us confidence in our approach. In the high SNR
conditions under which quantitation is performed, the
l/@J@relationship between the precision and the num
ber of counts in the image enables use to scale the
results of our simulations to any desired system sensi
tivity and to predict the smallest structure which can
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FIGURE1
Precisionand accuracy of ML, AOl, and peak estimates of
disk activity as a function of the ratio of disk diameter to
FWHM of the PSF in a 106count image. Accuracy is ex
pressed as a percentageof the true value, precision (error
bars)as % s.d.
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negative correlation coefficient r of â€”0.6to â€”0.9be
tween the activity and the size estimates, while the
correlation of either activity or size with position was
always less than Â±0.25. The standard error of the
background estimate is largely dependent on the size of
the background relative to that of the disk; as the disk
diameter approaches the background diameter, the er
ror ofthe background estimate and the correlation with
the activity estimate increase. The standard errors of
the activity and size estimates increased rapidly with
decreasing object size, attaining a value of about 15%
at a disk diameter of 0.7 times the FWHM resolution
in a one-million-count image. Even at a 100-fold in
crease in the number of image counts, unrealistic for
clinical images, only slightly smaller lesions can be
estimated with the same standard error (Fig. 2).

Comparison of the parameter estimates for known
and unknown location revealed no significant differ
ence in mean value (paired t-test, p<0.05). In only 2 of
48 comparisons,the f-testindicateda significantdiffer
ence (p<0.05) in variance of the estimates from the
three-parameter fits compared to the five-parameter fits.
This result does not suggest a statistical difference, since
falsely significant differences must be expected for mul
tiple comparisons. There also was no significant differ
ence between estimation from the prewhitened tomo
graphic images and from the projection data (Fig. 3).

Figure 4 shows the standard errors of the estimates
of disk activity and disk diameter as a function of
system resolution. There is a different optimum for the
trade-off between resolution and sensitivity for the siz
ing and the activity estimation task. For all conditions,
these slowly varying functions were well described by a
4th-order polynomial (r=l .00). We analytically calcu
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FIGURE2
Standarderrorof disk activityandsizeestimatesas a function
of the ratio of disk diameterto FWHMof the PSFfor (A) 106
and (B) 108total imagecounts.
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FIGURE3
The standarderror of disk activity estimatesas a function of
the ratio of disk diameter to FWHM of the PSF for ML
estimationfrom projectionsversusestimationfrom prewhi
tened tomographicimages.
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FIGURE5
Theoptimalresolutionas a functionof the ratioof background
diameter-to-lesion diameter.

the photons emanating from the source but are more
affected by reduced contrast due to limited resolution
and by counts from the surrounding background. It is
notable that the peak overestimates the true activity in
larger lesions. When the lesion size increases to several
times that of the PSF, the expected value of the maxi
mum approaches the true activity; statistical fluctua
tions, however, lead to overestimation. For these rea
sons, ROI averages usually are not faithful estimates of
the true physical quantities. In theory, the bias can be
eliminated by application of recovery coefficients; this
procedure, however, requires a priori information about
the object size and the background activity (4). Quan
titation using such independent information is a differ
ent kind of estimation task, analogous to the known
signal detection task. The distinction between these
simple imaging tasks and the more complex tasks in
vestigated here is crucial.

ClinicalDemandson Quantitation
Clinical requirements for accuracy and precision vary

with the diagnostic task, being in general more stringent
for absolute than for relative quantitation. Accuracy
becomes crucial for relative quantitative tasks, however,
if size, shape, or background activity differ among
structures to be compared. Therefore, ROI methods
may be inadequate even for many relative quantitative
tasks in clinical nuclear medicine. For comparisons of
structures ofequal size, shape, and background activity,
accuracy is less important than precision, and quanti
tative indices derived from ROI measurements may be
clinically useful. Since improved precision can be oh
tamed at the cost of accuracy, which is less important
for some tasks, ROI estimates may even be preferable
to more complicated estimation schemes at low count
densities.

be quantified with a certain standard error, using a
given imaging system. From the results, we are forced
to conclude that the poor resolution and sensitivity of
currently available SPECT systems make them made
quate for quantitation of many structures of clinical
interest.

QuantitationwithROI
Since conventional ROI peak estimates do not ac

count for the effects of resolution, object size and
background activity, they are quite biased at small
lesion sizes. This bias can be reduced at the cost of
precision by reducing the size of the ROI; the extreme

is a one-pixel-diameter ROI, the peak estimate. Con
versely, estimates from a larger ROI are more precise

but less accurate, since they utilize a larger fraction of
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FIGURE4
The dependenceof standard error of disk activity and size
estimateson resolutionfor a 20-pixel-diameterlesion and a
40-pixel-diameterbackground.
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ImagingSystemRequirementsfor Multiparameter
Quantitation

The system requirements for multiparameter esti
mation tasks differ fundamentally from those for the
simpler imaging tasks. Tasks involving only one un
known parameter, such as estimation of the activity of
an object of known size without a background can best
be accomplished using a system with the highest possi
ble sensitivity, such as a well counter or whole body
counter. There is no requirement for spatial resolution;
the quantity of interest can be unambiguously derived
from the DC information, i.e., the total number of
detected counts. Spatial resolution capability is neces
sary for two-parameter estimation tasks, such as esti

mation of the activity of a structure of unknown size.
The distinction between a smaller structure of higher
activity and a larger structure of lower activity cannot
be made using the DC component alone; the higher
spatial frequency components of the object spectrum
are required. Similarly, for an imaging task in the
presence of a background, the feature spectrum must
be distinguished from that of the background. As Han
son (28) has pointed out, the low-spatial-frequency
components contain contributions from the back
ground, the feature, and the noise. Therefore, infor
mation about the background activity depends on esti
mates of the feature's size and/or activity, which can
only be derived from the high spatial frequencies where
they can be separated. When the object size approaches
the background size, the signal spectra ofthe object and
the background become similar, and the distinction,
again, lies at high spatial frequencies. These compo
nents are severely attenuated by the MTF for objects
which are small compared to the system PSF. In the
presence of noise, this leads to ambiguities in the data
and, consequently, to negative correlations between the
size and activity estimates and to rapid degradation of
the precision ofthe ML estimates for small lesion sizes.
The behavior reflects the limitations in the data for the
performance in complex estimation tasks as the
matched-filter SNR is a descriptor ofdetection perform
ance. Our findings support the conclusion that for
objects small compared to the system resolution im
proved resolution improves performance in complex
quantitation tasks more than a large increase in image
counts (Fig. 2).

Our findings with respect to the overwhelming im
portance ofhigh resolution are consistent with previous
studies of detection tasks. Analytical predictions (13,
28,36), computer simulation experiments (37), experi
mental evidence (38-40), and observer performance
studies (12) have shown that an improvement of reso
lution moves the performance for detection or for
higher-order decision tasks into a more favorable re
gime.

In our study, we assumed that the location of the

feature was unknown, as it would be in clinical situa
tions. We found, however, that the precision of the
activity and size estimates was the same whether or not
disk position was known. This is reflected in the weak
correlation between estimates of position and estimates
of any other parameters. These findings appear to be
inconsistent with results of previous studies (10,11,31,
32) which showed that performance in detection tasks

was degraded by position uncertainty. This apparent
paradox can be resolved by considering the relative
levels of SNR in typical detection and estimation tasks.
The SNR required for estimation is much higher than
the low (usually near threshold) levels of SNR typical
of detection experiments where the performance in
unknown-location tasks is degraded by false-positive
errors which would not occur were the feature location
known. At the high levels of SNR used for estimation,
a clump of noise will never be mistaken for a lesion,
even when location is not known.

The noise correlations in the tomographic images
violate the assumption ofstationary white noise implicit
in the non-prewhitening estimator; ignoring these cor
relations degrades the performance of the estimator (7,
13,25). This degradation of performance is also oh
served for detection tasks (8,11,13,41). The penalty,
however, can be avoided by prewhitening the image
and fitting to an appropriately prewhitened model in
the ML estimator ( 7,25). Our results indicate that the
prewhitening filter adequately removes the noise cor
relations due to the reconstruction procedure.

Volume estimation in tomographic imaging modali
ties opens the possibility of measuring activity concen
tration without a priori assumptions about size in any
dimension. The model used in this study represents a
slice through a cylindrical background surrounding a
cylindrical object as a tomographic imaging task. Most
realistic sources of activity, however, have an axially
limited extent. The axial aperture ofa system is a major
factor for quantitation and requires an appropriate
analysis (36,42). The equivalence of estimation from
prewhitened images and estimation from the projec
tions enables us to study estimation in a three-dimen
sional tomographic volume by two-dimensional esti
mation from the projections. Since position uncertainty
does not affect the other parameter estimates, a single
projection image of, e.g., a centered sphere of known
position, is an adequate three-parameter estimation
model. Such a study would be feasible on a typical
workstation. This ongoing work promises insights into
the possible benefits of a truly three-dimensional quan
tification scheme for tomographic volume data.

Optimization of a Collimator for Estimation of
Regional Activity

The most interesting result of our collimator study is
that no single optimum exists for a given object, or
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even for a given set of imaging tasks; the optimum also
depends on the background. This can be understood by

considering, again, the frequency space representation
ofthe model. As the background diameter increases, its
spectrum narrows and the medium spatial frequencies,
which contain components from both the object and
the background, become available to characterize the
object sufficiently, thus lowering the requirement for
resolution. We expect that if the uniform background

were replaced by a complex background, an increase in
its size would not necessarily reduce the requirement
for high resolution, since a larger background may
include additional structures with high-spatial-fre
quency content.

At first glance, it may be surprising that the optima
for activity and size estimation tasks differ, even though
all parameters are estimated simultaneously. Two sep
arate issues, however, must be considered: one is the
optimal simultaneous estimation of all parameters for

a given image, the other, the physical characteristics in
the image favoring one parameter estimate the cost of
another. (The latter question is discussed above.) The
covariance matrix reflects the degree to which the wors
ening error in one parameter estimate influences the
others, which are favored under the given circum
stances. In general, the optimal collimator resolution is
higher for quantitation of regional activity than for
detection. (Tsui (39) reported an optimal resolution of
1. 1 times the feature diameter for detection on planar
images of a sphere in a background of diameter 7.7

times the feature size.) The sizing task, with an optimal
FWHM of 0.25 times the disk diameter, requires even
better resolution than does amplitude estimation. This
is consistent with the requirement of higher spatial
resolution for discriminating between tumor uptake
distributions (43) and size discrimination (28) than for
detection (which is closely related to a single parameter
activity estimation task).

The propagation of the physician image noise to the
error variance of the parameters can be estimated by
methods other than computer simulation, all of which
require an estimate ofthe covariance matrix. The com
plete covariance matrix cannot be derived analytically;
there exist, however, first-order approximations such as
the Cramer-Rao bound ( 7,13) and the well known first
order approximation to propagation of error analysis
(15),orsecond-orderapproximationssuchastheBhat
tacharyya bound ( 7). Iterative nonlinear fitting algo
rithms make use of a first- or second-order approxi

mation of the covariance matrix to model the depend
ence ofthe parameters on the data. This estimate of the
covariance matrix has been used to predict the precision
of estimates of regional activity obtained by ML esti
mation in ROIs from PET images using the EM algo
rithm (2).

The model used in this work does not include the

effects of nonstationary Poisson noise, nonstationary
resolution, scatter, or attenuation. Nevertheless, it en
ables us to assess some general problems in quantita
tion, just as the matched-filter model does in detection.
An advantage of the Monte Carlo approach over ana
lytically derived bounds is that it can be modified to

investigate the effects of nonstationary Poisson noise
on quantitation. Resolution is of overwhelming impor
tance for the quantitation of parameters of small struc
tures. Although resolution of nuclear medicine imaging
systems is generally non-stationary, it is approximately
stationary over the extent of a small object. The effect
of a perturbation of the assumption of stationary reso
lution with respect to the relatively large background
can be directly investigated with our model but is
considered minor, since the signal power of the back
ground is low at the high spatial frequencies where the
nonstationarity is reflected in the MTF.

Contributions to the image from scattered photons
can be described by the system MTF and, hence, can
be adequately modeled to the extent that they are
stationary (44,45). The effect of the attenuation of
photons by the patient is also compensated to first order
by, e.g., a multiplicative correction to the geometric
mean of opposing projections. For tomographic imag
ing, this will mainly affect the magnitude and shape of
the NPS, so this effect can also be approximated in our
model (22).

We conclude that our approach yields an appropriate
tool for the investigation of imaging tasks in which the
dependence between the image and the parameters is
nonlinear, such as quantitation. Our model exactly
describes the physical characteristics of the imaging
system, and can, at least to first order, account for
several nonstationary processes encountered in nuclear
imaging; therefore, it can be used to assess the penalties
imposed by these effects. The minimal model for quan
titation in a clinically meaningful context is a three
parameter model of size and activity estimation of an
object in an unknown background. Since position esti
mation is uncorrelated with these parameters, it need
not be considered unless of specific interest.
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